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Abstract

Probabilistic models over strings have played a key role in developing methods that take into
consideration indels as phylogenetically informative events. There is an extensive literature on
using automata and transducers on phylogenies to do inference on these probabilistic models,
in which an important theoretical question is the complexity of computing the normalization
of a class of string-valued graphical models. This question has been investigated using tools
from combinatorics, dynamic programming, and graph theory, and has practical applications in
Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of
view, based on linear algebra. The main contribution is a set of results based on this linear algebra
view that facilitate the analysis and design of inference algorithms on string-valued graphical
models. As an illustration, we use this method to give a new elementary proof of a known result
on the complexity of inference on the “TKF91” model, a well-known probabilistic model over
strings. Compared to previous work, our proving method is easier to extend to other models,
since it relies on a novel weak condition, triangular transducers, which is easy to establish in
practice. The linear algebra view provides a concise way of describing transducer algorithms and
their compositions, opens the possibility of transferring fast linear algebra libraries (for example
based on GPUs), as well as low rank matrix approximation methods, to string-valued inference
problems.

keywords indel, alignment, probabilistic models, TKF91, string transducers, automata, graphical
models, phylogenetics, factor graphs

1 Introduction

This work is motivated by models of evolution that go beyond substitutions by incorporating insertions
and deletions as phylogenetically informative events [48, 49, 35, 34, 6]. In recent years, there has been
significant progress in turning these models into phylogenetic reconstruction methods that do not
assume that the sequences have been aligned as a pre-processing step, and into statistical alignment
methods [16, 32, 33, 28, 40, 42, 41, 3]. Joint phylogenetic reconstruction and alignment methods
are appealing because they can produce calibrated confidence assessments [42], they leverage more
information than pure substitution models [27], and they are generally less susceptible to biases
induced by conditioning on a single alignment [54].

Model-based joint phylogenetic methods require scoring each tree in a large collection of hypoth-
esized trees [40]. This collection of proposed trees is generated by a Markov chain Monte Carlo
(MCMC) algorithm in Bayesian methods, or by a search algorithm in frequentist methods. Scoring
one hypothesized tree then boils down to computing the probability of the observed sequences given
the tree. This computation requires summing over all possible ancestral sequences and derivations
(a refinement of the notion of alignment, localizing all the insertions, deletions and substitutions on
the fixed tree that can yield the observed sequences) [23]. Since the length of the ancestral strings
is a priori unknown, these summations range over a countably infinite space, creating a challenging
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problem. This situation is in sharp contrast to the classical setup where an alignment is fixed, in
which case computing the probability of the observed aligned sequences can be done efficiently using
the standard Felsenstein recursion [12].

When an alignment is not fixed, the distribution over a single branch is typically expressed as a
transducer [16], and the distribution over a tree is obtained by composite transducers and automata
[23]. The idea of composite transducers and automata, and their use in phylogenetic, have been in-
troduced and subsequently developed in previous work in the framework of graph representations of
transducers and combinatorial methods [23, 17, 18, 19, 30, 9]. Our contribution lies in new proofs,
and a theoretical approach purely based on linear algebra. We use this linear algebraic formulation to
obtain simple algebraic expressions for marginalization algorithms. In the general cases, our represen-
tation provides a slight improvement on the asymptotic worst-case running time of existing transducer
algorithms [38]. We also characterize a subclass of problems, which we call triangular problems, where
the running time can be further improved. We show, for example, that marginalization problems
derived from the TKF91 model [48] are triangular. We use this to develop a new complexity analysis
of the problem of inference in the TKF91 model. The bounds for the TKF91 model on star trees
and perfect trees coincide with those obtained from previous work [31], but our proving method is
easier to extend to other models since it only relies on the triangularity assumption rather than on
the details of the TKF91 model.

