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Abstract

Linear mixed effects methods for the analysis of longitudinal data provide a
convenient framework for modelling within-individual correlation across time. Us-
ing spline functions allows for flexible modelling of the response as a function of
time. A computational connection between linear mixed effects modelling and
spline smoothing makes the use of spline functions in longitudinal data analysis
even more appealing. However, care must be taken in exploiting this connection,
as resulting estimates of the underlying population mean might not track the data
well and associated standard errors might be unreasonably large. We discuss these
shortcomings and suggest some easy-to-compute methods to eliminate them.

Keywords Linear Mixed Effects Models; Penalized Smoothing; P-splines; Sand-
wich Estimator.

1 Introduction
Linear mixed effects models have proven useful in fitting longitudinal data. Part of
their popularity arises because one can use flexible basis functions such as B-splines
to fit smooth response curves, and can easily incorporate correlation within individ-
uals through the use of random regression coefficients. See, for instance, Verbyla
et al. (1999), Fitzmaurice et al. (2004), Ruppert et al. (2003), Ruppert, Wand and Car-
roll (manuscript, 2009) and the extensive work in animal breeding, including work of
Meyer (2005, 2007). For a specific and known covariance structure, there is a com-
putational equivalence between a particular linear mixed effects model and a standard
smoothing approach. Computation of curve estimates using this covariance structure
can be calculated quickly and easily with existing software (Ngo & Wand, 2004, us-
ing the software PROC MIXED in SAS, and White et al., 1999, using the software
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ASReml, Gilmour et al., 2006). This connection also provides an automatic choice
of the amount of smoothing via the estimation of the ratio of variances in the mixed
effects model. The connection between linear mixed effects models and the smoothing
method is not only elegant, but has also proven useful in many applications such as the
comparison of human growth curves (Durbán et al., 2005).

However, care must be taken in exploiting this computational connection. Inap-
propriate modelling of the mean structure or too much reliance on the assumed spe-
cific covariance structure for the random effects can lead to undesirable effects in the
population effect estimation, in variance parameter estimation, and in specification of
standard errors. In particular, the smoothing-based covariance structure should not be
completely trusted since typically its form does not come from subject area modelling.

We first give as an example a data analysis that, although simple and perhaps not
the best approach, clearly illustrates some of the problems that might arise with blind
application of the standard smoothing/linear mixed model analysis. Figure 1 shows av-
erage daily temperatures recorded at 35 Canadian weather stations, where time t = 1
corresponds to January 1. This data set is available in the fda library in the statistical
software package R. Our goal is inference for the “typical” or expected daily temper-
ature in a Canadian weather station. Another goal, estimation of a particular station’s
“typical” weather curve, is only briefly addressed here.

Panel a) of Figure 2 contains three estimates of the population mean: one estimate
is simply the daily mean of the temperatures. The other two estimates are from linear
mixed effects models. They are calculated with the R library lme, which uses restricted
maximum likelihood (REML) estimates of variance components. For a discussion of
restricted maximum likelihood estimators, see, for instance, Demidenko (2004). The
specifics of our calculations are given in Sections 2 and 3. The two mixed effects
estimates are calculated using the same function spaces for the population mean and
the individual station effects, but the two estimates use different covariance structures
on the random effects, covariance structures commonly used in smoothing. One mixed
effects estimate uses a covariance structure corresponding to time “running forward”,
the other uses a covariance structure corresponding to time “running backward”. These
two mixed effects estimates do not track the pointwise average well. The two estimates
are different, but one is the time-reversed version of the other.

The remaining three panels of Figure 2 show the three estimates described above
along with pointwise standard errors. Throughout this paper, we plot error bands as
plus or minus one standard error. Panel b) shows the pointwise average, with stan-
dard errors given by the pointwise standard deviation divided by

√
35. The bottom

two panels show standard errors calculated using estimates of the assumed covariance
structure of the linear mixed effects models. Panel c) corresponds to the “running back-
ward” covariance structure, panel d) to the “running forward”. Note the widening of
the standard error bars to values that are much higher than the standard errors of the
pointwise averages, standard error bars so wide that they are clearly nonsensical. Thus
from Figure 2, we see that the covariance structure assumed for the random effects can
seriously impact both estimates and standard errors. The standard errors in panel b)
can only be calculated for a balanced design, that is, when temperatures are recorded
on the same 365 days for all stations. In many applications, the design is not balanced
and these straightforward standard errors cannot be readily calculated.
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Figure 3 contains standard error bars calculated via our recommended methods, as
described in Section 3.2. These standard error bars do not show the widening as seen
in Figure 2.

The observation that the assumed covariance structure of the random effects in a
linear mixed effects model can impact estimates and standard errors is not completely
new. Misspecification of the covariance structure might have an effect on the estimated
means, and typically can have a big effect on standard errors and on inference. Fortu-
nately, standard errors can be corrected via appropriate sandwich estimators. See Liang
& Zeger (1986) for a discussion of these issues in the context of generalized estimat-
ing equations. Unfortunately, currently published work on smoothing in mixed effects
models has not sufficiently addressed this potential problem. One notable exception
is the recent work of Brumback et al. (2009), who note the serious implications of
reliance on the smoothing-induced covariance and suggest a computer-intensive boot-
strap procedure to rectify the problems.

We propose using function estimators calculated assuming the specific covariance
structure in the mixed effects-smoothing formulation, and we recommend some re-
striction on the function spaces used in modelling. These smoothing based estimators
are fast to calculate. To compute standard errors and to make inference, we recom-
mend using a more general covariance structure or using a sandwich estimator. Both
recommendations are fast to compute, as they use the output of the smoothing-based
analysis. Section 2 contains notation and the general formulation of the linear mixed
effects model. Sections 3 and 4 contain detailed calculations and discussion of estima-
tors, predictors, and standard errors. Section 3 covers the conceptually straightforward
model in which the population curve is nonrandom. In Section 4, the population curve
is random.

