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Abstract
The robust approach to data analysis uses models that do not completely specify the

distribution of the data, but rather assume that this distribution belongs to a certain
neighborhood of a parametric model. Consequently, robust inference should be valid
under all the distributions in these neighborhoods. Regarding robust inference, there
are two important sources of uncertainty: (i) sampling variability and (ii) bias caused
by outlier and other contamination of the data. The estimates of the sampling variabil-
ity provided by standard asymptotic theory generally require assumptions of symmetric
error distribution or alternatively known scale. None of these assumptions are met in
most practical problems where robust methods are needed. One alternative approach
for estimating the sampling variability is to bootstrap a robust estimate. However, the
classical bootstrap has two shortcomings in robust applications. First, it is compu-
tationally very expensive (in some cases unfeasible). Second, the bootstrap quantiles
are not robust. An alternative bootstrap procedure overcoming these problems is pre-
sented.The bias uncertainty is usually ignored even by robust inference procedures. The
consequence of ignoring the bias can result in true probability coverage for confidence
intervals much lower that the nominal ones. Correspondingly, the true significance
levels of tests may be much higher than the nominal ones. We will show how the bias
uncertainty can be dealt with by using maximum bias curves, obtaining confidence in-
terval and test valid for the entire neighborhood. Applications of these ideas to location
and regression models will be given.
This work has been partially supported by NSERC (Canada) and Spanish Grant
BFM2001-0169 (Spain).
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1 Introduction

Most results in the robustness literature concern robust point estimates while inference

methods have not received the same amount of attention.

The uncertainty of point estimates stems from at least two sources: sampling variability

(or variance) and sample quality (or bias). Sampling variability has constituted the main

focus of statistical theory and practice in the past century. The bias caused by poor/uneven

data quality, data contamination, gross errors, missing values, etc. has received much less

attention.

In our opinion the unbalanced research effort devoted to these two topics does not

reflect their actual importance. Since standard errors of point estimates are usually of order

O(1/
√

n) while biases are of order O(1), the uncertainty arising from data quality (bias)

typically dominates that arising from data quantity (sampling variability) for moderate and

large data sets.

The great attention statisticians paid to the problem of sampling variability is justified

by its obvious importance (specially in the case of small samples) and perhaps by the relative

ease of this problem: sampling variability can be easily modeled and measured. On the other

hand, sample quality and bias are more difficult to model and measure.

Suppose that {x1, . . . , xn} are independent and identically distributed random variables

with common distribution F in the family

V(F0, ε) = {F : F = (1− ε)F0 + εH, H arbitrary}, (1)

where 0 < ε < 0.5, F0(y) = Φ((y − µ0)/σ0), and Φ = N(0, 1). The robustness model

(1), called Tukey’s contamination neighborhood, is a simple and flexible device to model

datasets of uneven quality. According to this model (1 − ε)100% of the data follows a

normal location-scale model and ε100% of the data comes from an arbitrary, unspecified

source. We can choose ε and H to represent situations of asymmetry/heavy tails of the error

distribution, isolated outliers and cluster of outliers. We can interpret (1 − ε)100% as the

minimum possible percentage of good quality measurements in our dataset. In summary,

(1− ε) is a parameter measuring the quality of the data.

We will show here how the robustness theory developed in the second half of past

century can be used to address, at least in part, the problem of performing globally robust

inference.

Two aspects of the inference procedure need to be addressed: the asymptotic bias of

the point estimates and the estimation of their distribution for an arbitrary distribution in

the contamination neighborhood (1).
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To fix ideas, let us consider location M-estimates T (Fn) that satisfy the equation

n∑
i=1

ψ ((xi − T (Fn)) /S(Fn)) = 0, (2)

where ψ is an appropriate (monotone) score function and S(Fn) is a robust scale estimate

that converges to S(F ). Under very mild regularity conditions (see Huber, 1981) T (Fn)

converges to the value T (F ) satisfying

η(T (F ), F ) =

∫ ∞

−∞
ψ ((x− T (F )) /S(F )) dF (x) = 0 .

Note that the parameter of interest is T (F0) and in general we have T (F ) 6= T (F0). Hence,

we need to bound the absolute difference

D(F ) = |T (F )− T (F0)| (3)

between the M-location T (F ) of the contaminated distribution and the M-location T (F0) =

µ0 of the core (uncontaminated) distribution. The bias of robust estimates caused by out-

liers and other departures from symmetry can be assessed using the concept of maximum

asymptotic bias. Martin and Zamar (1993) showed that for any F ∈ V(F0, ε)

∣∣(T (F )− T (F0)
)
/σ0

∣∣ ≤ B(ε) ,

where B(ε) is the solution in t to η(t, F̄ ) = 0, with F̄ = (1 − ε)F + εδ∞, where in general

δx is the point mass distribution at x. Therefore, D(F ) is bounded by σ0 B(ε). In general,

however, this bound has to be improved to take into account the estimation of σ0. This

approach is presented in Section 2.

We now turn our attention to the problem of estimating the distribution of the robust

estimate T (Fn). In general, the finite sample distribution of robust estimates is unknown

and inference will typically be based on their asymptotic distribution. However, not much is

known about the asymptotic distribution of robust estimates over the entire contamination

neighborhood V(F0, ε).

When the distribution of the errors is symmetric the asymptotic distribution of the

estimates is typically asymptotically normal and formulae for their asymptotic variance are

available (see, for example, Hampel et al., 1986). Unfortunately, in many contaminated

data sets outliers appear to be asymmetrically distributed. If one relaxes the assumption

of symmetry on the distribution of the errors, the calculation of the asymptotic variance of

robust location and regression estimates becomes very involved (Carroll, 1978, 1979; Huber,

1981; Rocke and Downs, 1981; Carroll and Welsh, 1988; Salibian-Barrera, 2000). Salibian-

Barrera (2000) shows that MM-location and regression estimates are asymptotically normal
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for any distribution in the contamination neighborhood. However, their asymptotic variances

are difficult to estimate, since the formulae are numerically unstable. In Section 3 we describe

a bootstrap method that is fast, stable and asymptotically correct for any F ∈ V(F0, ε).

