
Globally robust confidence intervals for simple

linear regression

Jorge Adrover a, Matias Salibian-Barrera b,∗
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Abstract

It is well known that when the data may contain outliers or other departures from

the assumed model, classical inference methods can be seriously affected and yield

confidence levels much lower than the nominal ones. This paper proposes robust con-

fidence intervals and tests for the parameters of the simple linear regression model

that maintain their coverage and significance level, respectively, over whole contam-

ination neighbourhoods. This approach can be used with any consistent regression

estimator for which maximum bias curves are tabulated, and thus it is more widely

applicable than previous proposals in the literature. Although the results regarding

the coverage level of these confidence intervals are asymptotic in nature, simulation

studies suggest that these robust inference procedures work well for small samples,

and compare very favourably with earlier proposals in the literature.
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1 Introduction

Consider the simple linear regression model where we observe a bivariate ran-

dom sample (Y1, X1), . . . , (Yn, Xn) satisfying

Yi = β0 + β1 (Xi − µX) + σ0 εi , i = 1, . . . , n , (1)

where Xi are univariate explanatory variables, µX = med(Xi), the errors

εi follow a known distribution F0 and satisfy med(εi|Xi) = 0, i = 1, . . . , n.

In general, one assumes that the data are generated by a distribution Hθ

belonging to a parametric family of distributions {Hθ}, with θ ∈ R2. To allow

for outliers and other departures from the model, we will assume that the data

follow a distribution H in an ε-contamination neighbourhood Hε(Hθ) of the

true underlying parametric model. More specifically,

Hε(Hθ) =
{
H = (1− ε) Hθ + εH∗ , H∗ an arbitrary distribution onR2

}
,

(2)

where 0 < ε < 0.5.

Confidence intervals based on maximum likelihood estimators may be seriously

affected by a small proportion of atypical observations (see, e.g. [17], [6], [11],

[12], [4], [8], and [1]). We will say that a confidence interval is robust if it

is able to maintain a high coverage level and a reasonable length when the

data comes from any distribution in the contamination neighbourhood (2).

Formally, we have the following

Definition 1 A confidence interval (Ln, Un) for θ ∈ R is called globally ro-

bust of level (1− α) if it satisfies the following conditions:

(1) (Stable interval) The minimum asymptotic coverage over the ε-contamination

neighbourhood is 1− α, i.e.

lim
n→∞ inf

H∈Hε(Hθ)
PH (Ln < θ < Un) ≥ 1− α .

(2) (Informative interval) The maximum asymptotic length of the interval is
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bounded over the ε-contamination neighbourhood, i.e.

lim
n→∞ sup

H∈Hε(Hθ)
[Un − Ln] < ∞ .

It is easy to see that, for the location model, confidence intervals of the form

Xn±t(n−1)(α/2)Sn/
√

n do not satisfy either Parts 1 or 2 of Definition 1 above.

The problem with the above confidence intervals is not solely due to the lack

of robustness of the estimators Xn and Sn. It can be shown that even if we

replace the sample mean and standard deviation by robust counterparts θ̂n

and σ̂n, the resulting confidence interval only satisfies Part 2 of the above

Definition.

The failure of intervals of the form θ̂n ± t(n−1)(α/2)σ̂n/
√

n to satisfy Part 1

above is due to the fact that while the length of the interval converges to zero

as n →∞, its center θ̂n may converge to a value different from the parameter

of interest θ. This problem can be fixed taking into account the largest possible

difference between θ̂(H), the limiting value of θ̂n, and the parameter of interest

θ, across distributions H in the contamination neighbourhood Hε(Hθ). This

quantity is related to the maximum asymptotic bias of the estimator θ̂n (e.g.

see [10]).

For the location model Yi = θ + σ0 εi, the maximum asymptotic bias of θ̂n is

B(ε) = sup
H∈Hε(Hθ)

∣∣∣θ̂(H)− θ
∣∣∣

σ0

,

and thus,
∣∣∣θ̂(H)− θ

∣∣∣ ≤ B(ε) σ0 for all H ∈ Hε(Hθ). Let σ̂n be an estimator

of σ0 with limit σ̂(H), which in principle may be different from σ0. For each

H ∈ Hε(Hθ) we have

∣∣∣θ̂(H)− θ
∣∣∣ ≤ B(ε) σ0 = B(ε)

σ0

σ̂(H)
σ̂(H) ≤ B(ε) K(ε) σ̂(H) , (3)

where K(ε) = supH∈Hε(Hθ) σ0/σ̂(H). Tabulated values of K(ε) for different

scale estimators are available in [3]. Hence, we can estimate the largest differ-

ence
∣∣∣θ̂(H)− θ

∣∣∣ using B(ε) K(ε) σ̂n.
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In the linear regression model, the maximum asymptotic bias for the slope β1

is

B(ε) = sup
H∈Hε(Hθ)

∣∣∣β̂1(H)− β1

∣∣∣ σX

σ0

,

where β̂1(H) is the limit of the slope estimator β̂1,n when the data have dis-

tribution H, and σX is the scale of the covariates under model (1). If the

estimator is equivariant under affine transformations, B(ε) above does not

depend on the value of the parameters under the central model (see [13]).

Similarly to (3), we have

∣∣∣β̂1(H)− β1

∣∣∣ ≤ B(ε)
σ0

σX

≤ B(ε) K(ε)
σ̂(H)

σ̂X(H)
, (4)

for each H ∈ Hε(Hθ), where

K(ε) = sup
H∈Hε(Hθ)

[σ0/σ̂(H)] sup
H∈Hε(Hθ)

[σ̂X(H)/σX ] ,

and σ̂X(H) is the limit of the scale estimator σ̂X,n. The quantities B(ε) and

K(ε) on the right-hand side of (4) are available for some estimators (see [14])

and the ratio σ̂(H)/σ̂X(H) can be estimated for a given sample by σ̂n/σ̂X,n .

In [1] the authors proposed robust confidence intervals of the form β̂1 ± qn,

where: qn satisfies

Φ

(
qn − β̄1

vn

)
+ Φ

(
qn + β̄1

vn

)
− 1 = 1− α ; (5)

√
n vn is a consistent estimator of the asymptotic variance of β̂1; and β̄1 is the

estimated bias bound in (4):

β̄1 = B(ε) K(ε)
σ̂n

σ̂X,n

.

It follows from (5) that this approach to constructing robust confidence in-

tervals will typically produce shorter intervals when applied to estimators

with relatively small maximum asymptotic bias. Furthermore, note that this

methodology requires using an estimator that is asymptotically normal over

the whole contamination neighbourhood Hε(Hθ) with estimable asymptotic
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variance, and the estimation of the bias bound in (4). Unfortunately, the sam-

ple variability of the ratio σ̂n/σ̂X,n may affect the estimated upper bound

in (4), which could result in confidence intervals with finite sample coverage

different from the nominal level (see [1] for extensive simulation studies).

