## Notation/background on trees $\mathcal{T}$



## Notation/background on trees $\mathcal{T}$



## Non-clock tree:

 remove additivity restrictions on branch lengths

## Notation for our goals

Given a model (joint)...: $\gamma_{t}\left(\mathbf{x}_{t}\right)=p\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)$
Sample from a target distribution: $\pi_{t}\left(\mathbf{x}_{t}\right)=p\left(\mathbf{x}_{t} \mid \mathbf{y}_{t}\right)$

$$
\pi_{t}\left(\mathbf{x}_{t}\right)=\frac{\gamma_{t}\left(\mathbf{x}_{t}\right)}{Z_{t}}
$$

.. and/or evaluate the normalization: $Z=p\left(\mathbf{y}_{t}\right)$
Notation

$$
\begin{array}{ll}
\mathcal{X} & \text { State space } \\
x_{t} \in \mathcal{X} & \text { Point in that space }
\end{array}
$$

Subscript: process index
Many points in the state space
Many observations


## Standard SMC

## Output: competing 'hypotheses' $\mathbf{x}_{t}^{i}$

## $t=$ last time observed



Hypothesis

$$
i=1
$$

$\stackrel{\bullet}{\bullet}$
Hypothesis

$$
i=5
$$

## Standard SMC

Output: competing 'hypotheses' $\mathbf{x}_{t}^{i}$
weight for each of these $w_{t}^{i}$
$\downarrow \begin{aligned} & \text { weight of } \\ & \text { particle } i=1\end{aligned}$
$\uparrow$ weight of particle $i=5$

## Standard SMC

Output: competing 'hypotheses' $\mathbf{x}_{t}^{i}$
weight for each of these $w_{t}^{i}$


## Standard SMC

inner working: I.Assume inductively that we have computed approximation for:

$$
\pi_{t-1}\left(\mathbf{x}_{t-1}\right)=p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{t-1}\right)
$$



## Standard SMC

inner working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$


## Standard SMC

inner working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$
3. Propose (extend):


## Standard SMC

inner working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$
3. Propose (extend):


## Standard SMC

inner working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$
3. Propose (extend)
4. Reweigh:

$$
w_{t}^{i}=\frac{\pi_{t}\left(\mathbf{x}_{t}^{i}\right)}{\pi_{t-1}\left(\tilde{\mathbf{x}}_{t-1}^{i}\right)} \frac{1}{q_{t}\left(x_{t}^{i} \mid \tilde{\mathbf{x}}_{t-1}^{i}\right)}
$$



## Standard SMC

inner working: I.Assume inductively...

Repeat for each particle (5 times)
( 2. Sample from $\tilde{\pi}_{t-1}$


## Poset structure



## Removing cycles with an auxiliary space