2 General Formulation
Data are collected on N independent subjects, with data on subject i, (tij , Yij), j =
1, . . . , ni, modelled as

Yij = fi(tij) + εij ≡ µ(tij) + gi(tij) + εij , εij ∼ N(0, σ2
ε ), independent. (1)

To model the population curve µ and individual i’s deviation gi, we use four sets of
generic basis functions {ψPj , 1 ≤ j ≤ JP }, {φPk, 1 ≤ k ≤ KP }, {ψIj , 1 ≤ j ≤ JI}
and {φIk, 1 ≤ k ≤ KI}:

µ(t) =
∑
j

β[j] ψPj(t) +
∑
k

δ[k] φPk(t), (2)

gi(t) =
∑
j

βi[j] ψIj(t) +
∑
k

δi[k] φIk(t). (3)

The βi’s and δi’s are random effects, β is a fixed effect, and δ can be either fixed,
as in Section 3, or random, as in Section 4. Throughout, a subscript of P denotes
“population” and a subscript of I denotes “individual”.
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The model has two components: the choice of the basis functions and the assumed
covariance structure of the random coefficients. These two elements determine the
covariance between µ(t) + gi(t) and µ(s) + gi(s), and it is the structure of covariance
that is crucial in analysis. Clearly, to preserve this covariance structure, any change of
basis must be accompanied by the appropriate change in the covariance of the random
coefficients.

In all of our examples, the first summations in (2) and (3) are polynomials and the
second summations are splines. Specifically, {ψPj , φPk, 1 ≤ j ≤ JP , 1 ≤ k ≤ KP }
and {ψIj , φIk, 1 ≤ j ≤ JI , 1 ≤ k ≤ KI , } are bases for spline function spaces. A
spline function of degree p with knots K1 < K2 < · · · < KK is piecewise polynomial
of degree p, with the “pieces” defined on the subintervals determined by the knots. The
pieces of the polynomial are joined together at the knots so that the function has p− 1
continuous derivatives. Splines are widely used for flexible fitting of functions (see,
for instance, Ramsay & Silverman, 2005). A conceptually simple basis, which we use
here, is the power basis: ψj(t) = tj−1, j = 1, . . . , p+ 1, and φk(t) = {(t− Kk)+}p,
k = 1, . . . ,K. We do not restrict the knots for modelling µ to be the same as the knots
for modelling the gi’s, but we do use the same value of p.

Using (1), (2) and (3), we can write the model for subject i’s response vector as

Yi = (Yi1, . . . , Yini
)′ (4)

≡ XPi β + ZPi δ + XIi βi + ZIi δi + εi

= [XPi ZPi]
(
β
δ

)
+ [XIi ZIi]

(
βi
δi

)
+ εi

≡ Ciθ + CIiθi + εi

≡ Ciθ + ε∗i .

We assume that θ1, . . . , θN , ε1, . . . , εN are all independent, mean zero, and nor-
mally distributed. We denote the covariance matrix of the θi’s as ΣI and we sometimes
make the restriction that ΣI = ΣSI (S for smooth):

ΣSI =
[

Σβ 0
0 σ2

I I

]
. (5)

Here Σβ is the unrestricted covariance matrix of βi and σ2
I I is the restricted covariance

matrix of δi, that is, the components of δi are assumed to be independent and identically
distributed with common variance σ2

I . This restricted model is easy to fit provided
the dimension of Σβ is small. In contrast, the model with unrestricted ΣI usually
causes computational problems unless the dimension of ΣI is small. We call the model
assuming (5) the “smooth gi” model, for reasons given below. Sometimes we assume
that δ is random with covariance matrix equal to a constant times the identity matrix.
Again, we refer to this as the “smooth µ” model; again this model is usually easier to
fit than one assuming an unrestricted covariance matrix for δ.

We consider four models:

A. µ is fixed, gi is random: assume that β and δ are non-random and ΣI is unre-
stricted.
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B. µ is fixed, gi is random and smooth: assume that β and δ are non-random and
that ΣI equals ΣSI as in (5).

C. µ is random and smooth, gi is random: assume that β is fixed, that δ isN(0, σ2
P,CI),

is independent of the θi’s and εi’s, and that ΣI is unrestricted.

D. µ is random and smooth, gi is random and smooth: assume that β is fixed, that
δ is N(0, σ2

P I), is independent of the θi’s and εi’s, and that ΣI equals ΣSI as in
(5).

We use the notation σ2
P,C for the model C parameter to avoid confusion between es-

timating the variance of a component of δ under the unrestricted model C versus the
restricted model D.

To see why the restriction on the covariance matrix of the δi’s leads to a “smooth”
gi, first consider model B. By Henderson’s justification (Robinson, 1991), for fixed
σ2
ε , σ

2
I and Σβ , the best linear unbiased predictors of the fi’s in (1) are obtained by

minimizing

1
σ2
ε

∑
i,j

{Yij − fi(tij)}2 +
∑
i

β′iΣ
−1
β βi +

1
σ2
I

∑
i

δ′iδi

over β, δ, the βi’s and the δi’s. That is, we minimize

∑
i

∑
j

{Yij − fi(tij)}2 + σ2
ε β
′
iΣ
−1
β βi +

σ2
ε

σ2
I

δ′iδi

 .
The ith summand is simply a penalized least squares regression with penalties on βi
and δi. When we model gi as a spline using the power basis, the penalty on δi with
“smoothing parameter” σ2

ε /σ
2
I is one of those proposed by Eilers & Marx (1996) for

P-spline smoothing regression, and is recommended by Ruppert et al. (2003). For
instance, if p = 1, the penalty on δi shrinks gi to a line with the amount of shrinkage
depending on σ2

ε /σ
2
I . When p = 1, the effect of the penalty is similar to penalizing

for large second divided differences of gi (Eilers and Marx, 2004, manuscript). Such
a penalty is similar to the second derivative penalty that yields a smoothing spline
estimate (Green & Silverman, 1994).

