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Why do we need it?

• Suppose we wish to minimize the outputs of a deterministic 
computer simulator.

푓 푥 = sin 2휋푥 + 푥 − 1
for 푥 ∈ (0.5, 2.5)

Case I: Evaluation of 푓 푥 is inexpensive

Method 1: use gradient based approach 

Method 2: use stochastic algorithm (genetic algorithm, simulated annealing, 
particle swarm optimization, etc)

.



Why do we need it?

• Case II: Evaluation of 푓 푥 is expensive
– budget is fixed (say) 푁 = 20

Naïve approach:
• Use a 20-point maximinLHD

• Fit a GP model 푓(푥)
• Estimate the minimum using 푓(푥)

Is this a good method?
• No – why? We are wasting resources in uninteresting region
.



Possible alternative?

Sequential Designs
or

Adaptive Designs



Sequential Designs

• Particularly useful when the objective is to estimate a 
pre-specified process feature

– Global minimum, maximum, local optima
– Change points 
– Contours, percentiles, confidence intervals
– Probability of failure in reliability
– Overall surface



What is a sequential design?

Design scheme
1) Choose 푛 (< 푁) points. Set 푛 = 푛 .

2) Fit a statistical surrogate model using      
{(푥 ,푦(푥 )), 푖 = 1, … ,푛}.

1) Choose a new trial 푥 .

2) Update the data: 푥 = 푥 ,푦 = 푓(푥 ).

3) Go to Step 2 if 푛 < 푁.

.



Illustration
• Started with 푛 = 7 points & added 13 new points



Details of Design Scheme – 1

1) Choose 푛 (< 푁) points. Set 푛 = 푛 .
2) Fit a statistical surrogate model using 

{ 푥 ,푦 푥 , 푖 = 1, . . . ,푛}.
3) Choose a new trial 푥 .
4) Update the data: 푥 = 푥 ,푦 = 푓(푥 ).
5) Go to Step 2 if 푛 < 푁.

Important issues:
• How do we choose 푛 points?

– Objective: understanding of overall surface
– Popular choices: Space-filling designs 

• Distance based (maximin, uniform, etc.)
• Space-filling LHDs
• I-optimal, D-optimal designs 

.



Details of Design Scheme – 1

1) Choose 푛 (< 푁) points. Set 푛 = 푛 .
2) Fit a statistical surrogate model using 

{ 푥 , 푦 푥 , 푖 = 1, . . . , 푛}.
3) Choose a new trial 푥 .
4) Update the data: 푥 = 푥 , 푦 = 푓(푥 ).
5) Go to Step 2 if 푛 < 푁.

Important issues:
• What is the right choice of 푛 ?

– My experience – depends on the complexity of 푓.
– Even for 푑 = 1, sometimes 푛 = 5 is enough, whereas, in some cases 15

points are not sufficient for 푛 .
– A few suggestion: 푛 = 10푑 or 푛 ≈ 푁/3 or 푛 ≈ 푁/4.
– 푛 should NOT be too small or too big

.



Details of Design Scheme – 1
• What is the right choice of 푛 ?
• Case 1: 푛 = 3,푁 = 20

k=1 k=2 after k=17
 You get stuck in local optima. So, 푛 too small is not a good idea.



Details of Design Scheme – 1
• What is the right choice of 푛 ?
• Case 2: 푛 = 18,푁 = 20

k=1 k=2 after k=2
 You still need to improve. So, 푛 too large is also a waste of resources.



Details of Design Scheme – 2
1) Choose 푛 (< 푁) points. Set 푛 = 푛 .
2) Fit a statistical surrogate model using                                                            

{ 푥 ,푦 푥 , 푖 = 1, . . . ,푛}.
3) Choose a new trial 푥 .
4) Update the data: 푥 = 푥 , 푦 = 푓(푥 ).
5) Go to Step 2 if 푛 < 푁.

• Important issues:
– Choice of surrogate model 

• Deterministic stationary process: 푦 푥 = 휇 + 푍(푥)
• Noisy stationary process:		푦 푥 = 휇 + 푍 푥 + 휀
• Non-stationary  process : TGP / BART / etc.

• The sequential design scheme is not restricted to only GP model



Details of Design Scheme – 3 
1) Choose 푛 (< 푁) points. Set 푛 = 푛 .
2) Fit a statistical surrogate model using                                                            

{ 푥 ,푦 푥 , 푖 = 1, . . . ,푛}.
3) Choose a new trial 푥 .
4) Update the data: 푥 = 푥 ,푦 = 푓(푥 ).
5) Go to Step 2 if 푛 < 푁.

• Important questions:
– How do we choose the new trial locations?

– Do we have to choose only one trial at-a-time?
• Complete sequential vs batch sequential 



How do we choose a new trial?