In this paper we discuss a new approach to construct robust confidence inter-

vals based on estimators that are consistent over Hε(Hθ), and have a known

maximum asymptotic bias. They are constructed using a non-parametric con-

fidence interval for the location model that only assumes errors with median

zero. Note that this proposal does not require the asymptotic distribution of

the estimator to be known. Furthermore, to construct a confidence interval for

the slope β1 in (1), only the maximum asymptotic bias of the estimator for

β0 is needed, and viceversa. As a result, this approach can be applied more

widely than previous proposals, and, furthermore, its finite-sample properties

are better than those of other methods in the literature.

The rest of the paper is organized as follows. Section 2 introduces non-parametric

confidence intervals for the simple linear regression model. Section 3 shows how

to correct these intervals to account for the damaging effect of the asymptotic

bias of the estimators on which they are based. Section 4 reports the result of

a simulation study on the finite-sample properties of this approach. Section 5

derives robust hypothesis tests based on these confidence intervals, while Sec-

tion 6 illustrates their application on real data sets. Some comments on future

work are included in Section 7, and Section 8 presents concluding remarks.

Finally, all technical proofs can be found in the Appendix.

2 Non-parametric confidence intervals for the slope and intercept

As before, assume that (Y1, X1), . . . , (Yn, Xn) are a bivariate random sample

following the simple regression model (1). The basic idea of our approach is as

follows. For each a, b ∈ R, consider pseudo-observations Zi(b) = Yi − b (Xi −
µX), and Wi(a) = (Yi − a) / (Xi − µX), for i = 1, . . . , n. Under the model, we
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have

Zi(b) = β0 + (β1 − b) (Xi − µX) + σ0εi = β0 + ε̃i (b) ,

Wi(a) = β1 +
β0 − a

Xi − µX

+
σ0εi

Xi − µX

= β1 + ε̈i (a) ,

(6)

with

ε̃i (b) = (β1 − b) (Xi − µX) + σ0εi

ε̈i (a) =
β0 − a + σ0εi

Xi − µX

.

Note that the above approach transforms the linear regression model (1) into

two location models for the pseudo-observations Zi(b) and Wi(a), i = 1, . . . , n,

respectively. Furthermore, note that ε̃i(β1) = σ0εi and ε̈i(β0) = σ0εi/(Xi−µX),

which satisfy med (ε̃i(β1)) = med (ε̈i (β0)) = 0. This follows from the fact that

med(εi) = 0 implies med(εi/(Xi − µX)) = 0 (see Lemma 4 in the Appendix).

Hence, if µX and β0 were known, one could construct a robust confidence in-

terval for β1 using a robust confidence interval for location applied to the

pseudo-observations Wi(β0) in (6). In this paper we consider robust non-

parametric confidence intervals as proposed in [18]. Given independent obser-

vations U1, . . . , Un with med(Ui) = θ, i = 1, . . . , n and distribution function

Hθ, θ ∈ R, a non-parametric confidence interval for θ of approximate level

(1− α) is given by
[
U(k+1), U(n−k)

)
, (7)

where k satisfies

k = max {j : P (j < Bi(n, p) < n− j) ≥ 1− α} , (8)

with p = 1/2. The probability of success p = 1/2 in (8) is associated with the

fact that

p = PHθ
(Ui < θ) = 1/2 . (9)
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Following the proof of Theorem 1 in [18], we have that when the observations

are contaminated, for H ∈ Hε(Hθ),

(1− ε)/2 = (1− ε)PHθ
(Ui < θ)

≤ p = PH (Ui < θ)

≤ (1− ε)PHθ
(Ui < θ) + ε = (1 + ε)/2 , (10)

and p ranges between (1−ε)/2 and (1+ε)/2. Hence, the actual coverage level

of the intervals in (7) for the contamination neighbourhood Hε(Hθ) will be

inf
(1−ε)/2 ≤ p ≤ (1+ε)/2

h(n, k, p) ,

where

h(n, k, p) = P (k < Bi(n, p) < n− k) , (11)

Lemma 1 in the same paper shows that h(n, k, p) = h(n, k, 1 − p) and that

h(n, k, p) is non-decreasing in 0 ≤ p ≤ 0.5 for k = 0, 1, . . . , [n/2], and thus

the infimum is attained at p = (1− ε)/2. In other words,

inf
H∈Hε(Hθ)

PH

(
θ ∈

[
U(k+1), U(n−k)

))
= P (k < Bi(n, (1− ε)/2) < n− k) ,

and hence, if k satisfies

P (k < Bi(n, (1− ε)/2) < n− k) ≥ 1− α , (12)

then the level of the confidence interval in (7) is at least 1− α over the whole

contamination neighbourhood Hε(Hθ).

This discussion shows that if µX and β0 are known, and k satisfies (12), then

[
W(k+1)(β0),W(n−k)(β0)

)
,

is a robust non-parametric confidence interval for the slope β1 of model (1),

of level (1− α) over the whole contamination neighbourhood Hε(Hθ).

Since typically neither µX nor β0 are known, the natural procedure is to re-

place them with robust estimators, µ̂X,n and β̂0,n, respectively, and consider
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confidence intervals of the form

[
W(k+1)(β̂0,n),W(n−k)(β̂0,n)

)
. (13)

Similarly, given a robust estimator β̂1,n a robust confidence interval for the

intercept β0 in model (1) is

[
Z(k+1)(β̂1,n), Z(n−k)(β̂1,n)

)
.

We ran a small simulation experiment to study the empirical coverage of the

intervals in (13) using µ̂X,n = med (X1, . . . , Xn) and

β̂0,n = med
1≤i≤n

(
Yi − β̂1,n (Xi − µ̂X,n)

)
, (14)

where β̂1,n is the “repeated medians of slopes” estimator [16]:

β̂1,n = med
1≤j≤n

med
i6=j

Yi − Yj

Xi −Xj

.

We generated 1000 random samples following model (1) with β0 = β1 = 0,

Xi ∼ N (0, 1), εi ∼ N (0, 1), σ0 = 1 and εi independent from Xi, i = 1, . . . , n.

We computed confidence intervals of level 95% as defined in (13), with k as in

(12) with ε = 0. Table 1 shows the empirical coverages and median lengths for

different sample sizes. Since these confidence intervals correspond to inverting

the classical sign test for location, and the samples do not contain outliers, it

is not surprising that the empirical coverages are close to the nominal level,

and their lengths converge to zero as the sample size increases.

