Conditional Probability and Independence

Ruben Zamar
Department of Statistics UBC

January 22, 2019

MOTIVATION

- The outcome could be any element in the Sample Space, Ω.
- Sometimes the range of possibilities is restricted because of "partial information"
- Examples
- number of shots:
partial info: we know it wasn't an "ace"
- ELEC 321 final grade:
partial info: we know it is at least a "B"

CONDITIONING EVENT

- The event B representing the "partial information" is called "conditioning event"
- Denote by A the event of interest
- Example (Number of Shots)

$$
\begin{array}{ll}
B=\{2,3, \ldots\}=\{\text { not an "ace" }\} & \text { (conditioning event) } \\
A=\{1,3,5, \ldots\}=\{\text { server wins }\} & \text { (event of interest) }
\end{array}
$$

- Example (Final Grade)

$$
\begin{aligned}
& B=[70,100]=\{\text { at least a "B" }\} \quad \text { (conditioning event) } \\
& A=[80,100]=\{\text { an "A" }\} \quad \text { (event of interest) }
\end{aligned}
$$

DEFINITION OF CONDITIONAL PROBABILITY

- Suppose that $P(B)>0$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- The left hand side is read as "probability of A given B "
- Useful formulas:

$$
\begin{aligned}
P(A \cap B) & =P(B) P(A \mid B) \\
& =P(A) P(B \mid A)
\end{aligned}
$$

CONDITIONAL PROBABILITY

- $P(A \mid B)$, as a function of A (and for B fixed) satisfies all the probability axioms:
- $P(\Omega \mid B)=P(\Omega \cap B) / P(B)=P(B) / P(B)=1$
- $P(A \mid B) \geq 0$
- If $\left\{A_{i}\right\}$ are disjoint then

$$
\begin{aligned}
P\left(\cup A_{i} \mid B\right) & =\frac{P\left[\left(\cup A_{i}\right) \cap B\right]}{P(B)} \\
& =\frac{P\left[\cup\left(A_{i} \cap B\right)\right]}{P(B)} \\
& =\frac{\sum P\left(A_{i} \cap B\right)}{P(B)}=\sum P\left(A_{i} \mid B\right)
\end{aligned}
$$

EXAMPLE: NUMBER OF SHOTS

- For simplicity, suppose that points are decided in at most 8 shots, with probabilities:

Shots	1	2	3	4	5	6	7	8
Prob.	0.05	0.05	0.15	0.10	0.20	0.10	0.20	0.15

- Using the table above:

$$
\begin{aligned}
P(\text { Sever wins } \mid \text { Not an ace }) & =\frac{P(\{3,5,7\})}{P(\{2,3,4,5,6,7,8\})} \\
& =\frac{0.55}{0.95} \\
& =0.579
\end{aligned}
$$

EXAMPLE: FINAL GRADE

- Suppose that

$$
P(\text { Grade is larger than } x)=\frac{100-x}{100}=1-\frac{x}{100}
$$

- Using the formula above:

$$
\begin{aligned}
P(\text { To get an "A" } \mid \text { To get at least a "B" }) & =\frac{P([80,100])}{P([70,100])} \\
& =\frac{100-80}{100-70}=\frac{20}{30} \\
& =0.667
\end{aligned}
$$

SCREENING TESTS

- Items are submitted to a screening test before shipment
- The screening test can result in either

POSITIVE (indicating that the item may have a defect)
NEGATIVE (indicating that the item doesn't have a defect)

- Screening tests face two types of errors

FALSE POSITIVE
FALSE NEGATIVE

SCREENING TESTS (continued)

- For each item we have 4 possible events Item true status:
$D=\{$ item is defective $\}$
$D^{c}=\{$ item is not defective $\}$
Test result:
$B=\{$ test is positive $\}$
$B^{c}=\{$ test is negative $\}$

SCREENING TESTS (continued)

- The following conditional probabilities are normally known

Sensitivity of the test: $\quad P(B \mid D)=0.95$ (say)

Specificity of the test: $P\left(B^{c} \mid D^{c}\right)=0.99$ (say)
which implies

$$
P\left(B^{c} \mid D\right)=0.05 \quad \text { and } \quad P\left(B \mid D^{c}\right)=0.01
$$

- The proportion of defective items is also normally known

$$
P(D)=0.02 \text { (say) }
$$

TEST PERFORMANCE

- The following questions may be of interest:
- What is the probability that a randomly chosen item tests positive?
- What is the probability of defective given that the test resulted negative?
- What is the probability of defective given that the test resulted positive?
- What is the probability of screening error?
- We will compute these probabilities