Algorithms for composite phylogenetic automata and transducers have been introduced in [23, 21],
generalizing the dynamic programming algorithm of [17] to arbitrary guide trees. Other related work
based on combinatorics includes [46, 31, 45, 43, 4]. See [7] for an outline of the area, and [22, 40, 39] for
computer implementations. Our work is most closely related to [50, 51], which extends Felsenstein’s
algorithm to transducers and automata. They use a different view based on partial-order graphs to
represent ensemble profiles of ancestral sequences.

While the exact methods described here and in previous work are exponential in the number of
taxa, they can form the basis of efficient approximation methods, for example via existing Gibbs
sampling methods [25]. These methods are based on auxiliary variables, which augment the state
space of the MCMC algorithm, for example with internal sequences [20]. The running time then
depends on the number of taxa involved in the local tree perturbation. This number can be as small
as two, but there is a trade-off between the mixing rate of the MCMC chain and the computational
cost of each move [40].

Note that the matrices used in this work should not be confused with the rate matrices and
their marginal transition probabilities. The latter are used in classical phylogenetic reconstruction
setups where the alignment is assumed to be fixed. Our proving methods are more closely related to
previous work on representation of stochastic automata network [14, 29], where interactions represent
synchronization steps rather than string evolution, and therefore behave differently.

2 Formal description of the problem

2.1 Notation

We use τ to denote a rooted phylogeny, with topology (V ,E ).1 The root of τ is denoted by Ω; the
parent of v ∈ V , v 6= Ω, by pa(v) ∈ V ; the branch lengths by b(v) = b(pa(v) → v); and the set of
leaves by L ⊂ V .

The models we are interested in are tree-shaped graphical models [26, 2, 1] where nodes are string-
valued random variables Xv over a finite alphabet Σ (for example a set of nucleotides or amino acids).
There is one such random variable for each node in the topology of the phylogeny, v ∈ V , and the
variable Xv can be interpreted as an hypothesized biological sequence at one point in the phylogeny.

1In reversible models such as the TKF91 model, an arbitrary root can be selected without changing the likelihood.
In this case, the root is used for computational convenience and has no special phylogenetic meaning.
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root / MCRA 

modern species

Figure 1: Factor graph construction (right) derived from a phylogenetic tree (left): in green, the unary
factor at the root capturing the initial string distribution; in blue, the binary factors capturing string
mutation probabilities; and in red, the unary factor at the leaves, which are indicator functions on
the observed strings.

Each edge (pa(v) → v) denotes evolution from one species to another, and is associated with
a conditional probability Pτ (Xv = s′|Xpa(v) = s) = θv(s, s

′), where s, s′ ∈ Σ∗ are strings (finite
sequences of characters from Σ). These conditional probabilities can be derived from the marginals
of continuous time stochastic process [48, 23, 35, 34], or from a parametric family [28, 42, 40, 41]. We
also denote the distribution at the root by Pτ (XΩ = s) = θ(s), which is generally set to the stationary
distribution in reversible models or to some arbitrary initial distribution otherwise. Usually, only the
sequences at the terminal nodes are observed, an event that we denote by Y = (Xv = xv : v ∈ L ).

We denote the probability of the data given a tree by Pτ (Y ). The computational bottleneck of
model-based methods is to repeatedly compute Pτ (Y ) for different hypothesized phylogenies τ . This
is the case not only in maximum likelihood estimators, but also in Bayesian methods, where a ratio
of the form Pτ ′(Y )/Pτ (Y ) is the main contribution to the Metropolis-Hastings ratio driving MCMC
approximations.

While it is more intuitive to describe a phylogenetic tree using a Bayesian network, it is useful when
developing inference algorithms to transform these Bayesian networks into equivalent factor graphs
[2]. A factor graph encodes a weight function over a space X assumed to be countable in this work.
For example, this weight function could be a probability distribution, but it is convenient to drop the
requirement that it sums to one. In phylogenetics, the space X is a tuple of |V | strings, X = (Σ∗)|V |.