Next we contaminated these samples with 5, 10 and 20% of outliers with dis-

tribution N2 ((x0, y0)
′, 0.01 I), where (x0, y0) were (3, 1.5), (5, 2.5) and (5, 15).

These outliers correspond to three leverage levels: “mild”, “medium” and

“strong”, respectively. The results in Table 2 show that the empirical coverage

decreases to zero as the sample size and the level of contamination increase.

This means that the intervals are not able to include the slope parameter in

the presence of contamination and large sample size, although their lengths

are not vanishing. The concealed fact behind this behavior is that, although
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very robust, when the data contain outliers, the estimator for β1 is biased and

does not converge to the slope parameter under the model.

It is worth noting that this problem is not due to the choice of the robust

estimator for β0 (or β1): when the data do not follow the central model all

estimators may be biased, in the sense of converging to a different value of the

parameter of interest. Furthermore, note that the repeated medians is among

the best options available to deal with this bias problem. The rest of the paper

is concerned with resolving this issue.

Sample Coverage and

size median length

20 0.94 (1.75)

40 0.93 (1.07)

60 0.94 (0.81)

80 0.92 (0.67)

100 0.92 (0.59)

200 0.95 (0.42)

500 0.94 (0.27)

2000 0.95 (0.14)

10000 0.96 (0.06)

Table 1
Empirical coverages and median lengths of 1000 confidence intervals of level 95% as
in (13) for the slope β1 under the linear model (1).

3 Improving the coverage levels by correcting for maximum asymp-

totic bias

Note that the asymptotic version of (13) is constructed using β̂0 instead of

β̂0,n and µ̂X instead of µ̂X,n. We have

Wi(β̂0) = β1 +
σ0εi −

(
β̂0 − β0

)

Xi − µ̂X

= β1 +
σ0εi − b(β̂0)

Xi − µX − b(µ̂X)
, (15)
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Perc. of cont. Sample size Mild Medium Strong

5% 20 0.95 (1.61) 0.95 (1.62) 0.95 (1.91)

40 0.94 (1.00) 0.94 (1.00) 0.94 (1.16)

60 0.95 (0.88) 0.95 (0.88) 0.95 (1.01)

80 0.95 (0.73) 0.95 (0.74) 0.95 (0.80)

100 0.93 (0.66) 0.93 (0.66) 0.93 (0.71)

200 0.94 (0.54) 0.94 (0.54) 0.95 (0.55)

500 0.93 (0.40) 0.93 (0.40) 0.93 (0.40)

2000 0.94 (0.29) 0.95 (0.29) 0.95 (0.29)

10000 0.90 (0.21) 0.90 (0.22) 0.90 (0.22)

10% 20 0.92 (1.50) 0.92 (1.49) 0.91 (2.19)

40 0.96 (1.10) 0.96 (1.10) 0.95 (1.57)

60 0.94 (0.91) 0.95 (0.91) 0.94 (1.31)

80 0.95 (0.80) 0.95 (0.81) 0.95 (1.12)

100 0.94 (0.76) 0.94 (0.77) 0.94 (1.05)

200 0.94 (0.63) 0.94 (0.64) 0.94 (0.80)

500 0.92 (0.54) 0.92 (0.56) 0.92 (0.65)

2000 0.85 (0.45) 0.85 (0.47) 0.85 (0.50)

10000 0.65 (0.41) 0.64 (0.42) 0.64 (0.43)

20% 20 0.94 (1.78) 0.94 (1.77) 0.92 (3.77)

40 0.96 (1.22) 0.95 (1.23) 0.92 (3.33)

60 0.93 (0.97) 0.93 (0.97) 0.88 (3.04)

80 0.91 (0.81) 0.91 (0.81) 0.86 (2.79)

100 0.91 (0.77) 0.90 (0.77) 0.85 (2.59)

200 0.86 (0.59) 0.84 (0.59) 0.71 (1.95)

500 0.61 (0.47) 0.54 (0.47) 0.37 (1.55)

2000 0.11 (0.40) 0.04 (0.40) 0.02 (1.29)

10000 0.00 (0.36) 0.00 (0.35) 0.00 (1.17)

Table 2
Empirical coverages and median lengths of 1000 confidence intervals of the form
(13) for the slope parameter β1. The nominal level is 95% and different proportion
of outliers were placed at: x0 = 3, y0 = 1.5 (Mild), x0 = 5, y0 = 2.5 (Medium), and
x0 = 5, y0 = 15 (Strong).

10



with b( µ̂X) = µ̂X−µX , b( β̂0) = β̂0−β0. Observe that neither σ0εi−b(β̂0) nor

Xi − µX − b(µ̂X) have median zero, and thus, in general, med
(
Wi(β̂0)

)
6= β1.

Hence, we need to revisit the bounds in (10) taking into account the fact that

PH0

(
Wi(β̂0) < β1

)
6= 1/2 ,

where H0 is the distribution of the data undel model (1). Assume that

A1: Xi and εi, i = 1, . . . , n are independent under the model (1);

A2: εi, i = 1, . . . , n have a continuous cdf F0 under the model (1);

and let G0(x) be the cdf of (Xi−µX)/σX under the model (1). Denote G−
0 (a) =

limx↗a G0(x). The following quantities account for the positive and negative

contribution of the bias of the estimate:

B+(β̂0) = sup
H∈Hε(Hθ)

β̂0(H)− β0

σ0

, (16)

B−(β̂0) = inf
H∈Hε(Hθ)

β̂0(H)− β0

σ0

. (17)

and similarly for B+(µ̂X) and B−(µ̂X).

The following theorem shows how to modify the bounds in (10) taking into

account the asymptotic bias of β̂0 to obtain globally robust confidence intervals

for the slope parameter in model (1).

Theorem 1 Assume that A1 and A2 hold. Let β̂0 and µ̂X be the asymptotic

versions of β̂0,n and µ̂X,n, respectively. Assume also that

B+(β̂0) =−B−(β̂0) = B(β̂0) (18)

B+(µ̂X) =−B−(µ̂X) = B(µ̂X)

Then a robust confidence interval for the slope β1 in model (1), based on β̂0,n

and µ̂X,n, is
[
W (β̂0,n)(k+1),W (β̂0,n)(n−k)

)
, (19)

where k satisfies

h (n, k, p̃S) ≥ 1− α , (20)
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h (n, k, p) is defined in (11) and p̃S is taken to be

p̃S = (1− ε)
[
F0

(
B(β̂0)

)
+ G−

0 (B(µ̂X))− 2 F0

(
B(β̂0)

)
G−

0 (B(µ̂X))
]

. (21)

Remark 1 A sufficient condition for assumption (18) is that both F0(x) and

G0(x) be symmetric and unimodal (see Theorem 8 in [2]).