Similarly in model D we can use Henderson’s justification to show that the predic-
tors of the fi’s are based on minimizers of

∑
i

∑
j

{Yij − fi(tij)}2 + σ2
ε β
′
iΣ
−1
β βi +

σ2
ε

σ2
I

δ′iδi

+
σ2
ε

σ2
P

δ′δ.

Thus, when using the power basis, the restrictions in our linear mixed effects model
lead us to P-spline smoothing type estimators of µ and the gi’s.

We can reparameterize functions in terms of a Bspline basis, which is computa-
tionally more stable than the power basis. Consider, for example, reparameterizing
the population mean curve µ and suppose that the knots are equispaced with interknot
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distance equal to ∆. Then, if γ ≡ (γ1, . . . , γK+2)′ is the resulting vector of Bspline
coefficients, one can easily show that δ[k] = (γk+2 − 2γk+1 + γk)/∆, k = 1, . . . ,K.
Therefore, we can write δ′δ as γ′D′2D2γ/∆2 where D2 is a matrix for taking discrete
second divided differences. See Eilers and Marx (2004, manuscript) and Welham et al.
(2007) for further discussion of the connections between the truncated power basis and
a Bspline basis in penalized smoothing.

Durbán et al. (2005) analyzed growth data using the restricted model D. They mod-
elled µ using the power basis with p = 1. They considered a range of models for gi:
gi equal to a random intercept, a random line, or piecewise linear with the same knots
as µ. Their main goal was to carry out various hypothesis tests. While their figures do
contain prediction bands for their function estimates, they provide no explanation of
their calculation.

Special cases of models A and B have been considered elsewhere. In the animal
breeding literature see, for instance, Huisman et al. (2002) and Meyer (2005). Rice &
Wu (2001) consider model A in a medical context.

2.1 Temperature Data Example
In all of the temperature data analyses, we model functions as splines of degree p =
1, using the power basis representation. Knots are equi-spaced with equal distances
from the “edges” of 1 and 365: a K knot sequence is constructed with Kj = 1 +
364 j/(K + 1), j = 1, . . . ,K. The estimates in Figure 2 are based on 41 population
knots, KP1, . . . ,KP41, and 7 individual knots, KI1, . . . ,KI7. The estimates are based
on model B.

Thus ψP1(t) = ψI1(t) = 1 and ψP2(t) = ψI2(t) = t. When time is “running
forward” φPk(t) = (t−KPk)+ and φIk(t) = (t−KIk)+, and when time is “running
backward” φPk(t) = (KPk − t)+ and φIk(t) = (KIk − t)+. In models A and C,
there is no difference between the time running forward model and the time running
backward model. However, there is a difference between time running forward and
time running backward when using models B or D.

We may understand the reason for this difference as follows. For time running
forward and with covariance structure as in model B,

var

(∑
k

δi[k]φIk(t)

)
= σ2

I ×
∑
k

{(t−KIk)+}2 ,

an increasing function of t. Similarly, for time running backward and with covariance
structure as in model B, the variance of

∑
k δi[k]φIk(t) is decreasing in t. This is the

cause of the widening of our standard error bands clearly visible in Figure 2, as the
model implies that there is more variability in our data at one end of the time scale
than the other. The widening becomes even worse if we increase the number of knots
used to model the individual random effects. This widening didn’t occur when we fit
model B or D with the individual random effect gi equal to a line. This agrees with the
analysis in Smith & Wand (2008).

Details of calculations of estimators and standard errors are given in the following
sections. In summary, when µ is a nonrandom function, we estimate µ by the maxi-
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mum likelihood estimator under the restricted model B. We propose easy-to-compute
standard errors of this estimate, valid under the unrestricted model A. When µ is a
random function, we use the restricted model D to calculate the best linear unbiased
predictor of µ and then use the unrestricted model C for easy-to-compute prediction
bands. Throughout, we ignore any model-based bias, that is, we assume that (1) -
(3) are exact. We do not consider estimation or prediction of µ under models A or C
because fitting linear mixed effects models with so many variance parameters is com-
putationally challenging.

The techniques we use in our calculations are not new. Many calculations in the
linear mixed effects model appear in Demidenko (2004) and Ruppert et al. (2003).
However we present these calculations in a way that clearly shows when we are rely-
ing on the smoothing model covariance structure of models B and D and when we are
simply using the more general models A and C. We also discuss in Section 4 interpre-
tations of various techniques for error bars of a predictor of µ when µ is random. When
µ is random, we should assess variability of the predictor about µ, not about E(µ).

3 Non-random µ

3.1 Estimation of µ under model B
Consider data generated according to (1) through (4) under either model A or B. Since
δ is a fixed effect, µ is non-random; thus when we talk about an estimate of µ(t) and
a standard error of the estimator, our meaning is clear. The estimator of θ under the
assumptions of model B is simply the generalized least squares estimate, minimizing∑

(Yi − Ciθ)′(Σ∗Si )−1(Yi − Ciθ),

with Σ∗Si denoting the variance of ε∗i under the “smooth gi” model B,

Σ∗Si = XIiΣβX ′Ii + σ2
I ZIiZ

′
Ii + σ2

ε I. (6)

Therefore the estimator of θ for known variance parameters is

θ̃ =
(
β̃

δ̃

)
=
(∑

C ′i(Σ
∗S
i )−1Ci

)−1∑
C ′i(Σ

∗S
i )−1Yi

≡
∑
Hi(Σ∗S1 , . . . ,Σ∗SN ) Yi ≡

∑
HiYi. (7)

The estimator of µ(t) for given Σ∗Si ’s is then µ̃(t) =
∑
j β̃[j]ψPj(t)+

∑
k δ̃[k]φPk(t).

