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Notation for our goals

⇡t(xt) =
�t(xt)

Zt

⇡t(xt) = p(xt|yt)

�t(xt) = p(xt,yt)

Z = p(yt)

Sample from a target distribution:

Given a model (joint)...:

.. and/or evaluate the normalization:
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X State space

xt 2 X Point in that space

Subscript: process index

xt Many points in the state space
yt Many observations

R

xt 2 X

X

t

y1 = xt1 y3 = xt3y2 = xt2
y2 y3
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Standard SMC
x

i
tOutput: competing ‘hypotheses’

Hypothesis
i = 1

Hypothesis
i = 5

t = last time observed 

...
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x

i
tOutput: competing ‘hypotheses’

weight for each of these wi
t

weight of 
particle i = 1

weight of 
particle i = 5

...

Standard SMC
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x

i
tOutput: competing ‘hypotheses’

weight for each of these wi
t

Can view these as a (random) distribution 

w̃i
t =

wi
tP

j w
j
t

⇡̃t(·) =
X

i

w̃i
t�xi

t
(·)

Standard SMC
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Standard SMC 
inner working:

⇡̃t⇡̃t�1

1. Assume inductively that we have 
computed approximation for: 

⇡t�1(xt�1) = p(xt�1|yt�1)
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⇡̃t⇡̃t�1

2. Sample from

1. Assume inductively...

⇡̃t�1

x̃

i
t�1 ⇠ ⇡̃t�1

Standard SMC 
inner working:
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2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend):

x̃

i
t�1

xt|x̃t�1 ⇠ qt(·|x̃t�1)

Standard SMC 
inner working:

Wednesday, March 18, 15



2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend):

x̃

i
t�1

xt|x̃t�1 ⇠ qt(·|x̃t�1)

x

i
t =
(�x̃

i
t�1�, x

i
t)

Concatenate:

Standard SMC 
inner working:
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2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend)

4. Reweigh:

w

i
t =

⇡t(xi
t)

⇡t�1(x̃i
t�1)

1

qt(xi
t|x̃i

t�1)

x̃

i
t�1

x

i
t

Standard SMC 
inner working:
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2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend)

4. Reweigh

Repeat for 
each particle 

(5 times)

Standard SMC 
inner working:
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Removing cycles with 
an auxiliary space

ρ-1(0)

ρ-1(1)

ρ-1(2)

ρ-1(3)

0

1 2 3

4 5 6

7 8 9 10

XXX: make sure the measure norm and normalized are carefully defined

Formally, we show that under Assumption 1, we have, for all test function

⌅ : X ⇧ R, ⇥R,K⌅ ⇧ ⇥⌅ a.s. and in L2.

The proof has two steps. First, we note that when the induced Hasse

diagram is acyclic, previous SMC consistency proofs apply directly. Second,

we show that in the cyclic case, we can construct a certain distribution ⇥̌ and

proposal q̌+ on a larger space Ŝ with the following properties.

1. The target distribution ⇥ can be obtained from ⇥̌ by straightforward

marginalisation of the samples.

2. The induced Hasse diagram is acyclic, so the algorithm on Š is consistent

by the first step of the proof.

3. The proposal steps and weight updates in the algorithm on Š can be

shown to be equivalent to those of the original algorithm on S. This

shows that the algorithm on S is also consistent.

As described above, let us start by assuming the poset is acyclic. In this

case, we claim that we can invoke Proposition 4 of XXX. First, the bound-

edness assumptions required in Proposition 4 are automatically satisfied since

here |S| < ⌃. Second, the connectedness assumption made in this previous

work, Assumption 2b, can be shown to hold using the following argument: as-

sume on the contrary that there is a connected component C ⌅ S in the Hasse

diagram that does not contain �, and let s be a minimal element, where

s ⌥ C by finiteness. Since {s⇥ : ��(s ⇧ s⇥) > 0} ⌅ ⇤�1(⇤(s) � 1), we have a

contradiction. Therefore there can be only one connected component.

If the poset is not acyclic, we now present the reduction to the acyclic case.

Let S0:r = S0 ⇤ S1 ⇤ · · ·⇤ Sr, the set of paths of length r in S. We will view
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0:1

Figure 2: An example of a simple cyclic poset.

the algorithm as incrementally building partial states over a larger space, with

š0 ⇤ S0, š1 ⇤ S0:1, š2 ⇤ S0:2, . . . , šR ⇤ S0:R. In other words, instead of viewing

the algorithm as operating over S =
⇥R

r=0 Sr, we will view it as operating over

Š =
⇥R

r=0 S0:r.

XXX: say we abuse notation in finite measure for ⇥(s)

Let us start by introducing a new measure ⇥̌ on Š. Let š be an element

in Š, i.e. a sequence of forests, say of length r, š = šr = (s0, s1, . . . , sr) ⇤

S0:r. Following XXX, we define the new measure by a product ⇥̌(ŝr) =

⇥(sr)
�r�1

j=1 �
�(sj ⇥ sj�1). Note that since the ��(s ⇥ ·) are assumed to be

normalized probability densities, marginalization over s0, s1, . . . , sr�1 recovers

the original extended measure ⇥.

The proposal over Š creates an identical copy of the sequence of forests,

and adds to it a new elements by sampling from the original proposal density

�+. Note that with this definition, given an element š ⇤ Š, there can be only
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