Remark 2 From the proof of Theorem 8 in [2] it can be shown that when

µ̂X,n = med(X1, . . . , Xn), β̂0,n is as in (14), and X is symmetrically dis-

tributed, the sequence of point contaminations at (x0, y0) = ±(n, n2) attain the

bounds (16) and (17) respectively, simultaneously for µ̂X and β̂0. Similarly, in

the case of contaminations at (x0, y0) = ±(n,−n2) attain these bounds. Both

facts together entail that the value p̃S is the smallest p to be used over the

whole neighbourhood to keep the global coverage.

We now turn our attention to confidence intervals for β0 in (1). Recall that

Z(β̂1) = β0 − (β1 − β̂1) (X − µX) + σ0ε .

As before, we have that

PH0

(
Zi(β̂1) < β0

)
6= 1/2

and we need to find appropriate bounds for PH

(
Zi(β̂1) < β0

)
. To our assump-

tions A1 and A2 we now need to add:

A3: Xi, i = 1, . . . , n, have a continuous distribution G0 with symmetric and

unimodal density g0 under model (1).

Similarly to Theorem 1 above, the following result shows how to incorporate

in (10) the asymptotic bias of the slope estimator to obtain globally robust

confidence intervals for the intercept parameter in model (1).

Theorem 2 Assume that A1, A2 and A3 hold. Let β̂1 and µ̂X be the asymp-

totic versions of β̂1,n and µ̂X,n, respectively. Assume also that
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B+(β̂1) =−B−(β̂1) = B(β̂1) ,

B+(µ̂X) =−B−(µ̂X) = B(µ̂X) , (22)

Let r(m, v) =
∫ +∞
−∞ F0(−mv + v z)g0(z)dz.Then, a robust confidence interval

for β0 is
[
Z(k+1)(β̂1,n), Z(n−k)(β̂1,n)

)

where k satisfies h (n, k, p̃C) ≥ 1 − α, h(n, k, p) is given in (11) and p̃C =

(1− ε) r(B+(µ̂X), B+(β̂1)).

4 Simulation study

In this section we present the results of a Monte Carlo study to investigate

the finite sample coverage level and lengths of the robust confidence intervals

for β1 introduced in Section 3. We will also compare their performance with

that of the intervals proposed in [1].

We generated 1000 random samples following model (1) with β0 = β1 = 0,

Xi ∼ N (0, 1), εi ∼ N (0, 1), and εi independent from Xi, i = 1, . . . , n. We

computed confidence intervals for β1 of level 95% as defined in (19), with β̂0

as in (14). These samples were contaminated with 5, 10 and 20% of outliers

with distribution N2 ((x0, y0)
′, 0.01I), where (x0, y0) = (3, 1.5), (5, 2.5) and

(5, 15), which we call “mild”, “medium” and “strong” contamination cases

respectively.

For each contamination level, the maximum asymptotic bias of β̂0 can be

computed from Table 1 and Theorem 7 of [2]. We include them in Table 3.

The maximum asymptotic bias of µ̂X,n = med(X1, . . . , Xn) is

B(µ̂X) = max

(
G−1

0

(
1

2 (1− ε)

)
−G−1

0

(
1

2

)
, G−1

0

(
1

2

)
−G−1

0

(
1− 2ε

2 (1− ε)

))

When G0(x) = Φ(x) the standard normal distribution, we have

B(µ̂X) = Φ−1

(
1

2 (1− ε)

)
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ε 0.01 0.025 0.05 0.10 0.15 0.20

B(β̂0) 0.013 0.033 0.073 0.170 0.311 0.518

Table 3
Maximum asymptotic biases for β̂0 based on the Repeated Median of Slopes esti-
mator, when (Yi, Xi) ∼ N (0, I) under the model

Table 4 contains the coverages and median lengths for ε = 0.05, 0.10 and 0.20,

for “mild”, “medium” and “strong” contaminations. Comparing these results

with those of Table 2, we can see that for ε = 0.05 the effect of the bias correc-

tion discussed in Section 3 is more visible for very large samples (n = 10000),

while the median lengths are comparable for all n. When ε = 0.10 the interval

in (19) has noticeably higher coverage than those in Table 2 for n ≥ 500. Also

in this case the median lengths are similar in both tables. Finally, while for

ε = 0.20 the coverages in Table 2 are clearly falling below the nominal level for

samples of size n ≥ 80, those in Table 4 remain high for all sample sizes. Note

that the correction in Section 3 is based on the maximum asymptotic bias, and

hence, when the contamination present in the data do not correspond to the

worst case scenario this robust confidence interval may be conservative. This

is why the empirical coverages for the “mild” and “medium” cases in Table

4 are higher than the nominal level, while those for “strong” contaminations

are closer to 95%. Furthermore, the impressive gains in coverage in Table 4

only seem to require a modest increase in median length. For example, for the

“strong” case, with n = 2000, the empirical coverages increased by a factor of

48 from 0.02 to 0.97, while the median length changed by a factor of 1.5 (1.29

to 1.94).

Note that the median lengths of the robust confidence interval defined in (19)

decrease as the sample size n increases, as expected, and also increase as the

contamination ranges from “mild” to “strong”. Finally, note that the median

lengths of the robust confidence interval do not tend to zero as n increases.

It has been well established in other proposals for robust confidence intervals

which maintain the nominal level over the whole contamination neighbour-

hood, that their length remains bounded away from zero as the sample size

increases (e.g. see [8] and [18]).
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Tables 5 and 6 compare the performance of the robust confidence interval

proposed here with those reported in Table 8 of [1]. For ε = 0.05 we see that

the confidence interval defined in (19) has coverage levels much closer to the

nominal one, with comparable or favourable median lengths. For ε = 0.10 the

new proposal is both much closer to the nominal level and noticeably more

stable than that of [1], while keeping the median lengths smaller in almost all

cases.

5 Robust hypothesis tests

As in Section 2, consider U1, . . . , Un independent random variables satisfying

med(Ui) = θ, i = 1, . . . , n, where θ ∈ R. We are interested in testing

H0 : θ ≥ θ0 Ha : θ < θ0

The classical sign test of approximate level α rejects H0 if

n∑

i=1

I (Ui > θ0) < k ,

where I(A) = 1 if the event A is true, and 0 otherwise, and k satisfies

P (Bi(n, 1/2) < k) ≈ α .