1) Randomly – easy, but perhaps not very efficient

2) Based on a specific criterion
• Popular choice – Expected Improvement (EI)
 Easy to develop
 Depends on the overall objective (overall surface fit, process 

optimization, estimating contours, percentiles, probability of 
failure, etc.)

 See Bingham, Ranjan and Welch (2014) for a review.

• Is this the only criterion? 
– There are plenty more that can be used, but, the EI-class is huge.



Expected Improvement
• 퐸퐼(푥) is defined over the entire input space 푥 ∈ 	 0,1

• The choice of (푛 + 1)-th follow-up trial location is 
푥 = argmax

∈ ,
퐸퐼(푥)

• Ideally, 퐸퐼(푥) is the expectation of 퐼(푥) over the predictive distribution
퐸{퐼 푥 } = ∫ 퐼 푥 푓(푦|푥)푑푦

– i.e., 퐸퐼 푥 = 퐸{퐼 푥 }
– In GP model, 푦 푥 ∼ 푁 푦 푥 , 푠 푥 . 

• Improvement = negative loss (as in risk = expected loss)
퐼 푥 = ℎ 푥, ;푦( );휓 (푦) 	

휓 (푦) represents the feature of interest (e.g., min, max, contour, etc.)



Expected Improvement

• In most cases, an 퐸퐼 – criterion is
– Easy to construct (Is it a good news?)
– It is a function of both 

• 휓 (푦) : the feature of interest
• the prediction uncertainty introduced via ∫∗푓(푦|푥)푑푦



Expected Improvement

• In most cases, an 퐸퐼 – criterion is
– Easy to construct (Is it a good news?)
– It is a function of both 

• 휓 (푦) : the feature of interest
• the prediction uncertainty introduced via ∫∗푓(푦|푥)푑푦

• Example: interested in global minimum (Jones, Schonlau and Welch 1998)
– Deterministic stationary process
– GP model

퐼 푥 = max 푦 	− 푦 푥 , 0

퐸 퐼 푥 = 푠 푥 휙 푢 + 푦 − 푦 푥 Φ 푢 , where 푢 = 푦 − 푦 푥 /푠(푥)



EI – Illustration (Jones et al.)
• Started with 푛 = 7 points & added 13 new points

• 퐸 퐼 푥 = 푠 푥 휙 푢 (supports global search – exploration)

						+ 푦 − 푦 푥 Φ 푢 (encourages local search – exploitation)

– Facilitates a balance between global and local search



EI - construction
• Easy to construct – a few examples for process minimization:

• Schonlau, Welch and Jones (1998) – for deterministic stationary process
퐼 푥 = max (푦 	−	푦 푥 ) , 0 for 푔 = 1,2, …

• Sobester, Leary and Keane (2005) – for deterministic stationary process
퐸 퐼 푥 = 푤 ∗ 푠 푥 휙 푢 + 1− 푤 ∗ 푦 − 푦 푥 Φ 푢

• Ranjan (2013) – for noisy stationary process (GP-based model)
퐼 푥 = max 	(푞 	−푄 푥 ) , 0 for 푔 = 1,2, …

Where 푄(푥) 	= 	푦(푥)	– 	1.96 ∗ 푠(푥), and 푞 = min	{푄(푥 ), 푖 = 1, … ,푛}

• Chipman, Ranjan and Wang (2012) – for deterministic non-stationary process (BART)
퐼 푥 = max (푦 	−	푦 푥 ) , 0 for 푔 = 1,2, …

(the expectation was taken over posterior realizations)

.



EI – Illustration (noisy)
• Ranjan (2013) – for noisy stationary process (GP-based model, 푔 = 1)



EI – Illustration (non-stationary)
• Chipman, Ranjan and Wang (2012) – for deterministic non-stationary process  using 

BART (푛 = 10,푁 = 25)

We used  퐼 푥 = max 	(푦 	−	푦(푥)) 	, 0 for 푔 = 1

Perhaps, 푔 ≥ 2 would be better

• .



EI - construction
• Easy to construct – a few more examples for pre-specified features

• Ranjan, Bingham and Michailidis (2008) – for contour estimation
퐼 푥 = 휖 − min 푦 푥 − 푎 ,	휖 , where	휖(푥) = 1.96 ∗ 푠(푥)

• Roy and Notz (2013) – for percentile estimation

퐼 푥 = ϵ − min 푦 푥 − 휈̂ ,	휖 , where	푔 = 1,2, … , and	푎 = 휈̂ .

• Bichon et al. (2008) – for estimating probability of failure
퐼 푥 = 휖	 − min 푦 푥 − 푎 , 휖

• Bingham, Ranjan and welch (2013) – for multiple contours estimation
퐼 푥 = 휖 − min 푦 푥 − 푎 , 푦 푥 − 푎 , … , 푦 푥 − 푎 , 휖

.