A linear mixed effects model fit of model B yields restricted maximum likelihood
variance estimators Σ̂β , σ̂2

I , σ̂2
ε , and thus yields Ĥi = Hi(Σ̂∗S1 , . . . , Σ̂∗SN ), an estimator

ofHi. The maximum likelihood estimator θ̂ is then equal to
∑
ĤiYi and the maximum

likelihood estimator of µ(t), µ̂(t), is gotten in the obvious way from θ̂. The method
also provides estimators, θ̂i i = 1, . . . , N , of the best linear unbiased predictors of the
θi’s. These estimators, commonly called the estimated best linear unbiased predictors,
are gotten by substituting covariance estimates into the expressions for the best linear
unbiased predictors.
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3.2 Calculation of standard errors
The estimator µ̃ is derived under the assumption that model B holds. In this section, we
calculate the standard deviation of µ̃(t) valid under the unrestricted model A. We then
use this standard deviation to compute a standard error of µ̂(t) by plugging in variance
parameter estimates that are appropriate under model A. We ignore variability caused
by estimation of the variance parameters that appear in µ̂.

The variance of µ̃(t) is easily calculated from var(θ̃) using variance/covariance
rules as

var(θ̃) =
∑

Hi var(ε∗i ) H
′
i. (8)

Keep in mind that Hi contains model B variance parameters while var(ε∗i ) contains
model A variance parameters.

If the restricted model B holds, then the covariance matrix of ε∗i is equal to Σ∗Si and
var(θ̃) simplifies to (

∑
C′j(Σ∗Sj )−1Cj)−1, which we can estimate by (

∑
C′j(Σ̂∗Sj )−1Cj)−1

where Σ̂∗Sj is obtained by fitting model B. This expression was used to estimate the
variance of θ̂ needed to construct the standard error bars in Figure 2, panels c) and
d). Clearly, we do not want to use this model-based covariance, as it gives unrealistic
standard errors for our estimate of µ.

To construct standard errors, we require an estimator of var(ε∗i ) in (8), an estimator
that is valid under model A. The variance of ε∗i is

var(ε∗i ) = CIiΣIC ′Ii + σ2
ε I (9)

and thus we require an estimator of σ2
ε and an unrestricted estimator of ΣI = var(θi).

We estimate ΣI by Sθ̂, the sample covariance matrix of the θ̂i’s, our estimators of the
best linear unbiased predictors gotten from fitting model B:

Sθ̂ =
1

N − 1

∑
i

(
θ̂i −

∑
θ̂j/N

)(
θ̂i −

∑
θ̂j/N

)′
. (10)

We estimate σ2
ε by

σ̂2
ε =

1
df

trace
∑
i

(Yi − Ciθ̂ − CIiθ̂i)(Yi − Ciθ̂ − CIiθ̂i)′. (11)

where

df =
N∑
1

ni − length(θ) + dfadj −
N∑
1

length(θi)

and dfadj corrects for parameter over-counting, adjusting for the fact that some of the
population level basis functions are equal to the individual level basis functions. In our
case, with a slope and intercept at both the population and individual level, dfadj = 2 +
the number of common population and individual knots. Another sensible estimate of
σ2
ε can be gotten by ordinary least squares, with no shrinkage in estimation of any basis

function coefficient.
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Our estimator of var(ε∗i ) is v̂ar(ε∗i ) = CIiSθ̂C
′
Ii + σ̂2

ε I, and we use this in (8) to
estimate the variance of θ̂ :

v̂ar(θ̂) =
∑

Ĥi (CIiSθ̂C
′
Ii + σ̂2

ε I) Ĥ ′i. (12)

In the special case that that the population knots and individual knots are the same and
the tij’s do not depend on i, our formula for the degrees of freedom simplifies: with
n = ni and K = the number of knots, df = Nn−N(K + 2). The resulting estimates
of σ2

ε and var(θ̂) agree with Demidenko’s (2004, pp 61 ff).
The variance estimator in (12) relies on the assumed form of the variance of ε∗i

given in model A. If this form is suspect, if, for instance, the covariance matrix of εi is
not a constant times the identity, then the following general sandwich estimator of the
variance of θ̂ might be preferred:

v̂ars(θ̂) =
∑

Ĥi (Yi − Ciθ̂)(Yi − Ciθ̂)′ Ĥ ′i. (13)

Robert-Granié et al. (2002) consider such a sandwich estimator when fitting a sim-
ple random regression model assuming a specific variance structure that depends on
covariates.

3.3 Balanced Design
We call a design for (4) balanced if Ci ≡ C and CIi ≡ CI . For such a design,
the variance of ε∗i does not depend on i. In this case, the model B estimator of θ in
(7) simplifies, after some algebra, to θ̃ = {C ′[Σ∗Si ]−1C}−1C ′[Σ∗Si ]−1Ȳ which only
depends on the data via Ȳ =

∑
Yi/N . Since Hi ≡ H does not depend on i, the

sandwich variance estimator in (13) is equal to v̂ars(θ̂) = Ĥ
∑

(Yi− Ȳ )(Yi− Ȳ )′ Ĥ ′.
Thus, we see that estimating the variance of the ε∗i ’s in (8) via model B based residuals
is equivalent to estimating the variance using the sample variance of the Yi’s.

Suppose that the design is balanced and that model (4) holds with Σθ denoting the
possibly restricted covariance matrix of θi. Then the maximum likelihood estimator of
θ when variance parameters are known is simply the generalized least squares estimate

θ̃G = {C ′[var(ε∗i )]
−1C}−1C ′[var(ε∗i )]

−1Ȳ (14)

with var(ε∗i ) = CIΣθC ′I + σ2
ε I.