This test rejects H0 if

θ0 /∈
(
−∞, U(n−k)

]
. (23)

When the observations may be contaminated, we need to control the level

of the test over the whole contamination neighbourhood. In other words, we

need k to satisfy

sup
H∈Hε(Hθ) , θ≥θ0

P ( Bi(n, pH,θ) < k ) ≤ α ,

where pH,θ = PH (Ui > θ0). By Lemma 1, this is equivalent to using k such

that

P (Bi(n, p̃) < k) ≤ α , (24)
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where

p̃ = inf
H∈Hε(Hθ),θ≥θ0

pH θ = inf
H∈Hε(Hθ),θ≥θ0

PH (Ui > θ0) .

It is easy to see that

inf
H∈Hε(Hθ),θ≥θ0

PH (Ui > θ0) = inf
H∈Hε(Hθ)

PH (Ui > θ0) .

Using the notation of Section 3, and under assumptions A1 and A2, a robust

test for the hypothesis

H0 : β1 ≥ β versus Ha : β1 < β ,

where β is a fixed constant and β1 is the slope in the linear model (1), rejects

H0 if

β /∈
(
−∞,W(n−k)(β̂0,n)

]
, (25)

where β̂0,n is an estimator of β0 in (1), and k satisfies (24) with p̃ = p̃S as in

(21). This follows because, by (33), we have

inf
H∈Hε(Hθ)

PH

(
W (β̂0) > β

)
= 1− sup

H∈Hε(Hθ)
PH

(
W (β̂0) < β

)

= inf
H∈Hε(Hθ)

PH

(
W (β̂0) < β

)
= p̃S . (26)

By Lemma 3 in the Appendix, for any α ≤ 1/2, we can find k such that (24)

holds with p̃ = p̃S.

Consider now hypotheses of the form

H0 : θ ≤ θ0 versus Ha : θ > θ0 .

The classical sign test of approximate level α rejects H0 if

n∑

i=1

I (Ui > θ0) > n− k ,

and n− k satisfies

P (Bi(n, 1/2) > n− k) ≈ α .

Equivalently, this test rejects H0 if

θ0 /∈
[
U(k), +∞

)
. (27)
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As before, under assumptions A1 and A2, a robust test for the slope β1 in

model (1) for the hypothesis

H0 : β1 ≤ β versus Ha : β1 > β ,

rejects H0 if

β /∈
[
W(k)(β̂0,n), +∞

)
, (28)

where, by Lemma 3 and (26), it is enough that k satisfies

P (Bi(n, p̃) > n− k) ≈ α ,

with p̃ = 1 − p̃S in (21). This test has level α over the contamination neigh-

bourhood.

6 Examples

6.1 Motorola

Financial economists measure the risk associated with investing in a partic-

ular stock comparing the returns of the stock with an index of the market

return. In this example, let Mi, i = 1, . . . , 120, be the monthly returns of

Motorola shares between January 1978 and December 1987, and let mi be the

corresponding monthly market returns based on transactions of the New York

Stock Exchange and the American Exchange. The regression model used to

measure the risk of Motorola shares is

Mi −Bi = β0 + β1 (mi −Bi) + εi ,

where Bi is the monthly return of 30-day US Treasury bills. These data were

first published in [5]. The larger the slope β1 in the above model, the riskier the

stock. If one considers the point of view of a cautious investor that is interested

in checking whether Motorola stocks are a safe investment, a hypothesis of

interest is

H0 : β1 ≤ 1 versus Ha : β1 > 1 .
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Fig. 1. Motorola stock returns. The solid line is the least squares fit, while the dotted

line represents the repeated medians fit.
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The least squares estimator β̂LS
n = 0.85 and the corresponding p-value is 0.925.

The diagnostic plots do not reveal the presence of any outliers or departures

from the model. Moreover, the Theil non-parametric test for the above hy-

pothesis (e.g. see [9]) yields an approximate p-value of 0.16. In other words,

these tests suggest that there is not enough evidence to claim that investing

in Motorola’s shares is riskier than the reference index. However, the fit based

on a robust estimator such as the Repeated Median of Slopes identifies one

observation with large standardized residual. The data together with the fit-

ted lines are displayed in Figure 1. Hence, we are interested in testing the

above hypotheses with a robust procedure to avoid the distortion that could

be introduced by this outlier. We will use the rejection region in (28). Since

the diagnostic plots suggest that there is one possible outlier out of 120 obser-

vations, we take ε = 0.01. From the corresponding entry in Table 3, and the

fact that the maximum bias of the median is Φ−1(1/[2 (1−ε)]), we obtain p̃ =

1 − p̃S = 1 − 0.99(Φ(0.013) + 0.50/0.99 − 2Φ(0.013) 0.50/0.99 ) = 0.5050519.
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With an approximate level of α = 0.10, we have W(53)(β̂0,n) = 1.0003 and the

rejection region [1.0003, +∞) barely misses 1. We conclude that the robust

inferential procedure seems to indicate that there is some evidence showing

that the Motorola stock is riskier than the market. This is in contrast with

the result obtained by the classical test based on the least squares estimator.

The robust procedure has been able to reveal the evidence against the null

hypothesis that was hidden to the classical method by the outlier.

6.2 SAT scores versus student / teacher ratio

The SAT is a standardized test used for college admissions in the US. These

scores are sometimes used as evidence for or against the effectiveness of pub-

lic education policy measures at the state level. We consider data on average

mathematics SAT scores and average student / teacher ratio in public el-

ementary and secondary schools. These figures correspond to the academic

year 1994-1995. It is well known that the average SAT score depends very

strongly on the percentage of students taking the exam, with lower participa-

tion rates generally resulting in higher average scores. We restrict ourselves to

the 24 states that reported participation rates of 30% or higher.

A simple regression of the average SAT scores in mathematics as a function

of the average student / teacher ratio for each of the 50 US states yields an

estimated slope of 2.16 with an associated standard error of 1.12. The ro-

bust repeated medians of slopes point estimator is notably smaller at 1.05.

Both estimators seem to indicate that, against our intuition, higher pupil /

teacher ratios result in higher mathematics SAT scores. Figure 2 shows the

data and the LS and RMS regression estimates. We are interested in determin-

ing whether the linear association between these two measurements is indeed

positive. The usual 90% and 95% confidence intervals for the slope based

on the least squares estimator are (0.32, 3.99) and (-0.03, 4.35), respectively,

indicating that there is some evidence supporting a rather counter-intuitive

positive relationship between these variables. A residual analysis based on the
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Fig. 2. Mathematics SAT scores versus student / teachers ratios. The solid line is

the least squares fit, while the dashed line represents the repeated medians fit.
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RMS estimate shows one potential outlier (with residual larger than 3 Median

Absolute Deviation (MAD) of the residuals). Using a robust non-parametric

confidence interval of the form (19) with α = 0.10 and ε = 0.05 yields the

interval (-1.30, 4.72), which indicates that the slope coefficient may also be

negative. In fact, a closer look at the data reveals that the LS fit may be af-

fected by one state (California) with large SAT score and a particularly large

student / teacher ratio. If we remove this state’s observations from our anal-

ysis, the estimated SD of the LS slope estimator increases to 1.48, resulting

in wider confidence intervals, and consequently yielding weaker evidence of

a positive linear association between the variables. The 90% and 95% con-

fidence intervals change to (0.13, 4.98) and (-0.34, 5.45), respectively. Our

robust analysis was able to indicate that the apparent positive association

was not significant once we take into account the possible model deviations of

some of these observations.
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7 Prospective work

Constructing robust prediction intervals is still considered an open problem

with very few approaches appearing in the literature. One such proposal is [7].