EI – contour 
• Ranjan, Bingham and Michailidis (2008) – for contour estimation

퐼 푥 = 휖 − min 푦 푥 − 푎 ,	휖 , where	휖(푥) = 1.96 ∗ 푠(푥)

Expected improvement

퐸{퐼(푥)} 	= 휖 − 푦 − 푎 푓 푦 푥 푑푦

Fortunately, we have closed form expression
퐸 퐼 푥 = 휖 − 푦 푥 − 푎 − 푠 푥 Φ 푢 − Φ 푢

+푠 푥 푢 휙 푢 − 푢 휙 푢
+2 푦 푥 − 푎 푠 푥 (휙 푢 − 휙 푢 )

As before, the expectation over the prediction distribution facilitate a balance 
between global vs. local search.
.



EI – contour – illustration
• Ranjan, Bingham and Michailidis (2008) – for contour estimation

(푛 	= 	20 and 푁 = 40)



EI - construction

• There are numerous variations/extensions of Jones – EI
– Ginsbourger, Helbert and Carraro (2008) – Weighted EI for optimization
– Benassi, Bect and Vazquez (2011) – Student EI 
– Kleijnen, van Beers and Nieuwenhuyse (2012) – Bootstrap EI
– HenkenJohann and Kunert (2007) – optimization for multivariate response
– Huang et al. (2006) – optimization for multi-fidelity process

• IMSE, maximum MSE, average MSE criteria can also be viewed as EI for 
appropriately defined Improvement function.



EI - construction

• Lam and Notz (2008) proposed EI for overall good fit

퐼 푥 = 푦 푥 − 푦 푥
where 푦 푥 = 푦 ∗ 	such	that, 푖∗ = 푎푟푔푚푖푛	{ |푥 − 푥 | , 푖 = 1, … ,푛}

퐸 퐼 푥 = 푦 푥 − 푦 푥 + 푣푎푟 푦 푥

– Compared the performance with IMSE, max MSE, etc.

• Summary: 
– Construction of EI is not difficult 
– all you need is a loss function.



Details of Design Scheme – 3 
1) Choose 푛 (< 푁) points. Set 푛 = 푛 .
2) Fit a statistical surrogate model using                                                            

{ 푥 ,푦 푥 , 푖 = 1, . . . ,푛}.
3) Choose a new trial 푥 .
4) Update the data: 푥 = 푥 ,푦 = 푓(푥 ).
5) Go to Step 2 if 푛 < 푁.

• Important questions:
– How do we choose the new trial locations?

– Do we have to choose only one trial at-a-time?
• Complete sequential vs batch sequential 



Complete vs. Batch sequential

Batch Sequential - 푚 follow-up trials at-a-time

– Why would someone want that?

– How is it possible?
• Do we need to develop new EI criteria? Or modify the old ones?
• Does the methodology depend on the feature of interest?



Batch sequential – EI 
• Schonlau, Welch and Jones (1998) proposed Generalized Expected improvement 

퐼 푥 , … , 푥 = max 푦 − 푦 , … , 푦 − 푦 , 0

• All EI criteria can be modified to choose a batch of 푚 trials in 휒 = 0,1 	
– (Integrated Expected Improvement)

푋 = argmin
	∈	

퐸 퐼( ) 푥 푋( ),푌( ),푋 ,푌 푓 푥∗ 푑푥∗
	

∗∈

Where 푋 is the set of 푚 candidate trials in 휒 and 푌 is the prediction based on 푛 −point fit.  

– Q: Why minimize it? Why not maximize it like EI?

– Q: Can we avoid 풎 ∗ 풅 – dimensional optimization?



Details of Design Scheme – 5 
1) Choose 푛 (< 푁) points. Set 푛 = 푛 .
2) Fit a statistical surrogate model using                                                            

{ 푥 ,푦 푥 , 푖 = 1, . . . ,푛}.
3) Choose a new trial 푥 .
4) Update the data: 푥 = 푥 ,푦 = 푓(푥 ).
5) Go to Step 2 if 푛 < 푁.

• Important questions:
– Do we proceed all the way up to 푁 or stop before 푁?

• How should we build stopping criteria?
.



Potential project – 1 
• Computational advantage in refitting (already have a good guess of 휃) ??

• Ill-conditioning may arise if follow-up points start to pile-up 
(particularly in GP model without error term)

• What can we do?



Potential project – 2 
• EI optimization is often tricky (spiky, zeros) 

• Any efficient way to optimize this ?  Good news: EI- evaluation is cheap. 

• Is it really important to find the global optimum of EI?