Under an additional condition on C and CI , given in the following theorem, the
estimator θ̃G is equal to the ordinary least squares estimator and thus does not depend
on the assumed covariance matrix. Under the same condition explicit formulas for
the maximum likelihood and restricted maximum likelihood estimators for Model A
covariance parameters can be given; see the end of this section.

Suppose that model (4) holds with Ci ≡ C and CIi ≡ CI . If the column space of
CI is contained in the column space of C, then the θ̃G in (14) and θ̂, the corresponding
maximum likelihood estimator when variance parameters are unknown, are equal to
the ordinary least squares estimate θ̂O ≡ (C ′C)−1C ′Ȳ .

The proof of Theorem 3.3 uses Theorem 3.3 below, which is a modified, more gen-
eral version of Theorem 2 of Section 2.3 of Demidenko (2004). The proof of Theorem
3.3 is given after that of Theorem 3.3.
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Suppose that G is a matrix of full column rank, that M is a symmetric matrix with
M + I invertible and that the column space of M is contained in the column space of
G. Then

{G′ (M + I)−1
G}−1G′ (M + I)−1 = (G′G)−1

G′.

We take transposes and show that

(M + I)−1
G{G′ (M + I)−1

G})−1 −G (G′G)−1 = 0. (15)

Define temporarily Q = G′ (M + I)−1
G and P = I − G (G′G)−1

G′. The left
hand side of (15) is then{

(M + I)−1
G−G (G′G)−1

Q
}
Q−1 =

{
(M + I)−1

G−G (G′G)−1
G′ (M + I)−1

G
}
Q−1

= P (M + I)−1
GQ−1.

The matrix P projects onto the orthogonal complement of the column space of G and
so PG = 0. Also, since the column space of M is in the column space of G, we see
PM = 0. Since

{
I−M (M + I)−1

}
(M + I) = I we get

P (M + I)−1
GQ−1 = P

{
I−M (M + I)−1

}
GQ−1 = PGQ−1 = 0.

[of Theorem 3.3]
Write var (ε∗i ) ≡ σ2

ε (M+I) whereM = CIΣθC ′I/σ
2
ε . Then θ̃G = {C ′ (M + I)−1

C}−1C ′ (M + I)−1
Ȳ

and the Ordinary Least Squares estimator is θ̂O = (C ′C)−1C ′Ȳ . Since the column
space of CI lies in the column space of C, the column space of CIB also lies in the
column space of C for any matrix B. Thus the column space of M lies in the column
space of C. The result follows directly from Theorem 3.3.

Demidenko (2004, pp 61ff) establishes the conclusion of Theorem 3.3 in a balanced
design under the stronger condition C = CI ; he then gives, under this same condition,
explicit formulas for the maximum likelihood and restricted maximum likelihood esti-
mates of ΣI and σ2

ε for the unrestricted model A. Careful reading of his proof shows
that these formulas remain valid whenever generalized least squares reduces to ordinary
least squares. Thus under the conditions of Theorem 3.3 we find that the restricted and
unrestricted maximum likelihood estimators of σ2

ε under model A are equal and given
by

σ̂2
ε =

N∑
i=1

(Yi − Cθ̂0)′
{

I− CI(C ′ICI)−1C ′I
}

(Yi − Cθ̂0)/ {N(n−m)}

where CI is m by m. The maximum likelihood estimator of ΣI is

Σ̂I,ml = (C ′ICI)
−1C ′ISCI(C

′
ICI)

−1 − σ̂2
ε (C ′ICI)

−1

where
S =

∑
(Yi − Cθ̂O)(Yi − Cθ̂O)′/N.

To get the restricted maximum likelihood estimator of ΣI replace the N in the denom-
inator of S by N − 1. See Demidenko (2004, p 63).
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3.4 Temperature data
Figures 2 and 3 contain estimates of the mean temperature curve along with pointwise
standard errors. All plots assume that the population curve µ is non-random. Fig-
ure 2 panels c) and d) were created using 41 population knots and 7 individual knots,
with model-based standard errors, that is standard errors based on (8) with var(ε∗i ) cal-
culated under the restricted model B. For comparison, we also computed pointwise
average temperatures and pointwise standard deviations divided by the square root of
35. These are shown in panel b). The standard errors in panels c) and d) show unre-
alistic widening. Panel a) contains the three estimates from panels b), c) and d). Note
the poor tracking of the pointwise average in panel a).

In Figure 3, estimation of µ involved 41 population knots and 6 individual knots. In
panel a) of Figure 3, the standard errors were calculated using the sandwich variance
estimator in (13). Panel b) compares the pointwise standard errors of average daily
temperature with this sandwich estimator and with the variance estimator in (12). We
have not plotted the model-based standard errors but they exhibit the same undesirable
fanning behaviour shown in Figure 2. Indeed, model-based standard errors exhibit
fanning for a wide range of choices of number of knots.

For the analysis of the weather data using spline functions of degree p, if the knots
for the gi’s are a subset of the knots for the population curve µ, then the column space
of CI is contained in the column space of C. Therefore, by Theorem 1, µ̃(ti) does
not depend on the specific basis functions or on the assumed covariance structure of
the station-specific random effects. Consequently our “forward time” and “backward
time” estimates of µ(ti) are the same. In Figure 2, the knot choices do not satisfy
the conditions of Theorem 1, and we see that the two estimates of µ are different, as
expected. In Figure 3, the knot choices do satisfy the conditions of Theorem 1.