The rest of the paper is organized as follows. In Section 2 we show how to find a

computable bound for D(F ) in (3) when σ0 is unknown. In Section 3 we review a com-

putationally intensive method to estimate the distribution of robust estimates for arbitrary

F ∈ V(F0, ε). Finally, in Section 4 we present globally robust confidence intervals for the

simple linear model using the results of Sections 2 and 3.

2 Bias bounds

To compare competing robust estimates in terms of their bias behavior one can use the

maxbias curve B (ε) defined as

B (ε) = sup
F∈V(F0,ε)

∣∣∣∣
T (F )− T (F0)

σ0

∣∣∣∣

(the maximum of the standardized bias over a contamination neighborhood of size ε). Note

that the above definition is an affine invariant quantity, and hence the actual values of the

parameters do not affect the theoretical comparisons among the estimates. Two robustness

measures closely related to the maxbias curve are the contamination sensitivity (CS) and

the breakdown point (BP) introduced by Hampel (1974) and Hampel (1971), respectively.

The CS gives a linear approximation for the maxbias curve near zero. The BP is the largest

fraction of contamination for which the maxbias curve remains bounded.

In this section, we show how to use the maxbias curve to find bias bounds (i.e. bounds

for D(F ) in (3)) for robust estimates in practical situations where we wish to construct

robust confidence intervals or prediction intervals. The following example will show that

in general to bound D(F ) we need to take into account the values of the estimates of the

nuisance parameters. To fix ideas, consider the location model and the median functional,

M(F ). Suppose we have a large sample from a distribution F ∈ V(F0, ε). To assess the

bias caused by outliers we must study the absolute difference |M(F )−M(F0)| between the

median of the contaminated distribution F and the central (uncontaminated) median of F0.

According to Huber’s classical result (Huber, 1964) regarding the maxbias of the median,

we have ∣∣∣∣
M(F )−M(F0)

σ0

∣∣∣∣ ≤ F−1
0

(
1

2(1− ε)

)
= BM(ε)

and, therefore, |M(F ) − M(F0)| ≤ σ0BM(ε). However, in practice σ0 is seldom known

and must be estimated by a robust scale functional S(F ), namely, the median of absolute
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deviations to the median (mad). Unfortunately, S(F )BM(ε) is not an upper bound for

|M(F )−M(F0)| because S(F ) may underestimate σ0. For instance, if 10% of the data are

outliers placed at 0.15, that is, F = 0.90N(0, 1)+0.10δ0.15, then |M(F )−M(F0)| = 0.1397 >

S(F )BM(0.10) = 0.8818× 0.1397 = 0.1232.

2.1 Bias bounds for location estimates

Recently, Berrendero and Zamar (2001) have introduced the concept of bias bound to tackle

the above problem. A bias bound for T is a quantity K(ε) such that

|T (F )− T (F0)| ≤ S(F )K(ε), (4)

for all F ∈ V(F0, ε). As shown in the example above, the maxbias curve is not in general

a bias bound, although obviously both concepts are related. First, we will describe a quite

straightforward method to obtain a bias bound in the location model. Since we cannot

use the maxbias curve directly, due to the underestimation of the scale parameter, the idea

is to consider the maximum conceivable underestimation. Let S(F ) be the auxiliary scale

functional. Let S−(ε) be the implosion maxbias curve of the scale functional (see Martin

and Zamar, 1993):

S−(ε) = inf
F∈V(F0,ε)

S(F )

σ0

.

Then, for any location functional T (F ),

|T (F )− T (F0)| ≤ σ0BT (ε) = S(F )
σ0

S(F )
BT (ε) ≤ S(F )

BT (ε)

S−(ε)
. (5)

Therefore, K1(ε)
.
= BT (ε)/S−(ε) is a bias bound in the sense given by (4). We will call K1(ε)

the naive bias bound. This bound can be sharpened using the following result, which is a

modified version of a similar result in Berrendero and Zamar, 2001.

Theorem 1 Let T (F ) be a location M–functional with score function ψ and auxiliary scale

functional S(F ). That is, T (F ) is defined as the solution of

EF ψ

(
X − T (F )

S(F )

)
= 0,

where ψ is continuous, increasing, odd and bounded with ψ(∞) = 1. Denote S0 = infF∈V(F0,ε) S(F )/σ0

and S∞ = supF∈V(F0,ε) S(F )/σ0. Then,

K2(ε) = sup
S0≤s≤S∞

γ(s)

s
,

is a bias bound for T , where γ(s) is implicitly defined by g[γ(s), s] = ε/(1− ε), with g(t, s) =

−EF0ψ[(X − t)/s].
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In the case of the median, it is a simple exercise to show that both the naive and

the improved bias bounds coincide, that is, K1(ε) = K2(ε). However, for other location M-

estimates, applying Theorem 1 may lead to a substantial improvement. We have computed

BT (ε), K1(ε) and K2(ε) for several values of ε and the Gaussian central model, when T (F ) is a

95% efficient Huber’s location M-estimate with score function ψ(x) = min{1, max{x/c,−1}},
c = 1.345 and scale estimate S(F ) = MAD(F ). The results are displayed in Table 1.

ε BT (ε) K1(ε) K2(ε)

0.05 0.09 0.09 0.09

0.10 0.20 0.22 0.20

0.15 0.33 0.41 0.33

0.20 0.50 0.69 0.51

0.25 0.74 1.16 0.76

0.30 1.10 2.02 1.13

0.35 1.67 3.83 1.79

0.40 2.63 8.44 3.19

Table 1: Maxbias and bias bounds for Huber’s location M-estimates (S=MAD) when F0 = Φ

is the standard normal distribution.

Note that both bias bounds are greater than the maxbias since they take into account

the underestimation of the scale. Moreover, whereas K2(ε) is not much greater than BT (ε)

for any amount of contamination, the behavior of the naive bound K1(ε) is quite deficient

when ε is large. This suggests that underestimating σ0 could be important for large values

of ε (ε > 0.15).

