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Karhunen-Loève Decomposition of a GP

2 IMSPE-optimal Designs

Application of the K-L Decomposition

Approximate Minimum IMSPE Designs

Adaptive Designs

Extending to Models with Unknown Regression Parameters

3 Other Optimality Criteria

4 Concluding Remarks

Dynamic Computer Experiments, 2014 2/38



Introduction

Outline

1 Introduction

Gaussian Process Regression
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Introduction Gaussian Process Regression

The Gaussian Process Model

� Suppose that we observe y = [y (x1) , . . . , y (xn)]T , where

y (x) = f (x)T β + Z (x) .

� Here f (x) is a vector of regression functions evaluated at x and Z (x) is a

zero mean stationary Gaussian process with marginal variance σ2 and

correlation function R(·; θ) .

� An extremely popular modeling approach in spatial statistics, geostatistics,

computer experiments and more.

� Sometimes measurement error (i.e. a nugget term) is added.
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Introduction Gaussian Process Regression

The Gaussian Process Model (cont.)

Notations:

R ij = R(xi − xj ) - the correlation matrix at the design D = {x1, . . . , xn}.

y =
[
y (x1), . . . , y (xn)

]T
- the vecor of observatios at D.

r (x) =
[
R(x− x1), . . . ,R(x− xn)

]T
- the vector of correlations at site x.

F ij = fj (x i ) - the design matrix at D.
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Introduction Gaussian Process Regression

The Gaussian Process Model (cont.)

Universal Kriging

Assuming π (β) ∝ 1

ŷ (x) = E
{

y (x)
∣∣y} = f T (x) β̂ + rT (x) R−1

(
y − F β̂

)
, (1)

is the minimizer of the mean squared prediction error (MSPE), which will then be

E
[{

ŷ (x)− y (x)
}2
∣∣∣y] = var

{
y (x)

∣∣y}

= σ2

1−
[
f T (x) , rT (x)

] [ 0 F T

F R

]−1 [
f (x)

r (x)

] .

• If the assumption of Gaussianity is dropped, (1) would still be the BLUP for

y (x).
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Introduction Karhunen-Loève Decomposition of a GP

Spectral Decomposition of a GP

Mercer’s Theorem

If X is compact and R (the covariance function of a GP) is continuous in X 2,

then R(x , y) =
∞∑
i=1

λiϕi (x)ϕi (y) ,

where the ϕi ’s and the λi ’s are the solutions of the homogeneuos Fredholm

integral equation of the second kind∫
X

R(x , y)ϕi (y)dy = λiϕi (x)

and ∫
X
ϕi (x)ϕj (x)dx = δij .
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Introduction Karhunen-Loève Decomposition of a GP

Spectral Decomposition of a GP (cont.)

The Karhunen-Loève Decomposition

Under the aforementioned conditions

Z (x) =
∞∑
i=1

αiϕi (x) (in the MSE sense),

where the αi ’s are independent N (0, λi ) random variables.

• The best approximation (in the MSE sense) of Z (x) is the truncated series

in which the eigenvalues are arranged in decreasing order.

• For piecewise analytic R(x , y), λk ≤ c1 exp
(
−c2k1/d

)
for some constants

c1 and c2 (Frauenfelder et al. 2005).

• Numerical solutions involve Galerkin-type methods.
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Introduction Karhunen-Loève Decomposition of a GP

A Worked Example

R(x ,w ) = exp
{
− (x1 − w1)2 − 2 (x2 − w2)2} ,

Eigenvalues vs. Index (log scale)
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Introduction Karhunen-Loève Decomposition of a GP

A Worked Example (cont.)
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Introduction Karhunen-Loève Decomposition of a GP

A Worked Example (cont.)

A single realization based on the first 17 K-L terms (≈ 99.5% of the process’

energy)
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IMSPE-optimal Designs

Minimum IMSPE Designs

Integrated Mean Squared Prediction Error

Sacks et al. (1989b) suggested a suitable design for computer experiments

should minimize

J
(
D, ŷ

)
σ2 =

1
σ2

∫
X
E
[{

ŷ (x)− y (x)
}2
∣∣∣y] dx

= vol (X )− tr


[

0 F T

F R

]−1 ∫
X

[
f (x) f T (x) f (x) rT (x)

r (x) f T (x) r (x) rT (x)

]
dx


where vol(X ) is the volume of X .
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IMSPE-optimal Designs

Application of the K-L Decomposition

Consider the standard Gaussian process

y (x) = f (x)T β + Z (x) ,

where β is (for now) a known vector.

