Notation/background on trees \mathcal{T}

Notation/background on trees \mathcal{T}

Non-clock tree: remove additivity restrictions on branch lengths

Notation for our goals

Given a model (joint)...: $\gamma_t(\mathbf{x}_t) = p(\mathbf{x}_t, \mathbf{y}_t)$

Sample from a target distribution: $\pi_t(\mathbf{x}_t) = p(\mathbf{x}_t | \mathbf{y}_t)$ $\pi_t(\mathbf{x}_t) = \frac{\gamma_t(\mathbf{x}_t)}{Z_{\prime \star}}$

...and/or evaluate the normalization: $Z = p(\mathbf{y}_t)$

Standard SMC

t = last time observed

Standard SMC

Output: competing 'hypotheses' \mathbf{x}_t^i weight for each of these w_t^i

Standard SMC

Standard SMC inner working: I.Assume inductively that we have computed approximation for:

$$\pi_{t-1}(\mathbf{x}_{t-1}) = p(\mathbf{x}_{t-1}|\mathbf{y}_{t-1})$$

Standard SMC inner working: I.Assume inductively...

2. Sample from $\tilde{\pi}_{t-1}$

Standard SMC inner working: I.Assume inductively... 2. Sample from $\tilde{\pi}_{t-1}$ 3. Propose (extend): $x_t | \tilde{\mathbf{x}}_{t-1} \sim q_t(\cdot | \tilde{\mathbf{x}}_{t-1})$

Wednesday, March 18, 15

Standard SMC inner working: I.Assume inductively...

 \checkmark 2. Sample from $\tilde{\pi}_{t-1}$

Repeat for each particle (5 times)

3. Propose (extend)

4. Reweigh

Wednesday, March 18, 15

Poset structure

Removing cycles with an auxiliary space