PROBABILITY OF TESTING POSITIVE

$$
\begin{aligned}
P(B) & =P(B \cap D)+P\left(B \cap D^{c}\right) \\
& =P(D) P(B \mid D)+P\left(D^{c}\right) P\left(B \mid D^{c}\right) \\
& =0.02 \times 0.95+(1-0.02) \times 0.01 \\
& =0.0288
\end{aligned}
$$

PROB OF DEFECTIVE GIVEN A POSITIVE TEST

$$
\begin{aligned}
P(D \mid B) & =\frac{P(D \cap B)}{P(B)} \\
& =\frac{P(D) P(B \mid D)}{P(B)} \\
& =\frac{0.02 \times 0.95}{0.0288} \\
& =0.65972
\end{aligned}
$$

PROB OF DEFECTIVE GIVEN A NEGATIVE TEST

$$
\begin{aligned}
P\left(D \mid B^{c}\right) & =\frac{P\left(D \cap B^{c}\right)}{P\left(B^{c}\right)} \\
& =\frac{P(D) P\left(B^{c} \mid D\right)}{1-P(B)} \\
& =\frac{0.0098}{1-0.0288} \\
& =0.01
\end{aligned}
$$

SCREENING ERROR

$$
\begin{aligned}
P(\text { Error }) & =P\left(D \cap B^{c}\right)+P\left(D^{c} \cap B\right) \\
& =P(D) P\left(B^{c} \mid D\right)+P\left(D^{c}\right) P\left(B \mid D^{c}\right) \\
& =0.02 \times(1-0.95)+(1-0.02) \times 0.01 \\
& =0.0108
\end{aligned}
$$

BAYES' FORMULA

- The formula

$$
P(D \mid B)=\frac{P(D \cap B)}{P(B)}=\frac{P(B \mid D) P(D)}{P(B \mid D) P(D)+P\left(B \mid D^{c}\right) P\left(D^{c}\right)}
$$

is the simple form of Bayes' formula.

- This has been used in the "Screening Example" presented before.

BAYES' FORMULA (continued)

- The general form of Bayes' Formula is given by

$$
P\left(D_{i} \mid B\right)=\frac{P\left(D_{i} \cap B\right)}{P(B)}=\frac{P\left(B \mid D_{i}\right) P\left(D_{i}\right)}{\sum_{j=1}^{k} P\left(B \mid D_{j}\right) P\left(D_{j}\right)}
$$

where $D_{1}, D_{2}, \ldots, D_{k}$ is a partition of the sample space Ω :

$$
\begin{aligned}
\Omega & =D_{1} \cup D_{2} \cup \cdots \cup D_{k} \\
D_{i} \cap D_{j} & =\phi, \quad \text { for } i \neq j
\end{aligned}
$$

EXAMPLE: THREE PRISONERS

- Prisoners A, B and C are to be executed
- The governor has selected one of them at random to be pardoned
- The warden knows who is pardoned, but is not allowed to tell
- Prisoner A begs the warden to let him know which one of the other two prisoners is not pardoned
- Prisoner A tells the warden: "Since I already know that one of the other two prisioners is not pardoned, you could just tell me who is that"
- Prisoner A adds: "If B is pardoned, you could give me C's name. If C is pardoned, you could give me B's name. And if I'm pardoned, you could flip a coin to decide whether to name B or C."

The warden is convinced by prisoner A's arguments and tells him: "B is not pardoned"

Result: Given the information provided by the Warden, C is now twice more likely to be pardoned than A!

Why? Check the derivations below:

NOTATION:

$$
\begin{aligned}
& A=\{A \text { is pardoned }\} \\
& B=\{B \text { is pardoned }\} \\
& C=\{C \text { is pardoned }\}
\end{aligned}
$$

$$
b=\{\text { The warden says "B is not pardoned" }\}
$$

Clearly

$$
\begin{gathered}
P(A)=P(B)=P(C)=\frac{1}{3} \\
P(b \mid B)=0 \quad(\text { warden never lies }) \\
P(b \mid A)=1 / 2 \quad(\text { warden flips a coin }) \\
P(b \mid C)=1 \quad(\text { warden cannot name } A)
\end{gathered}
$$