Even though the bias bound given by the above theorem is a significant improvement

over the more naive one K1(ε), we could still consider the problem of computing the optimal

bias bound, given by

K∗(ε) = sup
F∈V(F0,ε)

|T (F )− T (F0)|
S(F )

.

This problem is more difficult since now both numerator and denominator depend simul-

taneously on the contaminated distribution F ∈ V(F0, ε). As far as we know this problem

remains open.

2.2 Bias bounds for regression estimates

Finding bias bounds for regression estimates is a more demanding task than for location

estimates because in the regression model we have to deal with more nuisance parameters.
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To keep the analysis at a relatively simple technical level, we will only consider here the

case of Gaussian regressors in the regression-through-the-origin linear model. Bias bounds

valid under broader conditions (the presence of intercept in the model and non Gaussian

regressors) can be found in Berrendero and Zamar (2001).

In the rest of this section we will assume that we have n independent observations

satisfying

yi = θ′0xi + σ0ui, 1 ≤ i ≤ n

where the independent errors, ui, have standard normal distribution F0 and are independent

of the regressors. We assume that the regressors xi are independent random vectors with

common distribution G0. The joint distribution of (yi,xi) under this model is denoted H0. To

allow for a fraction ε of contamination in the data we assume that the actual true distribution

H of (yi,xi) lies within a contamination neighborhood of H0, V(H0, ε). Denote by F
H,T(H)

the distribution of the residuals yi − T(H)′xi produced by a regression affine equivariant

functional T under H.

The maxbias curve of T is again defined as an invariant quantity (see Martin et al.

(1989)):

BT(ε) = sup
H∈V(H0,ε)

{[T(H)− θ0]
′Σ0[T(H)− θ0]}1/2

/σ0.

The matrix Σ0 is the covariance matrix of the regressors under G0 (although other affine

equivariant scatter matrices could also be chosen.) Starting from this definition, it is possible

to obtain an upper bound for the difference ‖T(H)−T(H0)‖, which depends on the nuisance

parameters. In fact, it is not difficult to prove (see Lemma 2 in Berrendero and Zamar, 2001)

that, for all H ∈ V(H0, ε),

‖T(H)−T(H0)‖ ≤ σ0√
λ1(G0)

BT(ε),

where λ1(G0) is the smallest eigenvalue of Σ0. Similarly to the location case (see equation

(5) above) we must now estimate σ0 and λ1(G0) and consider the problems caused by the

bias in the estimation of these parameters. The residual scale σ0 can be estimated using

a scale functional applied to the distribution of the residuals S1(FH,T(H)
). On the other

hand, the estimation of λ1(G0) poses an interesting problem that links the computation

of bias bounds in the regression model with robust techniques of multivariate analysis. In

particular, some sort of robust principal components analysis seems appropriate. We adopt

here the projection pursuit approach proposed by Li and Chen (1985). It is well known the

following property of the smallest eigenvalue: λ1(G0) = min‖a‖=1 VarG0(a
′x). The idea is

to replace the variance with a robust dispersion estimate of the projections a′x in the last
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formula. That is, we define

λ̂1(G) =

[
min
‖a‖=1

S2(G, a)

]2

,

where S2(G, a) is a robust scale of the projections a′x under G, where G is an arbitrary

distribution function. With a similar argument to that of equation (5) we can now prove

that

‖T(H)−T(H0)‖ ≤
S1(FH,T(H)

)
√

λ̂1(G)

S+
1 (ε)

S−2 (ε)
BT(ε),

where S+
1 (ε) and S−2 (ε) are, respectively, the explosion and implosion maxbias curves of the

scales used to estimate σ0 and λ1(G0). Hence,

KT(ε) =
S+

1 (ε)

S−2 (ε)
BT(ε) (6)

is a bias bound for T.

3 Estimating asymptotic distributions and asymptotic

variances of robust estimates

Recently some effort has been devoted to finding global asymptotic properties of ro-

bust estimates over neighborhoods of distributions (see Davies, 1993). Salibian-Barrera and

Zamar (2001) showed that M-location estimates calculated with an S-scale (which, follow-

ing Yohai (1987), we call MM-location estimates) are consistent to their asymptotic value,

uniformly on the contamination neighborhood. Formally, for any δ > 0 we have

lim
m→∞

sup
F∈V(Φ,ε)

PF

{
sup
n≥m

∣∣∣T (Fn)− T (F )
∣∣∣ > δ

}
= 0 . (7)

There is a trade-off between the size ε of the contamination neighborhoods where (7) holds

and the breakdown point of the scale estimate. Table 2 lists the maximum values of ε

such that (7) holds for MM-location estimates with breakdown points between 0.25 and

0.50 and contamination neighborhoods V(Φ, ε) of the standard normal distribution Φ. With

additional regularity conditions these MM-location estimates are asymptotically normal for

any F ∈ V(Φ, ε). Moreover, the weak convergence is uniform in V(Φ, ε):

lim
n→∞

sup
F∈V(Φ,ε)

sup
x∈<

∣∣∣∣∣PF

{√
n

(
µ̂n − µ (F )

)
< x

√
V

}
− Φ (x )

∣∣∣∣∣ = 0 . (8)

where V = V (T (F ), σ, F ) is the asymptotic variance of T (Fn) (see Salibian-Barrera and

Zamar, 2001). This last result is of practical importance since, for example, it guarantees
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BP 0.50 0.45 0.40 0.35 0.30 0.25

ε 0.11 0.14 0.17 0.20 0.24 0.25

Table 2: Maximum size ε of contamination neighborhoods where uniform consistency of

MM-location estimates holds for different breakdown points (BP).

that the sample size needed for a good asymptotic approximation to the distribution of

T (Fn) does not depend on the distribution of the data.