Potential project – 3, 4, … 
• Needs attention:  EI criteria for 

– multiple contours
– change points
– local optima

• Can we develop a concept of optimal formulation for EI ?

• Integrated  EI for batch sequential designs. 

• EI criteria under noisy processes and/or non-GP processes



Real Application – 1 



Tidal power simulator – 1

• Objective: maximize the power function for installing turbine



Tidal power simulator – 1

• Objective: maximize the power function for installing turbine

– Simulator with 200푚 resolution

– runs available only on 13 × 41 grid points

– Q: How do we choose 푛 points?
• MaximinLHS?



Tidal power simulator – 1
• Sequential design approach (푛 = 	20,푁	 = 	50)



Tidal power simulator – 1
• Sequential design approach (푛 = 	30,푁	 = 	50)



Tidal power simulator – 1
• Sequential design approach 

(푛 = 20,푁	 = 	50) (푛 = 30,푁	 = 	50)



Real Application – 2 



Tidal power simulator – 2

• Objective: maximize the power surface for installing several turbines

• 10/20	푚 resolution simulator



Tidal power simulator – 2

• Sequential design approach (푛 = 	30,푁	 =	35)



Tidal power simulator – 2

• Sequential design approach (푛 = 	30,푁	 = 50)



Tidal power simulator – 2

• Sequential design approach (푛 = 	30,푁	 = 50)

• Any ideas for getting better results?



Real Application – 3 



Tidal power modeling - issues

• One 1MW OpenHydro turbine was installed by Fundy Ocean 
Research Center for Energy (FORCE) in the Minas Passage 
during Nov 2009 – Dec 2010

– Unfortunately, no access to the data

• FORCE and OpenHydro intend to                                                 
deploy a 4MW tidal array by 2015

• $10-million turbine was destroyed due to strong current



Turbine construction

• Successful development of turbines to generate electricity from 
tidal currents requires more knowledge of the inflow conditions. 

• The key parameters (turbulence intensity and turbulence spectra) 
are estimated by collecting real data using acoustic Doppler current 
profiler (ADCP) and acoustic Doppler velocimeter (ADV) devices. 

• .



Calibration problem

• We have real ADCP data for 13 sites in Digby Neck region 
• We also have simulator (DNgrid) data for these sites and more

 Time-series response (velocity)
 At each location the data was recorded for 1 month 

actual time lag 1sec - 2min (working with 10min avg lag)



Calibration problem

• Objective: find bottom friction (key parameter of DNGrid) that gives the best match



Calibration problem

• Statistical problem

• Field (ADCP) data: velocity time-series at 13 locations

푊 ,
( ), 푙 = 1, 2, … , 13, 푡 = 1,2, … ,푇

• Model (DNGrid) data: velocity time-series at 13 locations for a given bottom friction (푏)

푊 푏 , 푙 = 1, 2, … , 13, 푡 = 1,2, … ,푇

– Every model run gives the velocity time series for all 13 locations.

• Objective: To calibrate the computer model (find optimal 푏) to match reality



Calibration problem

• Minimization problem

Find 푏 that minimizes the following sum of squares

푆푆 푏 = 푊 푏 	−푊 ,

• Used harmonic analysis to decompose the time series
• Used specific weights for choosing key constituents of harmonic analysis
• Used EI-based sequential design to optimize this SS



Calibration problem
• Minimization problem

• Still working on validation, and sensitivity of harmonic constituents.



Real Application – 4 



Volcano simulator – TITAN2D
• Based on a study of Colima Volcano in Mexico (Elaine Spiller;   Bayarri et al. 2009) 

• Response:  푦 = 푧 , where 푧 is the maximum flow height at a particular critical 
location

• Predictors: 
– 푋 - pyroclastic flow volume
– 푋 - basal fraction angle

(random photo from internet)   

• Scientific objective: estimate the “catastrophic region”, i.e., contour at 풚 풙 ≥ ퟏ.
.



Volcano simulator
• Contour estimation with 푛 = 15,푁 = 32 (at 풚 풙 = ퟏ)



Real Application – 5 



Oil reservoir simulator
• Matlab Reservoir Simulator (MRST) (Lie et al., 2011; SINTEF Applied Mathematics, 2012).

• Response: the Net Present Value (NPV) of  the produced oil
• Predictors: locations (푥 ,푥 )  of two injection and two production wells & several economical 

parameters

• Assume  three well locations are already chosen
– Two injection wells (x) 
– one production well (o)

• Objective: maximize NPV for finding an optimal location for drilling a production oil well



Oil reservoir simulator

• Global optimization with 푛 = 20,푁 = 30



Oil reservoir simulator

• Global optimization with 푛 = 30,푁 = 50



The end