It is important to remember that both model-based and sandwich standard errors
for µ̂ are affected by the assumed covariance structure. Even if the “forward” estimator
of µ is the same as the “backward” estimator of µ, the model B based standard errors
of the “forward” estimator will, in general, be different from those of the “backward”
estimator. In plots not shown here, the standard errors using (12) or (13) also exhibit
fanning, albeit mild, unless the conditions of Theorem 1 hold.

4 Random µ

4.1 Prediction of µ under model D
Suppose data are generated according to (1) through (4) under either model C or D, so
that the population effect δ is random. Under either model we write

Y =


Y1

Y2

...
YN

 =


C1

C2

...
CN


(
β
δ

)
+


ε∗1
ε∗2
...
ε∗N

 ≡ C θ + ε∗. (16)
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To calculate the estimators of β and the best linear unbiased predictor of δ, we assume
that the restricted model D holds. The variance of ε∗i under model D is Σ∗Si as defined
in (6). Let v0 be a row vector of zeroes the same length as β and v1 a row vector of
ones the same length as δ. Let

S = diag(Σ∗S1 ,Σ∗S2 , . . . ,Σ∗SN ) and I0 = diag (v0, v1).

Then, for known variance parameters, under model D, β̃, the maximum likelihood esti-
mator of β, and δ̃, the best linear unbiased predictor of δ, can be found via Henderson’s
justification (Robinson, 1991), as the minimizers of

(Y − Cθ)′S−1(Y − Cθ) +
1
σ2
P

θ′I0θ = (Y − Cθ)′S−1(Y − Cθ) +
1
σ2
P

δ′δ

and so

θ̃ =
[
C′S−1C +

1
σ2
P

I0

]−1

C′S−1Y

=
(∑

C ′i(Σ
∗S
i )−1Ci +

1
σ2
P

I0

)−1 ∑
C ′i(Σ

∗S
i )−1Yi

≡
∑
Hi(Σ∗S1 , . . . ,Σ∗SN , σ2

P )Yi ≡
∑
HiYi.

Therefore, our predictor of µ(t) in model D for known variance parameters is

µ̃(t) = θ̃′(ψP1(t), . . . , ψPJP
(t), φP1(t), . . . , φPKP

(t)) ≡ θ̃′f(t).

A linear mixed effects model fit of model D yields restricted maximum likelihood
estimators of σ2

P , Σβ , σ2
I and σ2

ε , and thus estimators of Hi, denoted Ĥi. The fit also
produces estimators of the best linear unbiased predictors of θ and the θi’s. The esti-
mator of the best linear unbiased predictor of θ is simply θ̂ =

∑
ĤiYi. The predictor

of µ(t), denoted µ̂(t), is gotten in the obvious way from θ̂.

4.2 Assessing variability of the predictor of µ(t)

In a random effects model, we have several ways to construct intervals for µ(t) based
on the best linear unbiased predictor µ̃(t). Since we are interested in µ(t) and not the
population fixed effect E{µ(t)}, we construct intervals based on a measure of the mag-
nitude of µ̃(t) − µ(t). So, for instance, we do not construct intervals of the form µ̃(t)
±[var{µ̃(t)}]1/2 since var{µ̃(t)} = var{µ̃(t)−

∑
βjψPj(t)} measures variability of

µ̃(t) about the population fixed effect, not about µ(t).
We study two measures of magnitude: e2δ(t) = E[ {µ̃(t)− µ(t)}2 | δ] and e2(t) =

E{µ̃(t)− µ(t)}2, and discuss how we might use these measures to construct intervals
that are likely to contain µ(t). The measure e2δ(t) provides inference that holds for each
realization of µ, and thus seems the most sensible, as our data set has been generated
by only one realization of µ. We can also justify the use of e2δ(t) by thinking of the
randomness of µ as merely a mechanism for smoothing. In either case, there is really
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just one µ of interest, leading us to think of µ as fixed in our inference. The measure
e2(t) provides inference that holds on average over all realizations of µ. It may perform
poorly for some realizations of µ and perform well for others.

Below we calculate e2δ(t) and e2(t) assuming that the unrestricted model C holds.
In Section 4.3, we present estimators of these two measures, estimators that are appro-
priate under model C.

To calculate e2δ(t) and e2(t), let

A = C′S−1C +
1
σ2
P

I0

and write, using (16) and some algebra,

θ̃ − θ = A−1C′S−1Y − θ

= − 1
σ2
P

A−1I0θ +A−1C′S−1ε∗

= − 1
σ2
P

A−1

(
0
δ

)
+A−1C′S−1ε∗. (17)

Consider the first measure:

e2δ(t) = E[{µ̃(t)− µ(t)}2|δ] = E[ {f(t)′ (θ̃ − θ)}2 | δ]
= f(t)′ E{ (θ̃ − θ)(θ̃ − θ)′ |δ} f(t)
= f(t)′ ( Bθ|δB′θ|δ + Vθ|δ ) f(t)

where, by (17),

Bθ|δ = E( θ̃ − θ |δ) = − 1
σ2
P

A−1

(
0
δ

)
and

Vθ|δ = var(θ̃|δ) = var(θ̃ − θ|δ)
= A−1 C′S−1 var(ε∗) S−1C A−1

= A−1
∑

C ′i(Σ
∗S
i )−1 var(ε∗i ) (Σ∗Si )−1Ci A

−1

≡
∑
Hi var(ε∗i )H′i ≡ Vθ, (18)

since Vθ|δ doesn’t depend on δ and therefore is not random. So

e2δ(t) = f(t)′
(

1
σ4
P

A−1

[
0 0
0 δδ′

]
A−1 + Vθ

)
f(t). (19)