Once we know the asymptotic distribution of robust estimates for arbitrary F ∈ V(Φ, ε),

in order to perform statistical inference based on them we need to estimate their asymp-

totic variance. In general, consistent estimates of these variances can be obtained from the

corresponding asymptotic formulae. For example, to estimate the asymptotic variance V of

MM-location estimates in (8) we can use V̂ = V (T (Fn), σ̂n, Fn). However, the involved form

of V (and its matrix counterpart for linear regression) produces unstable estimates which in

turn result in unsatisfactory confidence intervals.

3.1 Bootstrapping robust estimates

Another method to estimate the variability of statistical estimates is given by the

bootstrap (Efron, 1979). This method has been extensively studied for diverse models. In

particular, the theory for bootstrap distribution of robust estimates has been studied by

Shorack (1982), Parr (1985), Yang (1985), Shao (1990, 1992), Liu and Singh (1992) and

Singh (1998).

Two problems of practical relevance arise when bootstrapping robust regression esti-

mates. First, the proportion of outliers in the bootstrap samples may be higher than that

in the original data set causing the bootstrap quantiles to be very inaccurate. The second

difficulty is caused by the heavy computational requirements of many robust estimates.

Intuitively, the reason for the first problem above is that with a certain positive prob-

ability the proportion of outliers in a bootstrap sample will be larger than the break-down

point of the estimate. Thus, the tails of the bootstrap distribution may be affected by the

outliers.

The high computational demand of robust estimates (specially in linear regression

models) may render the method unfeasible for moderate to high dimensional problems.

Moreover, due to the first problem mentioned above, even if we wait until the calculations

are done, the resulting estimate may not be reliable (for example, the tails of the bootstrap

distribution might be highly inaccurate).
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The first problem (high proportion of outliers in the bootstrap samples) has been stud-

ied for location robust estimates by Singh (1998). To obtain consistent bootstrap quantile

estimates with a high breakdown point Singh proposed to Winsorize the observations around

the robust location estimates and then to re-sample from the Winsorized observations. Un-

fortunately it is not clear how to extend this method to linear regression models.

In recent years the feasibility of bootstrapping computationally demanding estimates

(second problem above) has received some attention in the literature (Schucany and Wang,

1991; Hu and Kalbfleisch, 2000). Unfortunately, the regularity conditions needed for their

proposal are not satisfied by robust regression estimates.

Salibian-Barrera and Zamar (2002) introduce a bootstrap method that simultaneously

addresses both problems above. Namely, it is resistant to the presence of outliers in the data

and it is computationally simple. The basic idea is best presented for the simple location

model with known scale. Let x1, . . . , xn be a random sample satisfying

xi = µ + εi, i = 1, . . . , n, (9)

where εi are independent and identically distributed random variables with known variance.

Let ψ be odd and bounded. The associated M-location estimate for µ is defined as the

solution T (Fn) of
n∑

i=1

ψ (xi − T (Fn)) = 0. (10)

It is easy to see that T (Fn) can also be expressed as a weighted average of the observations:

T (Fn) =
n∑

i=1

ωi xi

/
n∑

i=1

ωi , (11)

where ωi = ψ (xi − T (Fn))/ (xi − T (Fn)).

Let x∗1, . . . , x
∗
n be a bootstrap sample of the data (i.e. a random sample taken from

x1, . . . , xn with replacement). We can recalculate T (Fn) using equation (11):

T (Fn)∗ =
n∑

i=1

ω∗i x∗i

/
n∑

i=1

ω∗i , (12)

with ω∗i = ψ (x∗i − T (Fn))/ (x∗i − T (Fn)). Note that we are not fully recalculating the es-

timate from each bootstrap sample, we only compute a weighted average (moreover, the

weights do not have to be re-calculated either). Commonly used functions ψ yield weights

ω (u) that are decreasing functions of |u|. In this case, outlying observations that typically

have a large residual will have a small weight in (11).
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The re-calculated T (Fn)∗’s in (12) may not reflect the actual variability of T (Fn). Intu-

itively this happens because the weights ωi in (11) are not re-computed with each bootstrap

sample. To remedy this loss of variability we apply a correction factor an that does not need

to be re-calculated. See Salibian-Barrera (2000) for a definition of an.

This method yields quantile estimates with high breakdown point. To obtain a consis-

tent estimate of the asymptotic distribution of T (Fn) for any F ∈ V(Φ, ε) we need to include

an scale estimate in (10), (11) and in our re-calculations (12). We refer the interested reader

to Salibian-Barrera and Zamar (2002) for a detailed discussion of the method in the linear

regression context.

3.2 Applications and future directions

A direct application of the “robust bootstrap” discussed above is the construction of

confidence intervals and tests for each parameter of the linear model (Salibian-Barrera and

Zamar, 2002). The problem of testing more general hypotheses on the vector of regres-

sion parameters using the robust bootstrap is studied in Salibian-Barrera (2002b). Con-

sider the classes of robust tests discussed in Markatou et al. (1991) (see also Markatou and

Hettmansperger, 1990). The distribution of these tests under the null hypothesis is known

only for symmetric errors. It is of interest to be able to estimate the distribution of these

tests under the null hypothesis in more general cases. By noting that these robust tests are

functions of the robust estimate calculated under each hypothesis, the basic idea is to adapt

the robust bootstrap to re-calculate the robust estimate under each hypothesis when the

data is bootstrapped following the null model.

