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BASIC PRINCIPLE OF COUNTING

Experiment has k steps

Step 1 has n1 possible outcomes
Step 2 has n2 possible outcomes
- - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - -
Step k has nk possible outcomes

Number of possible outcomes for the experiment

n1 × n2 × · · · × nk
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PERMUTATION

g : {1, 2, ..., n} → {1, 2, ..., n} one-to-one and onto

Example: let n = 4

1 → 3
2 → 4
3 → 1
4 → 2

How many permutations can be defined?

n× (n− 1)× (n− 2)× · · · × 2× 1 = n!
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Combinations

Split a set of n objects into 2 subsets of sizes m and n−m,
respectively.

Ex: {1, 2, 3, 4, 5} is split into two subsets {1, 3, 5} and {2, 4}
In this case n = 5 and m = 3

How many splits (combinations) can be formed?

1,2,3 4,5
1,2,4 3,5
1,2,5 3,4
1,3,4 2,5
1,3,5 2,4

1,4,5 2,3
2,3,4 1,5
2,3,5 1,4
2,4,5 1,3
3,4,5 1,2

In this case there are 10 possible splits.
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PERMUTATIONS GENERATE SPLITS

Each permutation produces an split: the first m and the last m− n

m=3︷ ︸︸ ︷
i1, i2, i3 ,

n−m=2︷︸︸︷
i4, i5

Example:

︷ ︸︸ ︷
1, 5, 4 ,

︷︸︸︷
2, 3

But there is duplication, for example:
︷ ︸︸ ︷
5, 4, 1 ,

︷︸︸︷
3, 2
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ACCOUNTING FOR DUPLICATIONS

Divide by the number of permutations in each split:

nCm︸︷︷︸
”n choose m”

=

 n

m

 =

# permutations︷︸︸︷
n!

m!︸︷︷︸
# permutations

(n−m)!︸ ︷︷ ︸
# permutations

For example

5C3 =

 5

3

 =
5!
3!2!

= 10
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WHAT IF THE ORDER IS IMPORTANT?

If the order is important (in the first split) we must multiply back by m!

nPm = m!

 n

m

 =
n!

(n−m)!
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EXAMPLE: LOTTERY 6/49 (continued)

Matching exactly x numbers and missing the other 6− x numbers

Mind Experiment: Consider a box with 50 balls numbered 0 to 49.

Six of these balls are labeled "W" (your six chosen numbers)

The remaining 44 are labeled "L" (the non chosen numbers)

Formula:

p (x) =

 6

x

 44

6− x


 50

6


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RESULTS

x p (x)
0 0.44423
1 0.41005
2 0.12814
3 0.01667
4 0.00089
5 0.00002
6 0.00000

In fact, p (6) = 6.292989e-08
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APPLICATION TO CRYPTOGRAPHY

Let

A = {α1, α2, ...., αn}
be a given alphabet and let W be text of length N over A.

Assume that each N-character text, W, is equally likely.

αi is a blank if αi doesn’t appear in W.
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APPLICATION TO CRYPTOGRAPHY

1 Calculate the probability that the text W contains at least one blank.

2 Calculate the probability [denoted P (N, n, 0)] that the text W
contains no blanks.

3 Calculate the probability [denoted P (N, n, b)] that the text W
contains b blanks, b = 1, ..., n− 1.
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APPLICATION TO CRYPTOGRAPHY

Let
Ai = {αi is a blank}

p1 = P (Ai ) =
(n− 1)N

nN
=

(
1− 1

n

)N

p2 = P (Ai1 ∩ Ai2) =
(n− 2)N

nN
=

(
1− 2

n

)N
, for i1 < i2

and in general

pk = P (Ai1 ∩ · · · ∩ Aik ) =
(
1− k

n

)N
, for i1 < · · · < ik

Ruben Zamar Department of Statistics UBC ()Stat 302 January 8, 2019 12 / 16



AT LEAST ONE BLANK

P (At least one blank) = P (A1 ∪ · · · ∪ An)

=
n

∑
k=1

(−1)k−1
 n

k

 pk
=

n

∑
k=1

(−1)k−1
 n

k

(1− k
n

)N
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ZERO BLANKS

P (Zero blanks) = P (N, n, 0) = 1− P (A1 ∪ · · · ∪ An)

= 1−
n

∑
k=1

(−1)k−1
 n

k

(1− k
n

)N

= 1+
n

∑
k=1

(−1)k
 n

k

(1− k
n

)N

=
n

∑
k=0

(−1)k
 n

k

(1− k
n

)N
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TEXT HAS b BLANKS

It can be shown that, for all b = 0, 1, ..., n− 1

P (N, n, b) =

 n

b

(1− b
n

)N
P (N, n− b, 0)

=

 n

b

(1− b
n

)N n−b
∑
k=0

(−1)k
 n− b

k

(1− k
n− b

)N
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NUMERICAL CALCULATIONS

Suppose (for simplicity) that the Alphabet A has n = 30 symbols and the
text W has length N = 90. In this case,

b P (N, n, b)
0 0.20645
1 0.36527
2 0.27489
3 0.11637
4 0.03089
5 0.00543
6 0.00065
7 0.00005
8 0.00000

N = Text length = 90
n = Alphabet size = 30
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