In the Appendix, we show that pr(|µ̃(t)−µ(t)| ≤ zα/2 eδ(t) | δ)≥ 1−α where the
probability is calculated under the unrestricted model C and zα/2 is the 1-α/2 quantile
of the standard normal distribution. So µ̃(t) ± zα/2 eδ(t) is a sensible conservative
interval for µ(t), one that performs well for each realization of µ. In the Appendix, we
see that the interval may be unnecessarily conservative if δ′δ is large.
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Now consider the second measure, e2(t). To calculate e2(t), we simply take the
expectation of (19) under model C:

e2(t) = f(t)′
(

1
σ4
P

A−1

[
0 0
0 σ2

P,CI

]
A−1 + Vθ

)
f(t). (20)

We argue here that, on average over realizations of µ (with probability 1−α), µ(t) will
lie in the interval µ̃(t)±zα/2 e(t). From (17), E(θ̃−θ) = 0 and so E{µ̃(t)−µ(t)} = 0.
Thus e2(t) = var{µ̃(t)− µ(t)} and so pr(µ(t) ∈ µ̃(t)± zα/2 e(t)) = 1− α.

If the variance model is correctly specified, that is, if model D holds, then e2(t)
has an additional interpretation that further supports its use in constructing inference
intervals. When the variance is correctly specified, µ̃(t) = E{µ(t)|Y1, . . . , YN} and
var{µ(t)|Y1, . . . , YN} = E[{µ(t)− µ̃(t)}2|Y1, . . . , YN ], which, in the normal model,
does not depend on Y1, . . . , YN . So var{µ(t)|Y1, . . . , YN}= E[var{µ(t)|Y1, . . . , YN}]
= e2(t). That is, e2(t) is equal to the posterior variance of µ(t) given the data. This
posterior variance is commonly used for assessing variability of the posterior mean.

Ruppert et al. (2003, Section 6.4) discuss the analogues of Vθ, e2δ(t) and e2(t)
in the case that N = 1, that is, in the case of P-spline smoothing regression. To
calculate confidence intervals for µ(t), they compare e2(t) and f(t)′Vθf(t), and state
they prefer the former. They don’t consider confidence intervals based on e2δ(t). Their
calculations assume that the smoothing model D holds, that is, that ΣI is as in (5),
while our calculations hold under the more general model C. The forms of our (19) and
(20) allow for easier interpretation and comparison.

4.3 Estimating e2δ(t) and e2(t)
We have defined µ̃(t) and µ̂(t), predictors of µ(t), in the restricted model D. In Section
4.2, we defined two measures of the variability of µ̃(t), e2δ(t) in (19) and e2(t) in (20).
Our calculations for e2δ(t) and e2(t) are valid under the unrestricted model C. In this
section, we define estimators of e2δ(t) and e2(t) that are also valid under the unrestricted
model C. We then use these estimators to define prediction intervals for µ(t) centered
at µ̂(t). Keep in mind that A,S and σ2

P are estimated by fitting model D. Variance
parameters appearing in other parts of e2δ(t) and e2(t) must be estimated using the
unrestricted model C.

Both e2δ(t) and e2(t) contain the unknown Vθ. We can estimate Vθ in two ways:
using model C to estimate var(ε∗i ) in (18) or using a more general sandwich estimator.
To use model C, write var(ε∗i ) = CIiΣIC ′Ii+σ

2
ε I. We estimate ΣI and σ2

ε as in Section
3.2 equations (10) and (11), but using the θ̂i’s and θ̂ gotten from fitting model D. To
estimate Vθ by a sandwich estimator, we replace var(ε∗i ) in (18) with (Yi −Ciθ̂)(Yi −
Ciθ̂)′.

To estimate e2δ(t) we must predict δδ′, while to estimate e2(t), we must estimate
σ2
P,C . Let δ̂ be the estimator of the best linear unbiased predictor of δ, calculated by

fitting model D. We predict δδ′ by δ̂δ̂′. We estimate σ2
P,C by the sample variance of the
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components of δ̂:

σ̂2
P,C =

1
KP − 1

∑
k

(
δ̂[k]−

∑
δ̂[j]/KP

)2

.

4.4 Temperature data
We constructed a figure (not shown) analogous to Figure 2, except based on model
D with µ random using e2(t). The figure showed the same features as in Figure 2:
estimates of µ did not track the pointwise average, pointwise prediction bands were
unreasonably wide at 365 days if time was “running forward” or wide at day 1 if time
was “running backward”.

Figure 4 shows estimates of µ using model D with 41 population knots and 6 in-
dividual knots. The top panel shows the estimate and pointwise prediction bars calcu-
lated with the sandwich estimate of e2(t). The bottom panel compares three prediction
bars: the pointwise standard deviation divided by

√
35, and those gotten from estimat-

ing e2(t) via model C and via the sandwich method. We see that the prediction error
based on sandwich estimation smoothly tracks the pointwise standard errors while the
D-model-based prediction error bars are even smoother, but clearly show the effect of
knot placement. Plots of prediction bars based on estimating e2δ(t) were almost iden-
tical to those based on e2(t) at the beginning of the year, and only slightly different at
the end of the year.

5 Discussion
The use of linear mixed effects modelling as a smoothing tool in the analysis of longi-
tudinal data analysis has increased, with many researchers taking advantage of readily
available mixed effects model software. Incorporating spline functions into the anal-
ysis allows more flexible estimators than those from traditional parametric methods.
However, use of these spline models raises some concerns.

In the literature, typically the population curve is modelled as a spline function
while individual curves are modelled simply, as just a random intercept, or perhaps as
a random line. However, a richer individual model might be necessary for the data.
For instance, it’s clear from Figure 1 that the station effect cannot be modelled ade-
quately by a random line. As another example, consider studying growth via height/age
data. Using only a random intercept for the individual effect on height yields predicted
growth rates that do not vary across individuals. Thus a richer model would be needed.
See Smith & Wand (2008).