A factor graph (see Figure 1 for an example) is based on a specific bipartite graph, built by letting
the first bipartite component correspond to V (the nodes denoted by circles in the figure), and the
second bipartite component, to a set of potentials or factors W described shortly (the nodes denoted
by squares in the figure).

We put an edge in the factor graph between w ∈ W and v ∈ V if the value taken by w depends
on the string at node v. Formally, a potential w ∈ W is a map taking elements of the product space,
(xv : v ∈ V ) ∈ X , and returning a non-negative real number. However the value of the factors we
consider only depend on a small subset of the variables at a time. More precisely, we will use two
types of factors: unary factors, which depend on a single variable, and binary factors, which depend
on two variables. We use the abbreviation SFG for such String-valued Factor Graph.

In order to write a precise expression for the probability of the data given a tree, Pτ (Y ), we con-
struct a factor graph (shown in Figure 1) with three types of factors: one unary potential wΩ(s) = θ(s)
at the root modeling the initial string distribution; binary factors wv,v′(s, s

′) = θv′(s, s
′) capturing

string mutation probabilities between pairs of species connected by an edge (v → v′) in the phyloge-
netic tree; and finally, unary factors wv(s) = 1[s = xv] attached to each leaf v ∈ L , which are Dirac
deltas on the observed strings.
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From this factor graph, the likelihood can be written as:

Pτ (Y ) =
∑

(sv∈Σ∗:v∈V )∈(Σ∗)|V |

wΩ(sΩ)

(∏
v∈L

wv(sv)

) ∏
(v→v′)∈E

wv,v′(sv, sv′)

 .

For any functions fi : Xi → R+ over a countable spaces X , we let
∏
i fi denote their pointwise product,

and we let ‖f‖ denote the sum of the function over the space,

‖f‖ =
∑
x∈X

f(x).

The likelihood can then be expressed as follows:

Pτ (Y ) =

∥∥∥∥∥ ∏
w∈W

w

∥∥∥∥∥ . (1)

So far, we have seen each potential w as a black box, focussing instead on how they interact with each
other. In the next section, we describe the form assumed by each individual potential.

2.2 Weighted automata and transducers

Weighted automaton (respectively, transducers) is a classical way to define a function from the space
of strings (respectively, the space of pairs of strings) to the non-negative reals [44]. At a high level,
weighted automata and transducers proceed by extending a simpler weight function defined over a
finite state space Q into a function over the space of strings. This is done via a collection of paths
(lists of variable length) in Q.

We start with the case of automata (in the terminology of SFG introduced in the previous section,
unary potentials). First, we designate one state in the state space Q to be the start state and one to
be the end state (we need only consider one of each without loss of generality). We define a path as
a sequence of states qi ∈ Q and emissions σ̂i ∈ Σ̂ = Σ ∪ {ε}, starting at the start state and ending
at the stop state: p = (q0, σ̂1, q1, σ̂2, q2, . . . , σ̂n, qn). Here the set of possible emissions Σ̂ is the set of
characters extended with the empty emission ε.2

Let us now assign a non-negative number to each triplet formed by a transition (pair of state
q, q′ ∈ Q) and emission σ̂ ∈ Σ̂.3 We call this map w : Σ̂×Q2 → [0,∞), a parameter specified by the
user.4

Next, we extend the input space of w in two steps. First, if w takes a path p as input, we define
w(p) as the product of the weights of the consecutive triplets (qi, σ̂i+1, qi+1) in p. Second, if w takes
a string s ∈ Σ∗ as input, we define w(s) as the sum of the weights of the paths p emitting s, where a
path p emits a string s if the list of characters in p, omitting ε, is equal to s.

For transducers (binary potentials), we modify the above definition as follows. First, emissions
become pairs of symbols in Σ̂ × Σ̂. Second, paths are similarly extended to emit pairs of symbols at
each transition, p = (q0, (σ̂1, σ̂

′
1), q1, (σ̂2, σ̂

′
2), q2, . . . , (σ̂n, σ̂

′
n), qn). Finally a path emits a pair of strings

(s, s′) if the concatenation of the first characters of the emissions, σ̂1, σ̂2, . . . , σ̂n, is equal to s after
removing the ε symbols, and similarly for s′ with the second characters of each emission, σ̂′1, σ̂

′
2, . . . , σ̂

′
n.