By the Bayes' formula:

$$
\begin{aligned}
P(A \mid b) & =\frac{P(b \mid A) P(A)}{P(b \mid A) P(A)+P(b \mid B) P(B)+P(b \mid C) P(C)} \\
& =\frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3}+0 \times \frac{1}{3}+1 \times \frac{1}{3}}=\frac{1}{3}
\end{aligned}
$$

Hence

$$
P(C \mid b)=1-P(A \mid b)=1-\frac{1}{3}=\frac{2}{3}
$$

SCREENING EXAMPLE II

- The tested items have two components: " c_{1} " and " c_{2} "
- Suppose
$D_{1}=\left\{\right.$ Only component " c_{1} " is defective \}, $\quad P\left(D_{1}\right)=0.01$
$D_{2}=\left\{\right.$ Only component " c_{2} " is defective \}, $\quad P\left(D_{2}\right)=0.008$
$D_{3}=\left\{\right.$ Both components are defective \}, $\quad P\left(D_{3}\right)=0.002$
$D_{4}=\left\{\right.$ Both components are non defective \}, $\quad P\left(D_{4}\right)=0.98$

SCREENING EXAMPLE II (continued)

- Let

$$
B=\{\text { Screening test is positive }\}
$$

- Suppose

$$
\begin{aligned}
& P\left(B \mid D_{1}\right)=0.95 \\
& P\left(B \mid D_{2}\right)=0.96 \\
& P\left(B \mid D_{3}\right)=0.99 \\
& P\left(B \mid D_{4}\right)=0.01
\end{aligned}
$$

SOME QUESTIONS OF INTEREST

- The following questions may be of interest:
- What is the probability of testing positive?
- What is the probability that component " c_{i} " $(i=1,2)$ is defective when the test resulted positive?
- What is the probability that the item is defective when the test resulted negative?
- What is the probability both components are defective when the test resulted positive?
- What is the probability of testing error?
- We will compute these probabilities

PROB OF TESTING POSITIVE

$$
\begin{aligned}
P(B) & =P\left(B \cap D_{1}\right)+P\left(B \cap D_{2}\right)+P\left(B \cap D_{3}\right)+P\left(B \cap D_{4}\right) \\
& =0.01 \times 0.95+0.008 \times 0.96+0.002 \times 0.99+0.98 \times 0.01 \\
& =0.02896
\end{aligned}
$$

Notice that the probability of defective is

$$
P(D)=0.01+0.008+0.002=0.02
$$

PROB OF TESTING NEGATIVE

$$
\begin{aligned}
P\left(B^{c}\right) & =P\left(B^{c} \cap D_{1}\right)+P\left(B^{c} \cap D_{2}\right)+P\left(B^{c} \cap D_{3}\right)+P\left(B^{c} \cap D_{4}\right) \\
& =0.01 \times 0.05+0.008 \times 0.04+0.002 \times 0.01+0.98 \times 0.99 \\
& =0.97104
\end{aligned}
$$

Naturally,

$$
P(B)+P\left(B^{c}\right)=0.02896+0.97104=1
$$

TEST RESULTED POSITIVE

The posterior probabilities given this "data" are:

$$
\begin{aligned}
P\left(D_{1} \mid B\right) & =\frac{0.01 \times 0.95}{0.02896}=0.32804 \\
P\left(D_{2} \mid B\right) & =\frac{0.008 \times 0.96}{0.02896}=0.26519 \\
P\left(D_{3} \mid B\right) & =\frac{0.002 \times 0.99}{0.02896}=0.06837 \\
P\left(D_{4} \mid B\right) & =\frac{0.98 \times 0.01}{0.02896}=0.33840 \\
P(\text { defective } \mid B) & =1-P\left(D_{4} \mid B\right)=1-0.33840=0.6616
\end{aligned}
$$

TEST RESULTED NEGATIVE

The posterior probabilities given this "data" are:

$$
\begin{aligned}
P\left(D_{1} \mid B^{c}\right) & =\frac{0.01 \times 0.05}{0.97104}=0.00051491 \\
P\left(D_{2} \mid B^{c}\right) & =\frac{0.008 \times 0.04}{0.97104}=0.00032954 \\
P\left(D_{3} \mid B^{c}\right) & =\frac{0.002 \times 0.01}{0.97104}=0.000020596 \\
P\left(D_{4} \mid B^{c}\right) & =\frac{0.98 \times 0.99}{0.97104}=0.99913 \\
P\left(\text { defective } \mid B^{c}\right) & =1-P\left(D_{4} \mid B^{c}\right)=1-0.99913=0.00087
\end{aligned}
$$