Another method to obtain fast estimates of the distribution of robust estimates is to

bootstrap a one-step Newton-Raphson version of them. To fix ideas consider the simple

location-scale model (9) above. Let T (Fn) be an MM-location estimate, let S(Fn) be the

S-scale estimate and let T̃ (Fn) be the associated S-location estimate. The system of equations

n∑
i=1

ψ ((xi − T (Fn))/ S(Fn)) = 0 ,

1

n

n∑
i=1

[
χ

((
xi − T̃ (Fn)

)/
S(Fn)

)
− b

]
= 0 ,

1

n

n∑
i=1

χ′
((

xi − T̃ (Fn)
)/

S(Fn)
)

= 0 .

can be written as

gn (θ̂n) = 0 ,
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where gn : <3 → <3 and θn =
(
T (Fn), S(Fn), T̃ (Fn)

)′
. The Newton-Raphson iterations are

θj+1 = θj − [∇gn (θj)]
−1 gn (θj) ,

with ∇gn (θj) the matrix of first partial derivatives of gn evaluated at θj. It is easy to see

that for the MM-location estimate we obtain

T̃ (Fn)∗ = T (Fn) + S(Fn)

[
ψ (u)∗

ψ′ (u)∗
+

ψ (u) u
∗

ψ′ (u)∗
× χ (u)− b

∗

χ′ (u) u
∗

]
,

where ψ (u)∗ = ψ (u)∗ =
∑

ψ ((x∗i − T (Fn))/ S(Fn))/ n and similarly the others. In Salibian-

Barrera (2002a) it is shown that the above procedure yields a consistent estimate of the

asymptotic distribution of T (Fn). However, note that the numerically unstable denominators

above make the method susceptible to aberrant values when the bootstrap sample contains

many outliers. On the other hand, the fact that this method does not need a correction

factor might produce a theoretically better approximation to the distribution of T (Fn) (that

is, it could inherit the Op (1/ n) order that is expected from most bootstrap methods). Some

of these questions are addressed in Salibian-Barrera (2002b).

4 Globally Robust Confidence Intervals

It is well known that given a random sample x1, . . . xn drawn from a normal population,

that is

xi ∼ N(µ, σ2), i = 1, . . . , n (13)

a level-(1− α) confidence interval for µ is given by

Pµ

(
µ ∈

[
x̄n − tn−1,α/2

Sn√
n

, x̄n + tn−1,α/2
Sn√
n

])
= 1− α,

where x̄n, tn−1,δ and Sn stand for the mean average, the δ-percentile of the Student−t

distribution and the sample standard deviation respectively. Then, the length of the intervals

is

L = 2tn−1,α/2
Sn√
n

.

In this case, coverage and length depend on the assumption of normality. It seems rather

natural to wonder whether this classical confidence interval may be defective when (13)

is only approximately valid. More precisely, we have introduced earlier ε-contamination
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neighborhoods V(F, ε) (see equation (1)) to represent the idea of having the majority of data

points coming from the parametric model and the remaining ones coming from an unknown

distribution. The purpose of robust methods is to safeguard against deviations from the

assumptions. Then, robustness is also concerned with the way coverage and length of a

confidence interval are affected when the true underlying distribution is a member of the

ε-contamination neighborhood rather than the parametric model. Furthermore, the crucial

issue is to show what alternative inferential procedures can be implemented to overcome

somehow the damage caused by the departures from the parametric model. The vast majority

of the robustness literature focuses on point estimation. For recent papers on robust inference

see, for example, Markatou et al. (1991) and references therein.

The following example taken from Adrover et al. (2002) will show the effect of an

outlier generating distribution on coverage and length for the Student-t confidence interval.

To see that, let us consider first the contaminated distribution

F x0 = (1− ε)F0 + εδx0 ,

where x0 > 0. Then,

Ln = xn − tn−1,α/2Sn/
√

n → εx0 ← xn + tn−1,α/2Sn/
√

n = Un

as n tends to infinity, for all x0. Therefore,

lim
n→∞

PF x0 (Ln < 0 < Un) = 0,

which means that the interval is shrinking to εx0 and the coverage of the interval is tending

to 0 as n tends to ∞. The asymmetry of the distribution causes the estimate to be biased

and the interval fails to cover the true parameter 0.

Let us take now δ±x0 a point mass distribution at ±x0 (equally weighted). Since the

standard deviation Sn is highly sensitive to the extreme observation x0, the length of the

interval becomes unbounded as x0 tends to ∞,

lim
n→∞

sup
x0>0

2 tn−1,α/2
Sn√
n
≥ lim

n→∞
sup
x0>0

2 tn−1,α/2
x0√
n

= ∞

Summing up, coverage and length are spoiled by the presence of outliers. Therefore, it seems

natural to require robust confidence intervals to have the guaranteed probability coverage of

the target parameter for all the distributions on the contaminated neighborhood as well as

a reasonable average length uniformly over the entire neighborhood. Both desirable features

have been referred in the literature as the robustness of validity and robustness of efficiency

of confidence intervals respectively (see Tukey and McLaughlin (1963), Dixon and Tukey
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(1968), Huber (1968, 1970), Barnett and Lewis, 1994, p. 74, and references therein, Fraiman

et al. (2001) and Adrover et al (2002)). Adrover et al. (2002) also deal with similar

concepts of stability and informativeness which roughly parallel the robustness of validity

and efficiency respectively. More precisely, they define

Definition 1 A confidence interval (Ln, Un) for µ is called globally robust of level 1− α if

it satisfies the following conditions:

1. ( Stable interval) The minimum asymptotic coverage over the ε-contamination neigh-

borhood is (1− α):

lim
n→∞

inf
F∈V(Fµ,ε)

PF (Ln < µ < Un) ≥ (1− α);

2. ( Informative interval) The maximum asymptotic length of the interval is bounded over

the ε-contamination neighborhood:

lim
n→∞

sup
F∈V(Fµ,ε)

[Un − Ln] < ∞.

Mainly, there have been two approaches to overcome the lack of robustness of the clas-

sical confidence intervals. The first approach relies on the idea of replacing the mean average

x̄n by a robust asymptotically normal location estimate Tn, and Sn/
√

n by an appropriate

robust estimate of the standard error of Tn. If the estimate σ̂n of the standard error of Tn is

uniformly bounded over the entire neighborhood, such procedure is successful in achieving

the robustness of efficiency. Then, the confidence interval is given by

[
Tn − zα/2σ̂n, Tn + zα/2σ̂n

]
(14)

However, it still fails to get the nominal level. This is due to the fact that we can find

distributions in the neighborhood such that Tn → µ̃ 6= µ, and then,

Ln = Tn − zα/2σ̂n → µ̃ ← Tn + zα/2σ̂n = Un.