Unfortunately, for a rich individual model the unrestricted models A and C are
computationally difficult to fit. But estimators and predictors in the restricted models
B and D are fast to compute and are good, provided knots are chosen appropriately.
For estimating the population curve, we recommend that the knots used in modelling
the individual curves be a subset of the knots used in modelling the population curve.
As stated in Theorem 1, when µ is non-random and the design is balanced in a cer-
tain sense, doing so will yield a population curve estimate that doesn’t depend on the
assumed covariance structure.
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The choice of the covariance structure for the population curve and the individual
deviations can have a large effect on the standard errors. If possible, one should use
a covariance structure that arises from the application. For instance, an appropriate
covariance structure for the temperature data should reflect the fact that January 1 is
just one day after December 31, and so temperatures on these two days are highly cor-
related. If an appropriate covariance structure cannot be determined a priori, standard
errors should be based on an unrestricted covariance structure because model-based
standard errors can be quite unrealistic. We recommend using standard errors based on
(12), (13), (19) or (20).

Other authors have proposed alternatives to model-based standard errors. Crainiceanu
et al. (2007) assume that the δi’s are uncorrelated, but with possibly different variances,
replacing σ2

I I in (5) with a diagonal matrix. Sun et al. (2007) study a slightly more
complex model for (4). In order to reduce computational cost they propose two stage
estimation: regression to estimate the mean parameters and random effects, followed
by method of moments to estimate variance parameters.

Historically, linear mixed effects models have been used to estimate fixed effects.
Using them to predict random effects, as in the prediction of µ in Section 4, raises con-
ceptual problems in the interpretation of µ and in how one should construct prediction
intervals. We propose basing prediction errors on either of two measures of variability:
the conditional mean squared error and the unconditional mean squared error. When
the model used to calculate the estimator of µ is correct, then the predictor of µ is the
posterior mean and the unconditional mean squared error is simply the posterior vari-
ance. The posterior variance is a usual measure of variability of the posterior mean.

Another conceptual problem lies in the role played by the individual random ef-
fects. On the one hand, these random effects serve as a model for individual departures
from the mean population response. On the other hand, they serve simply as a tool for
smoothing individual level responses. These two roles can be aligned if the function
space for the population curve contains the function space for the individual effects.

Our two stage methodology, a smoothing-based linear mixed effects fit followed
by method of moment estimation of variance parameters, provides fast and flexible
analysis of longitudinal data, analysis that is robust to variance model misspecification.
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Appendix
Confidence intervals based on mean squared error are commonly used. However, to
our knowledge, the rationale has not been published, so we give it here. To apply
these results to e2δ(t), simply replace probabilities, expectations and variances with
conditional probabilities, expectations and variances.
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Consider a parameter θ and an estimator θ̂, assumed to be normally distributed.
Let b = E(θ̂) − θ, σ2 = var(θ̂) and m2 = E(θ̂ − θ)2 = b2 + σ2. We show that
pr(|θ̂ − θ| ≥ zα/2 m) < α. Write

pr(θ̂ − θ ≥ zα/2 m) = pr
(
θ̂ − E(θ̂)

σ
≥
zα/2 m− b

σ

)
= pr

(
Z ≥

zα/2m− b
σ

)
where Z follows a standard normal distribution. Similarly,

pr(θ̂ − θ ≤ −zα/2 m) = pr
(
Z ≤

−zα/2 m − b
σ

)
.

Consider the function

H(b) = pr(|θ̂ − θ| > zα/2 m)

= pr
(
Z ≥

zα/2 m− b
σ

)
+ pr

(
Z ≤

−zα/2 m − b
σ

)
= pr

(
Z ≥ m∗ − b

σ

)
+ pr

(
Z ≤ −m∗ − b

σ

)
.

ClearlyH(b) is no larger thanH(0) = pr(|Z| ≥ zα/2m/σ). So, sincem ≥ σ,H(b) ≤
pr(|Z| ≥ zα/2) = α. The discrepancy between H(b) and α will be large if b2 is large.
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Figure 1: Average daily temperatures (degrees Celsius) at 35 Canadian weather sta-
tions. Day 1 is January 1.
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Figure 2: Panel a) contains three estimates of µ, the typical weather curve, as described
in Sections 2 and 3, with µ considered non-random. The solid line is the pointwise
average, the dashed line is the time “running forward” estimate, and the dotted line is
the time “running backward” estimate. These two estimates use 41 population knots
and 7 individual knots. In the remaining panels, these three estimates of µ are shown
along with bands at plus and minus one standard error. In panel b), the standard errors
are simply the pointwise standard deviations of the 35 temperatures, divided by the
square root of 35. The bottom two panels contain standard errors calculated using the
restricted model B, as described in Section 3. Panel c) contains the “running backward”
estimate and panel d) contains the “running forward” estimate.
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Figure 3: The panels provide information about µ, the typical weather curve, estimated
using the techniques of Section 3, where µ is assumed non-random. The model uses
41 population knots and 6 individual knots. Panel a) contains the estimate of µ and
pointwise standard errors gotten from the sandwich estimator in (13). Panel b) shows
pointwise standard errors calculated using the sandwich estimator (dotted line), the
model C estimator of (12) (long dashed line) and the pointwise standard deviation of
the temperatures divided by square root of 35 (solid line).
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Figure 4: The plots provide information about µ, the typical weather curve, estimated
using the techniques of Section 4, where µ is assumed to be random. Prediction bar cal-
culations are given in Section 4.3. The model uses 41 population knots and 6 individual
knots. The top panel shows the estimate and pointwise prediction bars calculated with
the sandwich estimate of e2(t). The bottom panel compares three prediction bars: the
pointwise standard deviation divided by

√
35, (solid line) and the prediction bars got-

ten from estimating e2(t) via model C (dashed line) and the sandwich method (dotted
line).
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