Counting 2

Ruben Zamar
Department of Statistics UBC

January 8, 2019

BASIC PRINCIPLE OF COUNTING

- Experiment has k steps

Step 1 has n_{1} possible outcomes Step 2 has n_{2} possible outcomes

Step k has n_{k} possible outcomes

- Number of possible outcomes for the experiment

$$
n_{1} \times n_{2} \times \cdots \times n_{k}
$$

PERMUTATION

- $g:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ one-to-one and onto

Example: let $n=4$

1	\rightarrow	3
2	\rightarrow	4
3	\rightarrow	1
4	\rightarrow	2

- How many permutations can be defined?

$$
n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1=n!
$$

Combinations

- Split a set of n objects into 2 subsets of sizes m and $n-m$, respectively.

Ex: $\{1,2,3,4,5\}$ is split into two subsets $\{1,3,5\}$ and $\{2,4\}$ In this case $n=5$ and $m=3$

How many splits (combinations) can be formed?

$1,2,3$	4,5
$1,2,4$	3,5
$1,2,5$	3,4
$1,3,4$	2,5
$1,3,5$	2,4

$1,4,5$	2,3
$2,3,4$	1,5
$2,3,5$	1,4
$2,4,5$	1,3
$3,4,5$	1,2

In this case there are $\mathbf{1 0}$ possible splits.

PERMUTATIONS GENERATE SPLITS

Each permutation produces an split: the first m and the last $m-n$

$$
\overbrace{i_{1}, i_{2}, i_{3}}^{m=3}, \overbrace{i_{4}, i_{5}}^{n-m=2}
$$

Example:

$$
\overbrace{1,5,4}, \overbrace{2,3}
$$

But there is duplication, for example: $\overbrace{5,4,1}, \overbrace{3,2}$

ACCOUNTING FOR DUPLICATIONS

Divide by the number of permutations in each split:

For example

$$
{ }_{5} C_{3}=\binom{5}{3}=\frac{5!}{3!2!}=10
$$

WHAT IF THE ORDER IS IMPORTANT?

If the order is important (in the first split) we must multiply back by m !

$$
{ }_{n} P_{m}=m!\binom{n}{m}=\frac{n!}{(n-m)!}
$$

EXAMPLE: LOTTERY 6/49 (continued)

- Matching exactly x numbers and missing the other $6-x$ numbers
- Mind Experiment: Consider a box with 50 balls numbered 0 to 49 .

Six of these balls are labeled "W" (your six chosen numbers)
The remaining 44 are labeled "L" (the non chosen numbers)

- Formula:

$$
p(x)=\frac{\binom{6}{x}\binom{44}{6-x}}{\binom{50}{6}}
$$

RESULTS

x	$p(x)$
0	0.44423
1	0.41005
2	0.12814
3	0.01667
4	0.00089
5	0.00002
6	0.00000

In fact, $p(6)=6.292989 \mathrm{e}-08$

APPLICATION TO CRYPTOGRAPHY

Let

$$
\mathcal{A}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}
$$

be a given alphabet and let W be text of length N over \mathcal{A}.

- Assume that each N-character text, W, is equally likely.
- α_{i} is a blank if α_{i} doesn't appear in W.

APPLICATION TO CRYPTOGRAPHY

(1) Calculate the probability that the text W contains at least one blank.
(2) Calculate the probability [denoted $P(N, n, 0)$] that the text W contains no blanks.
(3) Calculate the probability [denoted $P(N, n, b)$] that the text W contains b blanks, $b=1, \ldots, n-1$.

APPLICATION TO CRYPTOGRAPHY

Let

$$
\begin{gathered}
A_{i}=\left\{\alpha_{i} \text { is a blank }\right\} \\
p_{1}=P\left(A_{i}\right)=\frac{(n-1)^{N}}{n^{N}}=\left(1-\frac{1}{n}\right)^{N} \\
p_{2}=P\left(A_{i_{1}} \cap A_{i_{2}}\right)=\frac{(n-2)^{N}}{n^{N}}=\left(1-\frac{2}{n}\right)^{N}, \text { for } i_{1}<i_{2}
\end{gathered}
$$

and in general

$$
p_{k}=P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=\left(1-\frac{k}{n}\right)^{N}, \text { for } i_{1}<\cdots<i_{k}
$$

AT LEAST ONE BLANK

$P($ At least one blank $)=P\left(A_{1} \cup \cdots \cup A_{n}\right)$

$$
\begin{aligned}
& =\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} p_{k} \\
& =\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}\left(1-\frac{k}{n}\right)^{N}
\end{aligned}
$$

ZERO BLANKS

$$
\begin{aligned}
P(\text { Zero blanks }) & =P(N, n, 0)=1-P\left(A_{1} \cup \cdots \cup A_{n}\right) \\
& =1-\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}\left(1-\frac{k}{n}\right)^{N} \\
& =1+\sum_{k=1}^{n}(-1)^{k}\binom{n}{k}\left(1-\frac{k}{n}\right)^{N} \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(1-\frac{k}{n}\right)^{N}
\end{aligned}
$$

TEXT HAS b BLANKS

It can be shown that, for all $b=0,1, \ldots, n-1$

$$
\begin{aligned}
P(N, n, b) & =\binom{n}{b}\left(1-\frac{b}{n}\right)^{N} P(N, n-b, 0) \\
& =\binom{n}{b}\left(1-\frac{b}{n}\right)^{N} \sum_{k=0}^{n-b}(-1)^{k}\binom{n-b}{k}\left(1-\frac{k}{n-b}\right)^{N}
\end{aligned}
$$

NUMERICAL CALCULATIONS

Suppose (for simplicity) that the Alphabet \mathcal{A} has $n=30$ symbols and the text W has length $N=90$. In this case,

b	$P(N, n, b)$
0	0.20645
1	0.36527
2	0.27489
3	0.11637
4	0.03089
5	0.00543
6	0.00065
7	0.00005
8	0.00000

$\mathrm{N}=$ Text length $=90$
$\mathrm{n}=$ Alphabet size $=30$