• The Kriging predictor would now be ŷ (x) = f (x)T β + rT (x) R−1 (y − Fβ) .

Proposition

For any compact X and continuous covariance kernel R,

J
(
D, ŷ

)
σ2 = vol(X )−

∞∑
k=1

λ2
kφ

T
k R−1φk , (2)

where φp = [ϕp(x1), . . . , ϕp(xn)]T .
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IMSPE-optimal Designs

Application of the K-L Decomposition (cont.)

Theorem

1. For any design D = {x1, . . . , xn},

J
(
D, ŷ

)
≥ σ2

Z

∞∑
k=n+1

λk (3)

2. The lower bound (3) will be achieved if D satisfies

λkφ
T
k R−1φk =

 1 k ≤ n

0 k > n

3. If such an ideal D exists, the prediction ŷ (x) at any x ∈ X would be

identical to the prediction based on the finite dimensional Bayesian linear

regression model y (x) = α1ϕ1 (x) + · · · + αnϕn (x) where αj ∼ N
(
0 , λj

)
are

independent.
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IMSPE-optimal Designs

Application of the K-L Decomposition (cont.)

� By definition, IMSPE-optimal designs are prediction-oriented. What the

Theorem tells us is that in some sense, they are also useful for variable

selection (w.r.t the K-L basis functions).

� In reality, such ideal designs do not exist - but IMSPE-optimal designs get

pretty close:
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IMSPE-optimal Designs Approximate Minimum IMSPE Designs

Approximate Minimum IMSPE Designs

Approximate IMSPE

J̃M

(
D, ŷ

)
σ2 = vol(X )−

M∑
k=1

λ2
kφ

T
k R−1φk = vol(X )− tr

{
Λ2ΦTR−1Φ

}
,

where

Λ = diag (λ1, . . . , λM ) and Φij = ϕj (x i ) , 1 ≤ i ≤ n , 1 ≤ j ≤ M .

Approximate Minimum IMSPE Designs

D∗ = argmin
D⊂X

J̃M

(
D, ŷ

)
= argmax
D⊂X

tr
{
Λ2ΦTR−1Φ

}
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IMSPE-optimal Designs Approximate Minimum IMSPE Designs

A Worked Example (cont.)

Size 7, 15 and 25 approximate Minimum IMSPE designs for

R(x ,w ) = exp
{
− (x1 − w1)2 − 2 (x2 − w2)2}
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IMSPE-optimal Designs Approximate Minimum IMSPE Designs

Controlling the Relative Truncation Error

Proposition

Under some conditions (which are easily met),

rM =

∞∑
k=M+1

λ2
kφ

T
k R−1φk

∞∑
j=1

λ2
j φ

T
j R−1φj

≤

∞∑
k=M+1

λk

∞∑
j=1

λj

.

� By conserving enough of the process’ energy, we are guaranteed to have a

design as close to optimal as we wish.
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IMSPE-optimal Designs Approximate Minimum IMSPE Designs

Controlling the Relative Truncation Error (cont.)

Relative truncation error vs. sample size for M = 17 (⇐⇒ 0.492% energy loss):
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IMSPE-optimal Designs Adaptive Designs

Adaptive Designs

• Suppose now that we have the opportunity (or we are forced) to run a

multi-stage experiment: n1 runs at stage 1, n2 runs at stage 2 and so on.

• We can use that to learn/re-estimate the essential parameters and plug-in

the new estimates, to hopefully improve the design from one stage to

another.

• Such designs are called “adaptive” or “batch-sequential” designs.
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IMSPE-optimal Designs Adaptive Designs

Adaptive Designs (cont.)

Denote

Raug =

 Rnew
n2 × n2

Rcross
n2 × n1

R
>cross
n1 × n2

Rold
n1 × n1

 ,

where Raug, Rnew, Rold and Rcross are the augmented correlation matrix, the

matrix of correlations within the new inputs, the matrix of correlations within the

original design and the cross correlation matrix, and

Φaug =

 Φnew
n2 × M

Φold
n1 × M

 .

• Parameters may be re-estimated in between batches.
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IMSPE-optimal Designs Adaptive Designs

Adaptive Designs (cont.)