Then, the confidence interval shrinks to µ̃ failing to achieve the nominal level. This entails

inexorably that the goal of validity seems rather difficult to be achieved if the crucial issue

of the asymptotic bias is neglected.

Fraiman et al. (2001) and Adrover et al. (2002) provide a small Monte Carlo simulation

which illustrates this point. Ten thousand standard normal samples of different sizes were

generated, containing various fractions of contamination. The contaminating distribution

is a point-mass distribution at x0 = 4.0. Similar results were found for other asymmetric
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ε n % of Coverage Average Length

0.05 20 92% 0.91

50 92% 0.60

100 88% 0.44

200 82% 0.31

0.10 20 91% 1.05

50 84% 0.68

100 67% 0.49

200 39% 0.35

0.15 20 88% 1.19

50 72% 0.76

100 35% 0.56

200 5% 0.40

0.20 20 82% 1.41

50 45% 0.92

100 8% 0.66

200 0% 0.47

Table 3: Percentage of coverage and average length for 10000 asymptotic 95% confidence

intervals based on Huber’s location M–estimate.

outlier generating distributions. For each sample, the location M–estimate was calculated

with Huber ψ–function [ψ(y) = min{−c, max{c, y}} ], with truncation constant c = 1.345,

and the corresponding asymptotic 95% confidence interval based on the empirical asymptotic

variance. The coverage and average length of these intervals are given on Table 3.

Huber (1968) also noticed this phenomenon and broke new ground by establishing

a remarkable finite sample optimality result. He considered the pure location model (9)

(known scale) and intervals of fixed length 2a. He minimized the quantity

max
F∈V(F0,ε)

max{ PF (µ < µ̂n − a) , PF (µ > µ̂n + a) }

over the class of location M-estimators µ̂n. In principle, the value of a could be varied to

obtain the desired maximum level for each n and ε.

The actual problem of bias behind the lack of coverage in confidence intervals has been

highlighted. Then, the second approach to accomplish robust confidence intervals according

to Definition 1 takes into account a bias correction to generate stable coverage over the

neighborhood. In that direction we can cite so far the papers by Fraiman et al. (2001) in the
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context of the location model, Adrover et al. (2002) for the simple linear regression model

and Yohai and Zamar (2001) in a non-parametric framework.

We briefly sketch the procedure to get the robust intervals. Let x1, . . . , xn be a random

sample whose unknown distribution F belongs to the ε-contaminated neighborhood. The

proposal relies on three elements:

1. A robust asymptotically normal location estimate µ̂n, that is

√
n(µ̂n − µ̂(F )) → N(0, σ2(F ))

2. A known bias bound µ̄ such that

|µ̂(F )− µ| ≤ µ̄, for all F in the neighborhood.

3. The estimation of the asymptotic variance σ2(F ).

Regarding the asymptotically normal robust estimates mentioned in 1., Fraiman et al.

(2001) dealt with the class of M-estimators of location, finding the optimal location estimate

in the sense of minimizing the maximum length of the confidence intervals. Adrover et al.

(2002) considered a class of estimators in the simple linear regression model, called median-

based estimators. This class of estimators was taken into account because of its remarkable

asymptotic bias performance (see Adrover and Zamar (2000)). In this class are included

the median of pairwise slopes (Theil (1950) and Sen (1968)), the repeated median of slopes

(Siegel (1982)), the Brown and Mood’s estimate (1951). Estimates with small bias bounds

are needed to produce relatively short confidence intervals of practical relevance. Since they

are interested in linear combinations of the regression coefficients, they need bounds on the

biases of the slope and intercept parameters.

Even though the quantity b(F ) = µ̂(F ) − µ (bias) is unknown, a known bias bound µ̄

for b is available (see Section 2).

The scheme for constructing the robust confidence intervals is as follows. If we knew

the distribution of µ̂n, a level-(1− α) confidence interval for µ would be given by

(µ̂n − ln(F ), µ̂n + rn(F ))

where

PF (−rn(F ) ≤ µ̂n − µ ≤ ln(F )) = 1− α.

But ln = ln(F ) and rn = rn(F ) are unknown since F is assumed to be partially known in the

robust setup. Since µ̂n is asymptotically normal, we would be able to approximate ln and

rn if we knew b,

Φ

(
ln − b

σ̂n

)
+ Φ

(
rn + b

σ̂n

)
− 1 = 1− α (15)
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where
√

nσ̂n is a consistent robust estimate for σ(F ). But the equation is still dependent on

the unknown quantity b. Two different situations may be taken into account according to

the degree of uncertainty:

1. It is known that the center of symmetry is shifted away either to the left or to the right

(bias constraint),

2. There is no information on the sign of the bias (unconstrained bias).

In case 1., the equation (15) changes so as to reflect that the confidence interval must

be shifted to the left in case of positive bias or viceversa in case of negative bias to keep the

nominal level, that is,

Φ

(
ln − b

σ̂n

)
+ Φ

(
rn

σ̂n

)
− 1 = 1− α when b ≥ 0,

Φ

(
ln
σ̂n

)
+ Φ

(
rn + b

σ̂n

)
− 1 = 1− α when b ≤ 0.

After some manipulation, the intervals with minimal length in both situations turn out to

be

În(F ) =
(
µ̂n − σ̂nzα/2 − b, µ̂n + σ̂nzα/2

)
when b ≥ 0,

În(F ) =
(
µ̂n − σ̂nzα/2, µ̂n + σ̂nzα/2 − b

)
when b ≤ 0.

But the interval În(F ) still depends on the unknown F and b. Then, to prevent from any F

in the neighborhood causing bias, we can take

In =
⋃

F∈V(Fµ,ε)

(
µ̂n − σ̂nzα/2 − b, µ̂n + σ̂nzα/2

)

=
(
µ̂n − σ̂nzα/2 − µ̄, µ̂n + σ̂nzα/2

)
, when b ≥ 0. (16)

Similarly,

In =
(
µ̂n − σ̂nzα/2, µ̂n + σ̂nzα/2 + µ̄

)
, when b ≤ 0.