CONCLUSION

Prior reliability of items being sold:

$$
\begin{aligned}
P(\text { Defective }) & =P\left(D_{1}\right)+P\left(D_{2}\right)+P\left(D_{3}\right)=0.01+0.008+0.002 \\
& =0.02
\end{aligned}
$$

Posterior reliability of items being sold:

$$
\begin{aligned}
P\left(\text { Defective } \mid B^{c}\right) & =1-P\left(D_{4} \mid B^{c}\right)=1-0.99913 \\
& =0.00087<0.001
\end{aligned}
$$

COST - BENEFIT ANALYSIS

Cost: possibly discarding a small percentage of non-defective items

$$
\begin{aligned}
P(\text { "Testing Positive" } \cap \text { "Non-Defective" }) & =P\left(B \cap D_{4}\right) \\
& =P\left(D_{4} \mid B\right) P(B) \\
& =0.33840 \times 0.02896<0.01
\end{aligned}
$$

Benefit: Relative reliability improvement:

$$
\begin{aligned}
P(\text { Defective })-P\left(\text { Defective } \mid B^{c}\right) & =0.02-0.00087 \\
& =0.01913
\end{aligned}
$$

Notice that

$$
0.02 / 0.00087>22
$$

INDEPENDENCE

- DEFINITION: Events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- If A and B are independent then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)
$$

and

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)
$$

DISCUSSION

- If $P(A)=1$, then A is independent of all B.

$$
\begin{aligned}
& P(A \cap B)=P(A \cap B)+\overbrace{P\left(A^{c} \cap B\right)}^{=0}=P(B) \\
& P(A \cap B)=\overbrace{P(A)}^{=1} P(B)
\end{aligned}
$$

DISCUSSION (Cont)

- Suppose that A and B are non-trivial events $(0<P(A)<1$ and $0<P(B)<1)$
- If A and B are mutually exclusive ($A \cap B=\phi$) then they cannot be independent because

$$
P(A \mid B)=0<P(A)
$$

- If $A \subset B$ then they cannot be independent because

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}>P(A)
$$

DISCUSSION (Cont)

- Suppose $\Omega=\{1,2,3,4,5,6,7,8,9,10\}$ and the numbers are equally likely.
- $A=\{1,2,3,4,5\}$ and $B=\{2,4,6,8\}$
- $P(A \cap B)=P(\{2,4\})=0.20, \quad P(A) P(B)=0.5 \times 0.4=0.20$
- Hence, A and B are independent
- In terms of probabilities A is half of Ω. On the other hand $A \cap B$ is half of B.

DISCUSSION (continued)

- What happens if

$$
P(i)=\frac{i}{55} ?
$$

- $P(A \cap B)=P(\{2,4\})=6 / 55=0.10909$
$P(A) P(B)=(15 / 55) \times(20 / 55)=0.099174$
- Hence, A and B are not independent in this case.

MORE THAN TWO EVENTS

Definition: We say that the events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if

$$
P\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{k}}\right)
$$

for all $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and all $1 \leq k \leq n$.

For example, if $n=3$, then

$$
\begin{aligned}
P\left(A_{1} \cap A_{2}\right) & =P\left(A_{1}\right) P\left(A_{2}\right) \\
P\left(A_{1} \cap A_{3}\right) & =P\left(A_{1}\right) P\left(A_{3}\right) \\
P\left(A_{2} \cap A_{3}\right) & =P\left(A_{2}\right) P\left(A_{3}\right) \\
P\left(A_{1} \cap A_{2} \cap A_{3}\right) & =P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)
\end{aligned}
$$

SYSTEM OF INDEPENDENT COMPONENTS

- In series

$$
\rightarrow \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \rightarrow
$$

- In parallel

NOTATION

$A=\{$ Component a works $\}$
$B=\{$ Component b works $\}$
$C=\{$ Component c works $\}$

INDEPENDENT COMPONENTS

We assume that A, B and C are independent, that is

$$
\begin{aligned}
P(A \cap B \cap C) & =P(A) P(B) P(C) \\
P(A \cap B) & =P(A) P(B) \\
P(B \cap C) & =P(B) P(C) \\
P(A \cap C) & =P(A) P(C)
\end{aligned}
$$