The authors, however, do not take into account the lack of coverage caused by

potentially asymmetric contamination. Rather, their proposal is akin to using

robust prediction intervals of the form θ̂n±t(n−2)(α/2)
√

1 + 1/nσ̂n, with robust

location and scale estimates θ̂n and σ̂n. In what follows we sketch a different

proposal to derive a robust prediction interval for a future observation of the

response variable.

In the same spirit of model (1), we will focus on building a robust confidence

interval for η(x) = med(Y |X = x) = β0 + β1(x − µX). Let I1, I2 and I3 be

robust confidence intervals for for β0, β1 and µX and consider

IM =

[
inf

a,b,m∈I1×I2×I3
a + b(x−m), sup

a,b,m∈I1×I2×I3

a + b(x−m)

]
.

Using the Bonferroni inequality we obtain

P (η(x) ∈ IM) ≥ P (β0 ∈ I1, β1 ∈ I2, µX ∈ I3)

≥ P (β0 ∈ I1) + P (β1 ∈ I2) + P (µX ∈ I2)− 2 ≥ 1− 3α′.

Recall that under the central model the errors satisfy σ0ε ∼ F0 and let YN(x)

be the unknown response we want to predict at the point x. Note that YN(x) =

(1 − ZN)YG + ZNYB with ZN ∼ Bi(1, ε), ZN is independent of both YG and

YB.Then,

P (|YN(x)− η(x)| ≤ t) = P (|(1− ZN) (YG − η(x)) + ZN (YB − η(x))| ≤ t)

= (1− ε)P (|YG − η(x)| ≤ t) + εP (|YB − η(x)| ≤ t)

≥ (1− ε)
[
F0

(
t

σ0

)
− F0

(−t

σ0

)]

= (1− ε)
[
2F0

(
t

σ0

)
− 1

]
= (1− ε)(1− α′′).

Since σ0F
−1
0 (1 − α′′/2) ≤ K(ε)σ̂nF

−1
0 (1 − α′′/2) = t∗n (K(ε) is defined in 3)
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and

YN(x) = η(x) + YN(x)− η(x)

we have that

−t∗n≤YN(x)− η(x) ≤ t∗n
inf

a,b,m∈I1×I2×I3
a + b(x−m)− t∗n≤ η(x)− t∗n ≤ YN(x)

≤ t∗n + η(x) ≤ t∗n + sup
a,b,m∈I1×I2×I3

a + b(x−m).

Thus, we take the robust prediction interval at x = x0 as

IP =

[
inf

a,b,m∈I1×I2×I3
a + b(x0 −m)− t∗n, t

∗
n + sup

a,b,m∈I1×I2×I3

a + b(x0 −m)

]
,

and the coverage level is given by

P (YN(x) ∈ IP ) ≥ P (η ∈ IM , YN(x)− η(x) ∈ [−t∗n, t∗n])

= P (η ∈ IM)P (YN(x)− η(x) ∈ [−t∗n, t∗n]) =

= (1− 3α′)(1− ε)(1− α′′).

This interval will, with high probability, contain future observations at the

point x that come from the central regression model. However, future response

values that do not follow the model may not fall in the interval. In other words,

the interval is meant to predict only “good” future observations. Further work

along these initial steps is still necessary.

8 Conclusion

It is easy to see that when the data may contain outliers or other departures

from the assumed model, classical inference methods can be seriously affected

and might yield confidence levels much lower than the nominal values. In this

paper we propose robust confidence intervals for the slope of simple linear

regression models. These intervals combine robust non-parametric confidence

intervals for location models with bias corrections to control the minimum

coverage level even in the case of contaminated samples.
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Our approach can be applied to any consistent estimator of the slope and in-

tercept for which maximum bias curves are tabulated. Earlier proposals in the

literature (see [1]) required estimators that are
√

n-normal over the entire con-

tamination neighbourhood, and also involved the estimation of bias bounds,

which introduces further variability in the confidence interval, affecting their

coverage levels. In addition, note that to use the approach discussed in this

paper one does not need to estimate neither the scale parameter of the errors

σ0, nor the asymptotic standard deviation of the regression estimator.

Although our derivation is asymptotic in nature, our simulation studies sug-

gest that this approach works well for small samples. In particular, note from

Tables 5 and 6 that these new robust confidence intervals maintain coverage

levels much closer to the nominal one than previous proposals without sac-

rificing length. Furthermore, in most cases in these tables, the new approach

yields higher coverage levels with shorter intervals.

Finally, we extend these ideas to the hypothesis testing setup and derive robust

procedures that maintain the level of the test over the whole contamination

neighbourhood.

Acknowledgements: We would like to thank two anonymous referees and
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much improved paper.
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9 Appendix

Proof of Theorem 1:

PH0

(
Y − β̂0

X − µ̂X

− β1 < 0

)
= PH0

(
σ0ε− b(β̂0)

X − µX − b(µ̂X)
< 0

)

= PH0

(
σ0ε− b(β̂0) < 0 and X − µX − b(µ̂X) ≥ 0

)

+ PH0

(
σ0ε− b(β̂0) ≥ 0 and X − µX − b(µ̂X) < 0

)

= PF0

(
ε < b(β̂0)/σ0

)
PG0 ((X − µX)/σX ≥ b(µ̂X)/σX)

+ PF0

(
ε ≥ b(β̂0)/σ0

)
PG0 ((X − µX)/σX < b(µ̂X)/σX)

= F0

(
b(β̂0)/σ0

) [
1−G−

0 (b(µ̂X)/σX)
]
+

[
1− F0

(
b(β̂0)/σ0

)]
G−

0 (b(µ̂X)/σX)

= F0

(
b(β̂0)/σ0

)
+ G−

0 (b(µ̂X)/σX)− 2 F0

(
b(β̂0)/σ0

)
G−

0 (b(µ̂X)/σX)

=
(
1− 2 G−

0 (b(µ̂X)/σX)
)

F0

(
b(β̂0)/σ0

)
+ G−

0 (b(µ̂X)/σX) .