In case 2. there is no prior information on the bias and the search for the shortest interval

from (15) leads to

În(F ) =
(
µ̂n − σ̂nzα/2, µ̂n + σ̂nzα/2

)− b.

Observe that În(F ) is a shift of the interval (14) so as to cover the parameter µ. Since În(F )

still depends on the unknown F and b, a robust interval of minimum level 1 − α over the

neighborhood is defined as

In =
(
µ̂n − σ̂nzα/2 − µ̄, µ̂n + σ̂nzα/2 + µ̄

)
. (17)
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A shorter robust confidence interval may be obtained by restricting the search to centered

intervals about µ̂n rather than În(F ). The idea is to first consider intervals of the form

µ̂n ± qn,

where qn is the true (1− α)-quantile, that is,

PF (|µ̂n − µ| ≤ qn) = 1− α. (18)

Using (15) we can approximate (18) by

Φ

(
q̃n − b

σ̂n

)
+ Φ

(
q̃n + b

σ̂n

)
− 1 = 1− α, (19)

which yields the confidence interval

µ̂n ± q̃n. (20)

Fraiman et al. (2001) showed that
√

n(q̃n − qn) = op(1). The solution q̃n to (19) is

a strictly increasing function of |b| for each fixed σ̂n (and of σ̂n for each fixed |b|). That is,

the quantile q̃n is a monotone function of the bias (and standard deviation) and its largest

possible value is obtained by replacing |b| by µ̄:

Φ

(
q̄n − µ̄

σ̂n

)
+ Φ

(
q̄n + µ̄

σ̂n

)
− 1 = 1− α. (21)

This yields the robust confidence interval

µ̂n ± q̄n. (22)

This robust interval is shorter (more informative) than (17), that is, σ̂nzα/2 + µ̄ > q̄n.

Since q̄n ≥ q̃n, the robust confidence interval turns out to be larger than strictly neces-

sary for most distributions in the neighborhood. However, the enlargement of the confidence

interval is the smallest one which allows us to achieve the nominal coverage over the entire

neighborhood, provided that the upper bound µ̄ is sharp. Observe that q̄n and σ̂nzα/2 + µ̄

converge to µ̄ as n → ∞, so that the asymptotic lengths of these two robust confidence

intervals are minimal, provided that the upper bound µ̄ is sharp. The derivation of lower

and upper confidence bounds follows along the same lines. Table 4 summarizes the findings

of robust confidence bounds and intervals.

Classical p-values are also affected when the parametric model is only approximately

valid and the level of the tests is upset by the presence of outliers. This is a closely related

problem to robust confidence intervals and bounds. The construction of robust p-values

parallels the procedure used in the classical theory for hypothesis tests by inverting LCB,
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Degree of Knowledge

Unknown Bias Sign Positive Bias Negative Bias

LCB (µ̂n − σ̂nzα − µ̄,∞) (µ̂n − σ̂nzα − µ̄,∞) (µ̂n − σ̂nzα,∞)

UCB (−∞, µ̂n + σ̂nzα + µ̄) (−∞, µ̂n + σ̂nzα) (−∞, µ̂n + σ̂nzα + µ̄)

CI µ̂n ± q̄n (see (21))
(
µ̂n − σ̂nzα/2 − µ̄, µ̂n + σ̂nzα/2

) (
µ̂n − σ̂nzα/2, µ̂n + σ̂nzα/2 + µ̄

)

Table 4: Upper and lower robust confidence bounds and confidence intervals. LCB (UCB)

stands for Lower (Upper) Confidence Bound and CI stands for Confidence Interval.

UCB and CI. Given a hypothesis problem for the parameter µ whose alternatives are Ha,1 :

µ > µ0, Ha,2 : µ < µ0 and Ha,3 : µ 6= µ0, for a given parameter µ0, the rejection rule for a

level-α test is given by

Reject H0 if µ0 /∈ (µ̂n(α, F ),∞) (Ha,1),

µ0 /∈ (−∞, µ̂n(α, F )) (Ha,2), and

µ0 /∈ (µ̂n − q̃n(α, F ), µ̂n + q̃n(α, F )) (Ha,3)

respectively. q̃n = q̃n(α, F ) represents a solution to (19) and µ̂n(α, F ) = µ̂n − σ̂nzα − b or

µ̂n(α, F ) = µ̂n + σ̂nzα − b stands for either the LCB or the UCB respectively. The rejection

rule still depends on the unknown value b.

The p-values are customarily defined as

p̂n(F ) = inf {α : µ0 /∈ (µ̂n(α, F ),∞)} = 1− Φ
(

µ̂n−µ0−b
σ̂n

)
(Ha,1)

p̂n(F ) = inf {α : µ0 /∈ (−∞, µ̂n(α, F ))} = Φ
(

µ̂n−µ0−b
σ̂n

)
(Ha,2)

p̂n(F ) = inf {α : µ0 ≤ µ̂n − q̃n(α, F )} if µ0 ≤ µ̂n (Ha,3)

p̂n(F ) = inf {α : µ̂n + q̃n(α, F )) ≤ µ0} if µ̂n ≤ µ0 (Ha,3)

The last two cases entail the p-value

p̂n(F ) = 2− Φ

( |µ̂n − µ0| − b

σ̂n

)
− Φ

( |µ̂n − µ0|+ b

σ̂n

)
(Ha,3).

In the three cases, we can get rid of the unknown bias b by using the known bias bound µ̄.