RELIABILITY CALCULATION

Problem 1: Suppose that

$$
P(A)=P(B)=P(C)=0.95 \text {. }
$$

Calculate the reliability of the system

$$
\rightarrow \mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \rightarrow
$$

Solution:

$$
\begin{aligned}
P(\text { System Works }) & =P(A \cap B \cap C) \\
& =P(A) P(B) P(C) \\
& =0.95^{3}=0.857
\end{aligned}
$$

PRACTICE

Problem 2: Suppose that

$$
P(A)=P(B)=P(C)=0.95
$$

Calculate the reliability of the system

PROBLEM 2 (Solution)

P (System works) $=1-P$ (System fails)

$$
\begin{aligned}
& =1-P\left(A^{c} \cap B^{c} \cap C^{c}\right) \\
& =1-P\left(A^{c}\right) P\left(B^{c}\right) P\left(C^{c}\right) \\
& =1-(1-P(A))(1-P(B))(1-P(C)) \\
& =1-0.05^{3}=0.99988
\end{aligned}
$$

PRACTICE

Problem 3: Suppose that

$$
P(A)=P(B)=P(C)=P(D)=0.95
$$

Calculate the reliability of the system

PROBLEM 3 (Solution)

P (System works) $=P$ (subsys I works \cap subsys II works)

$$
=P(\text { subsys I works }) P(\text { subsys II works })
$$

$$
=[1-P(\text { subsys I fails })][1-P(\text { subsys II fails })]
$$

$$
=\left[1-P\left(A^{c} \cap B^{c}\right)\right]\left[1-P\left(C^{c} \cap D^{c}\right)\right]
$$

$$
=\left[1-P\left(A^{c}\right) P\left(B^{c}\right)\right]\left[1-P\left(C^{c}\right) P\left(D^{c}\right)\right]
$$

$$
=[1-(1-P(A))(1-P(B))][1-(1-P(C))(1-P(D))]
$$

$$
=\left(1-0.05^{2}\right)^{2}=0.99501
$$

CONDITIONAL INDEPENDENCE

Definition: We say that the events $T_{1}, T_{2}, \ldots, T_{n}$ are conditionally independent given the event B if

$$
P\left(T_{i_{1}} \cap T_{i_{2}} \cap \cdots \cap T_{i_{k}} \mid B\right)=P\left(T_{i_{1}} \mid B\right) P\left(T_{i_{2}} \mid B\right) \cdots P\left(T_{i_{k}} \mid B\right)
$$

for all $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and all $1 \leq k \leq n$.

For example, if $n=3$, then

$$
\begin{aligned}
P\left(T_{1} \cap T_{2} \mid B\right) & =P\left(T_{1} \mid B\right) P\left(T_{2} \mid B\right) \\
P\left(T_{1} \cap T_{3} \mid B\right) & =P\left(T_{1} \mid B\right) P\left(T_{3} \mid B\right) \\
P\left(T_{2} \cap T_{3} \mid B\right) & =P\left(T_{2} \mid B\right) P\left(T_{3} \mid B\right) \\
P\left(T_{1} \cap T_{2} \cap T_{3} \mid B\right) & =P\left(T_{1} \mid B\right) P\left(T_{2} \mid B\right) P\left(T_{3} \mid B\right)
\end{aligned}
$$

Notes

- Conditional independence doesn't imply unconditional independence and vice versa
- Conditional independence given B doesn't imply conditional independence given B^{c}
- However, usually both conditional independences are assumed together in applications
- We will apply this concept in Bayesian probability updating

SEQUENTIAL BAYES' FORMULA (Bonus material)

Let S_{i} be the outcome of the $\mathrm{i}^{\text {th }}$ test. For instance

$$
\begin{gathered}
S_{1}=\left\{\text { The } 1^{\text {th }} \text { test is positive }\right\} \\
S_{2}=\left\{\text { The }^{\text {th }} \text { test is negative }\right\} \\
S_{3}=\left\{\text { The } 3^{\text {th }} \text { test is negative }\right\} \\
\text { and so on }
\end{gathered}
$$

The outcomes $S_{i}(i=1,2, \ldots, n)$ are available in a sequential fashion.