Note that when G−
0 (b(µ̂X)/σX) > 1/2 the above quantity is non-increasing

in b(β̂0), and if G−
0 (b(µ̂X)/σX) < 1/2 it is non-decreasing in b(β̂0). Thus, we

have that if the bias of µ̂X is positive then

PH0

(
Y − β̂0

X − µ̂X

− β1 < 0

)
≥ F0

(
B+(β̂0)

)
+ G−

0 (B+(µ̂X))

− 2 F0

(
B+(β̂0)

)
G−

0 (B+(µ̂X)) . (29)

If the bias of µ̂X is negative

PH0

(
Y − β̂0

X − µ̂X

− β1 < 0

)
≥ F0

(
B−(β̂0)

)
+ G−

0 (B−(µ̂X))

− 2 F0

(
B−(β̂0)

)
G−

0 (B−(µ̂X)) , (30)

A similar argument shows that if the bias of µ̂X is positive

PH0

(
Y − β̂0

X − µ̂X

− β1 < 0

)
≤ F0

(
B−(β̂0)

)
+ G−

0 (B+(µ̂X))

− 2 F0

(
B−(β̂0)

)
G−

0 (B+(µ̂X)) , (31)
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while if the bias of µ̂X is negative

PH0

(
Y − β̂0

X − µ̂X

− β1 < 0

)
≤ F0

(
B+(β̂0)

)
+ G−

0 (B−(µ̂X))

− 2 F0

(
B+(β̂0)

)
G−

0 (B−(µ̂X)) . (32)

Since the lower bounds in (29) and (30) are equal, and so are the upper bounds

in (31) and (32) we have

(1− ε)
[
F0

(
B(β̂0)

)
+ G−

0 (B(µ̂X))− 2 F0

(
B(β̂0)

)
G−

0 (B(µ̂X))
]

≤PH

(
Y − β̂0

X − µ̂X

− β1 < 0

)

≤ (1− ε)
[
1− F0(B(β̂0))−G−

0 (B(µ̂X)) +2 F0(B(β̂0)) G−
0 (B(µ̂X))

]
+ ε .

Note that the lower bound in the above equation is 1 minus the upper bound,

in other words, in this case we have

p̃S ≤ PH

(
Y − β̂0

X − µ̂X

− β1 < 0

)
≤ 1− p̃S for all H ∈ Hε(Hθ) , (33)

with p̃S as in 21.

Proof of Theorem 2: We have

PH0

(
(β1 − β̂1) (X − µX) + σ0ε < 0

)
= PH0

(
−b(β̂1) (X − µX − b(µ̂X)) + σ0ε < 0

)

= PH0

(
σ0ε < −b(µ̂X) b(β̂1) + b(β̂1) (X − µX)

)

= PH0

(
ε < −b(µ̂X)

σX

b(β̂1) σX

σ0

+
b(β̂1) σX

σ0

(X − µX)

σX

)

= PH0

(
ε < −mv + v

(X − µX)

σX

)

=
∫ +∞

−∞
F0(−mv + v z)g0(z)dz = r(m, v) ,

where m = b(µ̂X)/σX and v = b(β̂1) σX/σ0. The partial derivatives of r(m, v)

are
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∂r

∂m
(m, v) =−

∫
f0(v z −mv) v g0(z)dz ,

∂r

∂v
(m, v) =

∫
f0(v z −mv) (z −m) g0(z)dz .

It is easy to see that if m > 0 (m < 0) then r(m, v) is decreasing (increasing)

in v. Also, r(m, v) is decreasing (increasing) in m if v > 0 (v < 0). It follows

that

min
(
r(B+(µ̂X), B+(β̂1)), r(B−(µ̂X), B−(β̂1)),

)

≤ PH0

(
(β1 − β̂1) (X − µX) + ε < 0

)

≤ max
(
r(B+(µ̂X), B−(β̂1)), r(B−(µ̂X), B+(β̂1)),

)
.

then it holds that

r(B+(µ̂X), B+(β̂1)) = r(B−(µ̂X), B−(β̂1))

r(B+(µ̂X), B−(β̂1)) = r(B−(µ̂X), B+(β̂1)) .

It is easy to see that

1− r(B+(µ̂X), B+(β̂1)) = r(B−(µ̂X), B+(β̂1)) ,

which implies that

1−
[
(1− ε) r(B+(µ̂X), B+(β̂1))

]
= (1− ε) r(B−(µ̂X), B+(β̂1)) + ε .

Thus,

p̃C ≤ PH

(
Zi(β̂1) < β0

)
≤ 1− p̃C for all H ∈ Hε(Hθ) ,

where p̃C = (1− ε) r(B+(µ̂X), B+(β̂1)).

Lemma 3 Let Z ∼ Bi(n, p) with 0 ≤ p ≤ 1 and n ≥ 1. Then, for all

k = 0, 1, . . . , n, hk(p) = P (Z ≤ k) is non-increasing in p.

Proof: If X ∼ Bi(n, p1) and Y ∼ Bi(n, p2), with p1 < p2, then Y is larger

than X in the usual stochastic order (see Example 1.A.25, p.14 in [15]).
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Lemma 4 Let U and V be independent random variables defined on the prob-

ability space (Ω,A, P ). Take Q : Ω → R such that

Q =





U/V if V 6= 0

Z if V = 0,

with Z any random variable such that 0 is a median of Z and Z is independent

of V . (i) If 0 is a median of U then it is also a median of Q. (ii) If Z = 0 and

0 is a median of V then it is also a median of Q,

Proof: (i) Note that

P (Q ≤ 0)

= P ([U ≤ 0] ∩ [V > 0]) + P ([U ≥ 0] ∩ [V < 0]) + P ([Z ≤ 0] ∩ [V = 0])

= EV

[
I(0,∞)(V ) P (U ≤ 0|V )

]
+ EV

[
I(−∞,0)(V ) P (U ≥ 0|V )

]

+ P (Z ≤ 0|V = 0) P (V = 0) .

P (Q ≥ 0)

= P ([U ≥ 0] ∩ [V > 0]) + P ([U ≤ 0] ∩ [V < 0]) + P ([Z ≥ 0] ∩ [V = 0])

= EV

[
I(0,∞)(V ) P (U ≥ 0|V )

]
+ EV

[
I(−∞,0)(V ) P (U ≤ 0|V )

]

+ P (Z ≥ 0|V = 0) P (V = 0) .

If 0 is a median of U , we have P (U ≤ 0) ≥ 1/2 and P (U ≥ 0) ≥ 1/2. This

together with the independence between U and V and Z and V imply the

desired result.