To ensure a global minimum level α over the neighborhood we take the robust p-value as

p̂R
n = sup p̂n(F ),

where the range of the supremum depends on the degree of uncertainty. Formulas for p̂R
n

obtained by applying the sup over the appropriate ranges are given on Table 5.
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Alternative Degree of Knowledge

Hypothesis Unconstrained Bias Positive Bias Negative Bias

H1 : µ > µ0 1− Φ
(

µ̂n−µ0−µ̄
σ̂n

)
1− Φ

(
µ̂n−µ0−µ̄

σ̂n

)
1− Φ

(
µ̂n−µ0

σ̂n

)

H1 : µ < µ0 Φ
(

µ̂n−µ0+µ̄
σ̂n

)
Φ

(
µ̂n−µ0

σ̂n

)
Φ

(
µ̂n−µ0+µ̄

σ̂n

)

H1 : µ 6= µ0 2− Φ
(
|µ̂n−µ0|−µ̄

σ̂n

)
− Φ

(
|µ̂n−µ0|+µ̄

σ̂n

)
.

Table 5: Robust p-values for different testing situations and bias constraints.

So far, the robust estimate and the known bias bound have been at the very core of

the derivation of confidence intervals and p-values. It has been aforementioned that in the

simple linear regression model,

yi = α + βxi + εi, i = 1, . . . , n,

it seems appropriate to use any member of the class called median–based estimates. This

class of estimates exhibits much better bias performances compared to some other proposals

such as MM- (Yohai, 1987) or τ -estimates (Yohai and Zamar, 1988). Then, Adrover et al

(2002) suggest using the estimates obtained as the solutions (α̂n, β̂n) to the equations

0 =
1

n

n∑
i=1

sign
(
yi − α̂n − β̂n(xi − m̂n)

)
sign(xi − m̂n), (23)

0 =
1

n

n∑
i=1

sign(yi − α̂n − β̂n(xi − m̂n)). (24)

where m̂n = Median{xi}. The corresponding regression fit and the vertical line x = T (Fn)

split the plane into four quarters containing equal number of points. This is precisely the

defining property of Brown and Mood’s estimate (1951). The bias behavior of these estimates

has been analyzed in Adrover and Zamar (2000).

The third element mentioned in the construction of robust intervals was the estimation

of variability. Adrover et al. (2002) conducted a simulation study to compare three different

methods to estimate the asymptotic variability of the estimate for the slope parameter in

the simple linear regression model. In the end, they recommend to estimate σ2 by using

the shorth (see for instance Rousseeuw and Leroy, 1987) of the bootstrap distribution of the

estimate, which appears to be a good compromise when they consider the achieved coverages

and the median lengths.

To check the performance of the robust confidence intervals a Monte Carlo simulation

was conducted using 1000 replicates of the following sampling situations: sample sizes n =
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20, 40, 60, 80, 100 and 200 from contaminated normal distributions (1−ε)N(0, I)+εN(η, τ 2I)

with η′ = (ηx, ηy), τ = 0.1, ηx = 3 and ηy = 1.5 (2) for ε = 0.05 (0.10). This case is referred as

the “mild contamination case”. For the “medium contamination case”, ηx = 5 and ηy = 2.5

for ε = 0.05 and ε = 0.10. Finally, a “strong contamination case” was considered with ηx = 5

and ηy = 15 for ε = 0.05 and ε = 0.10. The nominal confidence level in all the cases is 0.95.

The empirical coverage and lengths of robust confidence intervals are summarized in Table

6.

ε n Type of contamination

Mild Medium Strong

20 0.94 (1.41) 0.94 (1.42) 0.91 (1.42)

40 0.92 (1.01) 0.92 (1.01) 0.93 (1.04)

5% 60 0.92 (0.86) 0.92 (0.86) 0.94 (0.90)

80 0.92 (0.76) 0.92 (0.77) 0.94 (0.79)

100 0.92 (0.71) 0.92 (0.71) 0.94 (0.73)

200 0.95 (057) 0.95 (0.58) 0.96 (0.58)

20 0.95 (1.54) 0.95 (1.56) 0.95 (1.79)

40 0.89 (1.17) 0.87 (1.18) 0.96 (1.43)

10% 60 0.87 (1.05) 0.85 (1.08) 0.97 (1.28)

80 0.86 (1.00) 0.85 (1.04) 0.98 (1.18)

100 0.87 (0.95) 0.86 (1.00) 0.98 (1.10)

200 0.91 (0.83) 0.92 (0.89) 0.99 (0.95)

Table 6: Monte Carlo mean coverage and median length (in parenthesis) of robust confidence

interval for the slope β using the shorth of the bootstrap distribution of β̂n.

The coverages reported in Table 6 are mostly below the nominal 95% level (except in

the case of strong contamination with ε = 0.10). Further numerical analysis shows that these

few cases of overcoverage are associated with overestimation of the estimate’s variability.

4.1 Robust non-parametric inference for the median

Rieder (1981) addresses the problem of robustifying rank tests preserving their non-

parametric nature. He considers one sided tests for the one and two sample problems,

showing that the least favorable distribution under a given fraction of contamination does

not depend on the target model. Yohai and Zamar (2001) construct non-parametric confi-

dence intervals and two-sided tests for the median of the target distribution. This proposal
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overcomes the problem of lack of coverage without using a bias bound. They obtain the exact

finite sample least favorable distribution (in the contaminated neighborhood) for the sign-

test statistic. It turns out that the least favorable distribution is independent of the target

distribution and therefore the robustified sign test and associated interval are simultaneously

non-parametric and robust. The robustified non-parametric interval for the unique median

µ of a continuous distribution F is constructed as follows. The classical non-parametric

confidence interval based on the two sided sign test is given by

Iα(xn) = [x(k+1), x(n−k)]

where xn = (x1, . . . , xn) is a random sample drawn from F . k and n− k are determined so

that P (k < Zn < n − k) = 1 − α, with Zn =
∑n

i=1 I(xi − µ > 0) ∼ Bin (n, p) and p = 1/2.

The key point to robustify this interval relies on the fact that under contamination, Zn is still

binomial but the parameter p corresponds on the form of the contamination. By choosing

p corresponding to the least favorable distribution on the neighborhood, the authors can

ensure that

inf
G∈V(F,ε)

PG

(
x(k+1) < µ < x(n−k)

) ≥ 1− α

where P (k < Zn < n− k) = 1− α, with Zn ∼ Bin (n, p) and p = (1− ε)/2.
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