$$
\text { Let } \quad I_{k}=S_{1} \cap S_{2} \cap \cdots \cap S_{k} \quad \text { (data available at step } k \text {) and set }
$$

$$
\pi_{0}=P(D) \quad \text { Prior prob of an item being defective }
$$

$$
\pi_{1}=P\left(D \mid l_{1}\right)=P\left(D \mid S_{1}\right) \quad \text { Posterior prob given } S_{1}
$$

$$
\pi_{2}=P\left(E \mid I_{2}\right)=P\left(E \mid S_{1} \cap S_{2}\right) \quad \text { Posterior prob given } S_{1} \text { and } S_{2}
$$

$$
\pi_{3}=P\left(E \mid I_{3}\right)=P\left(E \mid S_{1} \cap S_{2} \cap S_{3}\right) \quad \text { Posterior prob given } S_{1}, S_{2} \text { and } S_{3}
$$

and so on

CONDITIONAL INDEPENDENCE ASSUMPTION

Assume that the $S_{i}(i=1,2, \ldots, n)$ are independent given E and also given E^{c}.

Then, for $k=1,2, \ldots, n$

$$
\pi_{k}=\frac{P\left(S_{k} \mid D\right) \pi_{k-1}}{P\left(S_{k} \mid D\right) \pi_{k-1}+P\left(S_{k} \mid D^{c}\right)\left(1-\pi_{k-1}\right)}
$$

Proof

$$
\begin{aligned}
\pi_{k}= & \frac{P\left(I_{k} \mid D\right) \pi_{0}}{P\left(I_{k} \mid D\right) \pi_{0}+P\left(I_{k} \mid D^{c}\right)\left(1-\pi_{0}\right)} \\
= & \frac{P\left(I_{k-1} \cap S_{k} \mid D\right) \pi_{0}}{P\left(I_{k-1} \cap S_{k} \mid D\right) \pi_{0}+P\left(I_{k-1} \cap S_{k} \mid D^{c}\right)\left(1-\pi_{0}\right)} \\
= & \frac{P\left(S_{k} \mid D\right) P\left(I_{k-1} \mid D\right) \pi_{0}}{P\left(S_{k} \mid D\right) P\left(I_{k-1} \mid D\right) \pi_{0}+P\left(S_{k} \mid D^{c}\right) P\left(I_{k-1} \mid D^{c}\right)\left(1-\pi_{0}\right)} \\
& \quad \text { (By the cond. independence assumption) }
\end{aligned}
$$

Proof (continued)

$$
\begin{aligned}
\pi_{k} & =\frac{P\left(S_{k} \mid D\right) P\left(I_{k-1} \cap D\right)}{P\left(S_{k} \mid E\right) P\left(I_{k-1} \cap E\right)+P\left(S_{k} \mid E^{c}\right) P\left(I_{k-1} \cap E^{c}\right)} \\
& =\frac{P\left(S_{k} \mid E\right) P\left(I_{k-1} \cap E\right) / P\left(I_{k-1}\right)}{\left[P\left(S_{k} \mid E\right) P\left(I_{k-1} \cap E\right)+P\left(S_{k} \mid E^{c}\right) P\left(I_{k-1} \cap E^{c}\right)\right] / P\left(I_{k-1}\right)} \\
& =\frac{P\left(S_{k} \mid E\right) \pi_{k-1}}{P\left(S_{k} \mid E\right) \pi_{k-1}+P\left(S_{k} \mid E^{c}\right)\left(1-\pi_{k-1}\right)}, \quad \pi_{k-1}=P\left(E \mid I_{k-1}\right)
\end{aligned}
$$

Pseudo Code

- Input:
- $\left(S_{1}, S_{2}, S_{3}, \ldots, S_{n}\right)=(1,0,1, \ldots, 0)$ (outcomes for the n tests)
- $\quad \pi=P(E) \quad$ (prob of event of interest, for instance $\mathrm{E}=$ "the part is defective")
- $p_{k}=P\left(S_{k}=+\mid E\right) \quad k=1,2, \ldots, n \quad$ (Sensitivity of $k^{t h}$ test)
- $q_{k}=P\left(S_{k}=-\mid E^{c}\right) \quad k=1,2, \ldots, n \quad$ (Specificity of $k^{t h}$ test)
- Output $\pi_{k}=P\left(E \mid S_{1} \cap S_{2} \cap \cdots \cap S_{k}\right) \quad, \quad k=1,2, \ldots, n$

Pseudo Code (continued)

