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1 Exponential Families

Inference with continuous distributions present an additional challenge com-
pared to inference with discrete distributions: how to represent these continuous
objects within finite-memory computers? A common solution to this problem is
to use a (much smaller) subset (or family) of distributions instead of all possi-
ble distributions and to adopt a parametrization that identifies elements of this
family with elements of Rd. For instance, normal distributions can be charac-
terized with their mean and variance; Poisson distributions can be characterized
by their mean, etc.

An important family of distribution that has special properties with respect
to statistical inference is the exponential family, introduced by Pitman (father),
Darmois and Koopman. As a preview, here are some important properties of
the exponential family that explain their central role in statistics:

• Suppose X1, X2, . . . are iid with a distribution known to be in some family
of probability distribution whose support does not vary. Only if that
family is an exponential family is there a sufficient statistic ~T (X1, ..., Xn)
whose number of scalar components does not increase as the sample size
n increases. This is a very attractive result for those interested in efficient
statistical inference.

• The exponential family arises naturally as the the answer to the follow-
ing question: what is the most “uninformative” distribution with given
constraints on expected values.

• Exponential families always have conjugate priors.

This document will concentrate on the last property, but first, we will review
the definition of exponential families.

Definition 1 Fix a reference measure, say the Lebesgue measure on Rm for
concreteness, and let S be a family of continuous distribution. It is an exponen-
tial family if there are:

1. an integer k ∈ Z (the dimensionality of the parametrization),
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2. a function T : Rm → Rk (the sufficient statistics),

3. a function A : Rk → R (the log normalization) and

4. a function h : Rm → R,1

such that for all F ∈ S, there is an η ∈ Rk such that F can be expressed with
respect to the Lebesgue measure as the density:

f(~x) = h(~x) exp
(
ηTT (~x)−A(η)

)
.

2 Conjugate priors for exponential families

Recall that a family of prior probability distributions p(θ) is said to be conjugate
to a family of likelihood functions p(x|θ) if the resulting posterior distributions
p(θ|x) are in the same family as p(θ). In the case where the likelihood func-
tions happen to be an exponential family, there is a general recipe for finding a
conjugate prior.

Warning: in what follows, do not rely on which greek letter or symbol I
use to represent sufficient statistics and natural parameters. The reason is that
two different exponential families will be considered, one for the likelihood and
one for the prior, and the sufficient statistics of the likelihood will be used to
construct the natural parameters of the exponential family for the prior. The
notation is the only difficulty here.

Theorem 1 Let X be the Rm-valued data and Θ, the Rk-valued parameters.
Assume that the conditional distribution of X given θ is in an exponential fam-
ily with sufficient statistics T : Rm → Rk, log-normalization A : Rk → R and has
natural parameters ψ(θ) ∈ Rk. Then, the (k + 1)-parameter exponential family
with sufficient statistics (ψ1(θ), ψ2(θ), . . . , ψk(θ), A(θ)) and the same base mea-
sure as the likelihood’s, is a conjugate prior, where ψi(θ) is the i-th component
of the natural parametrization of the likelihood model’s exponential family. Note
that this fully specifies an exponential family, as the normalization for this new
exponential family can be obtained by integration.

An important observation to make is that this recipe does not always yields
a conjugate prior that is computationally tractable (in particular, there is no
guarantee that it can be written only with elementary functions). Indeed,
computing posterior parameters requires evaluation of the sufficient statistics
(ψ1(θ), ψ2(θ), . . . , ψk(θ), A(θ)) of the parameters. Note that this requires in
turn evaluation of the normalization of the likelihood model, which is often
hard in practice. For example, in the Ising model this problem is in #P, but
can be approximated using probabilistic algorithms such as MCMC.

Note finally that families of conjugate prior are not unique. For instance, the
set of all probability distribution is always a conjugate prior, as well as mixtures

1Which could be absorbed in the reference measure actually, since it is not allowed to
depend on the parameters.
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of conjugate priors. However, the one we constructed is minimal (in terms of
number of dimension of them minimal smooth parametrization).
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