Properties of the Normal and Multivariate Normal Distributions

By Students of the Course, edited by Will Welch

September 28, 2014

"Normal" and "Gaussian" may be used interchangeably.

1 Univariate Normal (Gaussian) Distribution

Let Y be a random variable with mean (expectation) μ and variance $\sigma^2 > 0$. Y is also normal, and its distribution is denoted by $N(\mu, \sigma^2)$.

In the following a and b denote constants, i.e., they are not random variables.

1. **Density.** The normal distribution $N(\mu, \sigma^2)$ has density

$$f_Y(y \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(y-\mu)^2\right) \quad (-\infty < y < \infty).$$

- 2. Shape. The distribution is unimodal and the mode equals the mean equals the median.
- 3. Exponential family. The distribution belongs to the exponential family.
- 4. Moment generating function. The N (μ, σ^2) distribution has MGF $M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$, where t is real-valued.
- 5. Characteristic function. The N (μ, σ^2) distribution has CF $\psi(t) = \exp\left(i\mu t \frac{1}{2}\sigma^2 t^2\right)$, where t is real-valued.
- 6. Linear transformation.
 - (a) The distribution of a + bY is $N(a + \mu, b^2\sigma^2)$.
 - (b) The distribution of $(Y \mu)/\sigma$ is N (0, 1), the standard normal.
- 7. Smoothness. The density is infinitely differentiable.

2 Multivariate Normal (Gaussian) Distribution

We have a vector of *n* random variables, $\mathbf{Y} = (Y_1, \dots, Y_n)^T$. Denote the mean (expectation) of Y_i by μ_i , and let $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$ be the $n \times 1$ vector of means. Similarly, $\boldsymbol{\Sigma}$ is the $n \times n$ matrix of covariances. Furthermore, the random variables in \mathbf{Y} have a joint multivariate normal distribution, denoted by $\mathsf{MN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. We will assume the distribution is not degenerate, i.e., $\boldsymbol{\Sigma}$ is full rank, invertible, and hence positive definite.

The vector \mathbf{a} denotes a vector of constants, i.e., not random variables, in the following. Similarly, \mathbf{B} is a matrix of constants.

1. Joint density. The multivariate normal distribution $MN(\mu, \Sigma)$ has joint density

$$f_{\mathbf{Y}}(\mathbf{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2}} \frac{1}{\det^{1/2}(\boldsymbol{\Sigma})} \exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{y} - \boldsymbol{\mu})\right) \quad (\mathbf{y} \in \mathcal{R}^n).$$

- 2. Shape. The contours of the joint distribution are *n*-dimensional ellipsoids.
- 3. Mean and covariance specify the distribution. The $MN(\mu, \Sigma)$ joint distribution is specified by μ and Σ only.
- 4. Moment generating function. The MN $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution has MGF $M(\mathbf{t}) = \exp\left(\boldsymbol{\mu}^T \mathbf{t} + \frac{1}{2}\mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}\right)$, where **t** is a real $n \times 1$ vector.
- 5. Characteristic function. The MN $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution has CF $\psi(\mathbf{t}) = \exp\left(i\boldsymbol{\mu}^T\mathbf{t} \frac{1}{2}\mathbf{t}^T\boldsymbol{\Sigma}\mathbf{t}\right)$, where **t** is a real $n \times 1$ vector.
- 6. Linear combinations.
 - (a) Let **a** be $n \times 1$. **Y** is $MN(\mu, \Sigma)$ if and only if any linear combination $\mathbf{a}^T \mathbf{Y}$ has a (univariate) normal distribution.
 - (b) Let **a** be $n \times 1$. The distribution of $\mathbf{a}^T \mathbf{Y}$ is $\mathsf{N}(\mathbf{a}^T \mu, \mathbf{a}^T \Sigma \mathbf{a})$.
 - (c) Let **a** be $m \times 1$ and **B** be $m \times n$. The distribution of the *m* random variables $\mathbf{a} + \mathbf{B}\mathbf{Y}$ is $\mathsf{MN}(\mathbf{a} + \mathbf{B}\mu, \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^T)$.
 - (d) Let **Z** be *n* independent standard normal random variables. Then $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{LZ}$, with $\mathbf{LL}^T = \boldsymbol{\Sigma}$, has a MN ($\boldsymbol{\mu}, \boldsymbol{\Sigma}$) distribution.
 - (e) Again let $\mathbf{L}\mathbf{L}^T = \boldsymbol{\Sigma}$. Then $\mathbf{Z} = \mathbf{L}^{-1}(\mathbf{Y} \boldsymbol{\mu})$ has a $\mathsf{MN}(\mathbf{0}, \mathbf{I})$ distribution.

7. Independence.

- (a) Y_i and Y_j are independent if and only if $\Sigma_{ij} = 0$.
- (b) Pairwise independence of Y_i and Y_j for all $i \neq j$ implies complete independence.

3 Marginal and Conditional Multivariate Normal (Gaussian) Distributions

Let the $n \times 1$ vector \mathbf{Y} with a $\mathsf{MN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution be partitioned as $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2)$, where \mathbf{Y}_1 and \mathbf{Y}_2 are $m \times 1$ and $(n - m) \times 1$, respectively. Similarly, partition $\boldsymbol{\mu} = (\boldsymbol{\mu}_1, \boldsymbol{\mu}_2)$ and

$$\mathbf{\Sigma} = \left(egin{array}{cc} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight).$$

- 1. Marginal distribution. The *m*-dimensional marginal distribution of \mathbf{Y}_1 is $\mathsf{MN}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$.
- 2. Conditional distribution. The *m*-dimensional distribution of \mathbf{Y}_1 conditional on \mathbf{Y}_2 is

$$\mathsf{MN}\left(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{Y}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\right).$$

3. Independence. \mathbf{Y}_1 and \mathbf{Y}_2 are independent if and only if $\Sigma_{12} = \mathbf{0}$.