(ii) We have

P (Q > 0)

= P ([V > 0] ∩ [U > 0]) + P ([V < 0] ∩ [U < 0]) + P ([V = 0] ∩ [Z > 0])

= EU

[
I(0,∞)(U) P (V > 0|U)

]
+ EU

[
I(−∞,0)(U) P (V < 0|U)

]
.
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P (Q < 0)

= P ([U < 0] ∩ [V > 0]) + P ([U > 0] ∩ [V < 0]) + P ([V = 0] ∩ [Z < 0])

= EU

[
I(−∞,0)(U) P (V > 0|U)

]
+ EU

[
I(0,∞)(U) P (V < 0|U)

]
.

If 0 is a median of V , we have P (V < 0) ≤ 1/2 and P (V > 0) ≤ 1/2. This

together with the independence between U and V imply the result.
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Sankhyã, A 25:331–352, 1963.

[18] V. Yohai and R. Zamar. Robust non-parametric inference for the median.

Annals of Statistics, 32(5):1841–1857, 2004.

29



Perc. of cont. Sample size Mild cont. Medium cont. Strong cont.

5% 20 0.95 (1.61) 0.95 (1.62) 0.95 (1.91)

40 0.94 (1.00) 0.94 (1.00) 0.94 (1.16)

60 0.95 (0.88) 0.95 (0.88) 0.95 (1.01)

80 0.95 (0.73) 0.95 (0.74) 0.95 (0.80)

100 0.95 (0.72) 0.96 (0.72) 0.95 (0.80)

200 0.94 (0.54) 0.94 (0.54) 0.95 (0.55)

500 0.94 (0.42) 0.94 (0.42) 0.94 (0.42)

2000 0.96 (0.30) 0.96 (0.30) 0.96 (0.30)

10000 0.94 (0.23) 0.94 (0.23) 0.94 (0.23)

10% 20 0.92 (1.50) 0.92 (1.49) 0.95 (2.19)

40 0.96 (1.10) 0.96 (1.10) 0.95 (1.57)

60 0.94 (0.91) 0.95 (0.91) 0.94 (1.31)

80 0.95 (0.80) 0.95 (0.81) 0.95 (1.12)

100 0.94 (0.76) 0.94 (0.77) 0.94 (1.05)

200 0.95 (0.65) 0.95 (0.67) 0.95 (0.85)

500 0.96 (0.57) 0.95 (0.58) 0.95 (0.69)

2000 0.96 (0.50) 0.96 (0.51) 0.96 (0.55)

10000 0.96 (0.44) 0.96 (0.46) 0.96 (0.48)

20% 20 0.98 (2.78) 0.98 (2.75) 0.98 (4.38)

40 0.98 (1.52) 0.98 (1.53) 0.96 (3.63)

60 0.98 (1.29) 0.98 (1.29) 0.97 (3.47)

80 0.99 (1.14) 0.99 (1.14) 0.97 (3.36)

100 0.97 (1.01) 0.98 (1.03) 0.96 (3.21)

200 1.00 (0.84) 0.99 (0.85) 0.98 (2.95)

500 1.00 (0.68) 0.99 (0.67) 0.96 (2.32)

2000 1.00 (0.58) 1.00 (0.57) 0.97 (1.94)

10000 1.00 (0.54) 1.00 (0.53) 0.96 (1.76)

Table 4
Empirical coverages and median lengths of 1000 confidence intervals of the form
(19) for the slope parameter β1. The nominal level is 95% and different proportion
of outliers were placed at: x0 = 3, y0 = 1.5 (Mild), x0 = 5, y0 = 2.5 (Medium), and
x0 = 5, y0 = 15 (Strong).
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Perc. of cont. Sample size Mild cont. Medium cont. Strong cont.

5% 20 0.94 (1.41) 0.94 (1.42) 0.91 (1.42)

40 0.92 (1.01) 0.92 (1.01) 0.93 (1.04)

60 0.92 (0.86) 0.92 (0.86) 0.94 (0.90)

BC 80 0.92 (0.76) 0.92 (0.77) 0.94 (0.79)

100 0.92 (0.71) 0.92 (0.71) 0.94 (0.73)

200 0.95 (0.57) 0.95 (0.58) 0.96 (0.58)

5% 20 0.95 (1.61) 0.95 (1.62) 0.95 (1.91)

40 0.94 (1.00) 0.94 (1.00) 0.95 (1.16)

60 0.95 (0.88) 0.95 (0.88) 0.95 (1.01)

PI 80 0.95 (0.73) 0.95 (0.74) 0.95 (0.80)

100 0.95 (0.72) 0.95 (0.72) 0.95 (0.80)

200 0.94 (0.54) 0.94 (0.54) 0.95 (0.55)

Table 5

Comparison of the robust confidence intervals for the slope in [1] (“BC”) with those

of the form (19) (“PI”). The entries in the table are empirical coverages and median

lengths of 1000 confidence intervals for the slope parameter β1. The nominal level

is 95% and 5% of outliers were placed at: x0 = 3, y0 = 1.5 (Mild), x0 = 5, y0 = 2.5

(Medium), and x0 = 5, y0 = 15 (Strong).
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Perc. of cont. Sample size Mild cont. Medium cont. Strong cont.

10% 20 0.95 (1.54) 0.95 (1.56) 0.95 (1.79)

40 0.89 (1.17) 0.87 (1.18) 0.96 (1.43)

60 0.87 (1.05) 0.85 (1.08) 0.97 (1.28)

BC 80 0.86 (1.00) 0.85 (1.04) 0.98 (1.18)

100 0.87 (0.95) 0.86 (1.00) 0.98 (1.10)

200 0.91 (0.83) 0.92 (0.89) 0.99 (0.95)

10% 20 0.92 (1.50) 0.92 (1.49) 0.95 (2.19)

40 0.95 (1.10) 0.95 (1.10) 0.95 (1.57)

60 0.94 (0.91) 0.95 (0.91) 0.94 (1.31)

PI 80 0.95 (0.80) 0.95 (0.81) 0.95 (1.12)

100 0.94 (0.76) 0.94 (0.77) 0.94 (1.05)

200 0.95 (0.65) 0.95 (0.67) 0.95 (0.85)

Table 6

Comparison of the robust confidence intervals for the slope in [1] (“BC”) with those

of the form (19) (“PI”). The entries in the table are empirical coverages and median

lengths of 1000 confidence intervals for the slope parameter β1. The nominal level

is 95% and 10% of outliers were placed at: x0 = 3, y0 = 1.5 (Mild), x0 = 5, y0 = 2.5

(Medium), and x0 = 5, y0 = 15 (Strong).
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