Definition of Probability

Ruben Zamar
Department of Statistics UBC

January 8, 2019

RANDOM EXPERIMENT

- The outcome cannot be determined beforehand
- Examples
- number of shots needed to decide a tennis point
- yield of a chemical process
- max-wind speed in Vancouver in 2015
- your final grade in STAT 302

SAMPLE SPACE

- List of all the possible outcomes of a random experiment
- Denoted by Ω
- Examples
- number of shots: $\Omega=\{1,2,3,4, \ldots\}$
- yield of a chemical process: $\Omega=[0,100]$ in percentage
- max-wind speed: $\Omega=[0, \infty)$ [or $[0,1000$) in $\mathrm{km} /$ hour]
- final grade: $\Omega=[0,100]$

EVENT

- Subsets of Ω are called events
- Denoted by A, B, C, etc.
- A occurs if $\omega \in A$
- Examples
- $A=\{$ at most 3 shots $\}=\{1,2,3\}$
- $B=\{$ between 20 and 40 percent $\}=[20,40]$
- $C=\{$ over $100 \mathrm{~km} /$ hour $\}=[100, \infty)$
- $D=\{$ an ace $\}=[80,100]$

Boolean algebra (set operations)

Union: $A \cup B$,

Intersection: $A \cap B$,

Complement: A^{c},

Difference: $B \backslash A=B \cap A^{c}$

De Morgan's Laws

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

Commutative, Associative and Distributive Properties

$$
A \cup B=B \cup A \quad \text { (commutative) }
$$

$$
\begin{array}{lll}
A \cup B \cup C=(A \cup B) \cup C=A \cup(B \cup C) & \text { (associative) } \\
A \cap B \cap C=(A \cap B) \cap C=A \cap(B \cap C) & \text { (associative) }
\end{array}
$$

$(A \cup B) \cap C=(A \cap C) \cup(B \cap C) \quad$ (distributive)
$(A \cap B) \cup C=(A \cup C) \cap(B \cup C) \quad$ (distributive)

Domain for the Probability Function

- Denoted by \mathcal{F}
- A collection of events
- Required properties for \mathcal{F}
- ϕ and $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Longrightarrow A^{c} \in \mathcal{F}$
- $A_{n} \in \mathcal{F} \Longrightarrow \cup_{n=1}^{\infty} A_{n} \in \mathcal{F}$
- Examples
- $\mathcal{F}=\{\phi, \Omega\}$
- $\mathcal{F}=\left\{A, A^{c}, \phi, \Omega\right\}$
- all subsets of $\Omega: \mathcal{F}=2^{\Omega} \quad$ (this will be used in this course)

DISCUSSION

- $A_{n} \in \mathcal{F} \Longrightarrow \cap_{n=1}^{\infty} A_{n} \in \mathcal{F}$ (show this)
- If \mathcal{F}_{α} are prob domains then $\mathcal{F}=\cap_{\alpha} \mathcal{F}_{\alpha}$ is also a prob domain (why?)
- $\mathcal{C} \subset 2^{\Omega}, \quad \mathcal{F}(\mathcal{C})=\cap_{\mathcal{C} \subset \mathcal{F}_{\alpha}} \mathcal{F}_{\alpha}$
- Borel sets $=\mathcal{F}$ (open intervals)

PROBABILITY FUNCTION

$P: 2^{\Omega} \rightarrow[0,1]$ satisfying:
(1) $P(\Omega)=1$
(2) $P(A) \geq 0$, for all $A \in \mathcal{F}$
(3) A_{n} disjoint $\Longrightarrow P\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$

Probability space: (Ω, P)

SIMPLE RESULT

$P\left(A^{c}\right)=1-P(A)$
Proof:

$$
\begin{gathered}
A^{c} \cup A=\Omega \\
\Longrightarrow \quad P\left(A^{c}\right)+P(A)=P(\Omega)=1 \\
P\left(A^{c}\right)=1-P(A)
\end{gathered}
$$

SIMPLE RESULT

$A \subset B \Longrightarrow P(A) \leq P(B)$
Proof:

$$
\begin{gathered}
A \cup A^{c}=\Omega \\
B \cap\left(A \cup A^{c}\right)=B \cap \Omega=B \\
(B \cap A) \cup\left(B \cap A^{c}\right)=A \cup\left(B \cap A^{c}\right)=B \\
P\left[A \cup\left(B \cap A^{c}\right)\right]=P(A)+P\left(B \cap A^{c}\right)=P(B) \\
\Longrightarrow P(A) \leq P(B)
\end{gathered}
$$

SIMPLE RESULT

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
Proof:

$$
\begin{gather*}
A \cup B=A \cup\left(B \cap A^{c}\right) \\
\Longrightarrow P(A \cup B)=P(A)+P\left(B \cap A^{c}\right) \tag{1}
\end{gather*}
$$

On the other hand,

$$
\begin{align*}
& P(B)=P\left(B \cap A^{c}\right)+P(B \cap A) \\
\Longrightarrow & P\left(B \cap A^{c}\right)=P(B)-P(B \cap A)
\end{align*}
$$

From (1) and (2)

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

INCLUSION-EXCLUSION FORMULA

The formula can be extended for the union of $m \geq 2$ sets. For instance,

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup A_{3}\right) & =P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right) \quad \text { inclusion } \\
& -P\left(A_{1} \cap A_{2}\right)-P\left(A_{1} \cap A_{3}\right)-P\left(A_{2} \cap A_{3}\right) \quad \text { exclusion } \\
& +P\left(A_{1} \cap A_{2} \cap A_{3}\right) \quad \text { inclusion }
\end{aligned}
$$

INCLUSION-EXCLUSION FORMULA

More generally,

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} A_{i}\right) & =\sum_{1 \leq i \leq n} P\left(A_{i}\right) \quad \text { inclusion } \\
& -\sum_{1 \leq i<j \leq n} P\left(A_{i} \cap A_{j}\right) \quad \text { exclusion } \\
& +\sum_{1 \leq i<j<k \leq n} P\left(A_{i} \cap A_{j} \cap A_{k}\right) \quad \text { inclusion } \\
& -\sum_{1 \leq i<j<k<l \leq n} P\left(A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right) \quad \text { exclusion } \\
& \vdots \\
& +(-1)^{n-1} P\left(A_{1} \cap A_{2} \cdots \cap A_{n}\right)
\end{aligned}
$$

INCLUSION-EXCLUSION FORMULA

More useful when there is "symmetry":

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=P\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)=p_{k}
$$

for all

$$
1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n
$$

In this case:

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} p_{k}
$$

BOOLE's INEQUALITY

$$
P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

- If the events are disjoint, then the inequality becomes an equality.
- Easy to prove for the case of $n=2$
- For general n use induction

EQUALLY LIKELY OUTCOMES

$$
\begin{aligned}
P(A) & =\frac{\text { number of outcomes in } A}{\text { number of outcomes in } \Omega}=\frac{\# A}{\# \Omega} \\
& =\frac{\text { "favorable" outcomes }}{\text { possibles outcomes }}
\end{aligned}
$$

Combinatorial theory ...