Example of Input:

$$
n=4, \quad \pi=0.05
$$

$$
\text { Test Results }=\quad(1,1,0,1)
$$

k	$p_{k}=P(1 \mid$ Defective $)$	$1-q_{k}=P(1 \mid$ Non Defective $)$
1	$p_{1}=0.80$	$1-q_{1}=0.05$
2	$p_{2}=0.78$	$1-q_{2}=0.10$
3	$p_{3}=0.85$	$1-q_{3}=0.20$
4	$p_{4}=0.82$	$1-q_{4}=0.15$

Pseudo Code - Computation

Computation of π_{k}

1) Initialization: Set $\pi_{0}=\pi$
2) k-step:

If $\quad S_{k}=1$, set $\quad a=p_{k} \quad$ and $\quad b=1-q_{k}$
If $\quad S_{k}=0$, set $\quad a=1-p_{k} \quad$ and $\quad b=q_{k}$
3) Computing π_{k} :

$$
\pi_{k}=\frac{a \pi_{k-1}}{a \pi_{k-1}+b\left(1-\pi_{k-1}\right)}
$$

Example: Simple Spam Email Detection

- When you receive an email, your spam fillter uses Bayes rule to decide whether it is spam or not.
- Basic spam filters check whether some pre-specified words appear in the email; e.g.
\{diplomat,lottery,money,inheritance, president,sincerely, huge,...\}.
- We consider n events W_{i} telling us whether the $i^{\text {th }}$ pre-specified word is in the message
- Let

$$
E=\{\text { e-mail is spam }\}
$$

$$
W_{i}=\{\text { word } \mathrm{i} \text { is in the message }\}, \quad i=1,2, \ldots, n
$$

- Assume that $W_{1}, W_{2}, \ldots, W_{n}$ are conditionally independent given E and also E^{c}.
- Human examination of a large number of messages is used estimate $\pi_{0}=P(E)$
- The training data is also used to estimate $p_{i}=P\left(W_{i} \mid E\right)$ and $1-q_{i}=P\left(W_{i} \mid E^{c}\right)$
- Let $I_{n}=S_{1} \cap S_{2} \cap \cdots \cap S_{n}$, where S_{i} is either W_{i} or W_{i}^{c}.
- The spam filter assumes that the W_{i} are conditionally independent (given E and given E^{c}) to compute

$$
P\left(E \mid I_{n}\right)=\frac{P\left(I_{n} \mid E\right) P(E)}{P\left(I_{n} \mid E\right) P(E)+P\left(I_{n} \mid E^{c}\right) P\left(E^{c}\right)}
$$

Sequential Updating

- The posterior probs $\pi_{k}=P\left(E \mid I_{k}\right) \quad(k=1,2, \ldots, n-1)$ can be computed sequentially using the formula

$$
\begin{aligned}
\pi_{k} & =P\left(E \mid I_{k}\right)=\frac{P\left(S_{k} \mid E\right) P\left(E \mid I_{k-1}\right)}{P\left(S_{k} \mid E\right) P\left(E \mid I_{k-1}\right)+P\left(S_{k} \mid E^{c}\right) P\left(E^{c} \mid I_{k-1}\right)} \\
& =\frac{P\left(S_{k} \mid E\right) \pi_{k-1}}{P\left(S_{k} \mid E\right) \pi_{k-1}+P\left(S_{k} \mid E^{c}\right)\left(1-\pi_{k-1}\right)}
\end{aligned}
$$

- An early decision to classify the e-mail as spam can be made if $P\left(E \mid I_{k}\right)$ becomes too large (or too small).

Numerical Example

For a simple numerical example consider a case with

$$
n=8 \text { words, } P(\text { Spam })=0.10
$$

and

Word	$\mathrm{P}($ Word Present	Spam $)$
	$\mathrm{P}($ Word Absent \mid No Spam $)$	
W_{1}	Sensitivity	Specificity
W_{2}	0.74	0.98
W_{3}	0.83	0.88
W_{4}	0.88	0.89
W_{5}	0.75	0.99
W_{6}	0.82	0.85
W_{7}	0.73	0.89
W_{8}	0.77	0.93
	0.86	0.92

Word	Word Status	$\mathrm{P}\left(\right.$ Spam $\left.\mid I_{k}\right)$
W_{1}	1	0.804
$\mathrm{~W}_{2}$	0	0.443
$\mathrm{~W}_{3}$	0	0.097
$\mathrm{~W}_{4}$	1	0.889
$\mathrm{~W}_{5}$	0	0.630
$\mathrm{~W}_{6}$	1	0.919
$\mathrm{~W}_{7}$	1	0.992
W_{8}	1	0.999