Using basic block matrix properties, we look to maximize

tr
{
Λ2ΦT

augR−1
augΦaug

}
=

= tr

[
Λ2 {(ΦT

new −ΦT
oldR−1

old RT
cross

)
Q−1

1 Φnew +
(
ΦT

old −ΦT
newR−1

newRcross
)

Q−1
2 Φold

}]
,

where

Q1 = Rnew − RT
crossR

−1
old Rcross and Q2 = Rold − RcrossR−1

newRT
cross ,

and Rold and Φold remain unchanged.
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IMSPE-optimal Designs Adaptive Designs

Adaptive Designs (cont.)

Adding 7 New Runs to an Existing 8 Run Design (λ = 0.1):
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IMSPE-optimal Designs Adaptive Designs

Adaptive Designs (cont.)
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IMSPE-optimal Designs Extending to Models with Unknown Regression Parameters

Approximate IMSPE Criterion for the Universal Kriging Model

Expanding the covariance kernel, using Mercer’s Theorem, and truncating after

the first M terms yields

H̃M

(
D, ŷ

)
=J̃M

(
D, ŷ

)
+tr

{(
F TR−1F

)−1
[∫
X

f (x) f T (x) dx − 2AT
∫
X
φ (x) f T (x) dx + ATA

]}
,

(4)

where J̃M is the criterion previously derived for the simple Kriging model,

A = ΛΦTR−1F and φ (x) = [ϕ1 (x) , . . . , ϕM (x)]T .
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IMSPE-optimal Designs Extending to Models with Unknown Regression Parameters

Approximate IMSPE Criterion for the Universal Kriging Model

Expression (4) is somewhat simplified by substituting f (x) = 1 and F = 1n to

H̃M

(
D, ŷ

)
=J̃M

(
D, ŷ

)
+

1
1T

nR−11n

{
vol (X )− 2aTγ + aTa

}
,

where

a = ΛΦTR−11n and γ =
[∫
X
ϕ1(x)dx , . . . ,

∫
X
ϕM (x)dx

]T

.

• The vector of integrals γ only needs to be evaluated once.

• Almost identical designs to those obtained for the simple Kriging model, for

a reasonably large n.

Dynamic Computer Experiments, 2014 26/38



IMSPE-optimal Designs Extending to Models with Unknown Regression Parameters

With and Without Estimating the Intercept
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IMSPE-optimal Designs Extending to Models with Unknown Regression Parameters

With and Without Estimating the Intercept (cont.)

Deviation from the optimum vs. sample size
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Other Optimality Criteria

Bayesian A-optimal Designs

• In classical DOE, a design is called A-optimal if it minimizes tr
{

var
(
θ̂
)}

,

where θ̂ is the vector of estimators for the model parameters.

• For our model

y (x) = f (x)T β + Z (x) = f (x)T β +
∞∑
k=1

αkϕk (x) , αk ∼ N (0, λi ) ,

we may consider the Bayesian A-optimality criterion

Q
(
D, ŷ

)
=
∞∑
k=1

var
{
αk

∣∣y} .

• When β is a known vector, the IMSPE and the A-optimality criteria coincide.
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Other Optimality Criteria

Bayesian A-optimal Designs (cont.)

Proposition

If π (β) ∝ 1,

Q
(
D, ŷ

)
= vol (X )− tr


 0 F T

F R

−1 ∫
X

 0 0

0 r (x) rT (x)

 dx

 .

(and hence we don’t even need to derive the Mercer expansion)
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Other Optimality Criteria

Bayesian D-optimal Designs

• In classical DOE, a design is called D-optimal if it minimizes the

determinant of var
(
θ̂
)

(typically the inverse Fisher information).

• In our framework, an approximate Bayesian D-optimal design would be

D∗ = argmin
D

det
(

var
{
α1, . . . , αM

∣∣y})
Where

var
{
α1, . . . , αM

∣∣y} = Λ−ΛΦT
[
R−1 − R−1F

(
F TR−1F

)−1
F TR−1

]
ΦΛ .
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Concluding Remarks
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Concluding Remarks

Few comments before we go

• If Z (x) is a zero mean non-Gaussian, weakly-stationary process with the

same correlation structure

- the Kriging predictor will no longer be the posterior mean, but will still

be the BLUP.

- The MSPE will no longer be the posterior variance, but all the results

still hold.

• Inclusion of measurement error (i.e. Nugget Term)

y (x) = f (x)T β + Z (x) + ε (x) , ε ∼ N
(
0, τ 2I

)
, λ = τ 2/σ2

will simply result in replacing R with R + λI everywhere, but the theory will

cease to apply.

- Great computational benefits for small values of λ.
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Concluding Remarks

Thank you!
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