For example, p = (q0, (a, ε), q1, (b, c), q2, (ε, ε), qn) emits the pair of strings (ab, c).
The normalization of a transducer or automata is the sum of all the valid paths’ weights, Z = ‖w‖.

We set the normalization to positive infinity when the sum diverges.
We now have reviewed all the ingredients required to formalize the problem we are interested in:

Problem description: Computing Equation (1), where each w ∈ W is a weighted automaton or
transducer organized into a tree-shaped SFG as defined in Section 2.1.

2Note that we use the convention of using σ̂ when the character is an element of the extended set of characters Σ̂.
3In technical terms, we use the Mealy model.
4The inverse problem, learning the values for this map is also of interest [24], but here we focus on the forward

problem.
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Figure 2: Top: The tree graph transformations used in the elimination algorithm. Bottom: An
example of the application of these three operations on a graph induced by a phylogenetic tree.

3 Background

In the previous section, we have shown how the normalization of a single factor is defined (how to
compute it in practice is a another issue, that we address in Section 5). In this section, we review how
to transform the problem of computing the normalization of a full factor graph, Equation (1), into
the problem of finding the normalization of a single unary factor. This is done using the elimination
algorithm [2], a classical method used to break complex computations on graphical models into a
sequence of simpler ones.

The elimination algorithm is typically applied to find the normalization of factor graphs with finite-
valued or Gaussian factors. Since our factors take values in a different space, the space of strings, it is
useful in this section to take a different perspective on the elimination algorithm: instead of viewing
the algorithm as exchanging messages on the factor graph, we view it as applying transformation on
the topology of the graph. These operations alter the normalization of individual potentials, but, as
we will show, they keep the normalization of the whole factor graph invariant, just as in standard
applications of the elimination algorithm.

The elimination algorithm starts with the initial factor graph, and eliminates one leaf node at each
step (either a variable node or a factor node, there must be at least one of the two types). This process
creates a sequence of factor graphs with one less nodes at each step, until there are only two nodes
left (one variable and one unary factor). While the individual factors are altered by this process, the
global normalization of each intermediate factor graph remains unchanged.

We show in Figure 2 an example of this process, and a classification of the operations used to
simplify the factor graph. We call the operations corresponding to a factor eliminations a pointwise
product (Figure 2(b,c)), and the operations corresponding to variable eliminations, marginalization
(Figure 2(a)). We further define two kinds of pointwise products: those where the variable connected
to the eliminated factor is also connected to a binary factor (the first kind, shown in Figure 2(b)),
and the others (second kind, shown in Figure 2(c)).

Let W denote a set of factors, and let W ′ denote a new set of factors obtained by applying one
of the three operations described above. For the elimination algorithm to be correct, the following
invariant should hold [2]: ∥∥∥∥∥ ∏

w∈W

w

∥∥∥∥∥ =

∥∥∥∥∥ ∏
w′∈W ′

w′

∥∥∥∥∥ .
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a:p

b:q

ε:1-q-p

Ma =

(
p 0
0 0

)
Mb =

(
q 0
0 0

)
Mε =

(
0 1− p− q
0 0

)

Figure 3: An initial geometric length distribution unary factor. On the left, we show the standard
graph-based automaton representation, where states are dashed circles (to differentiate them from
nodes in SFGs), and arcs are labelled by emissions and weights. Zero weight arcs are omitted. The
start and stop state are indicated by inward and outward arrows, respectively on the first and second
state here. On the right, we show the indexed matrix representation of the same unary potential.

4 Indexed matrices

In this section, we describe the representation that forms the basis of our normalization method and
establish the main properties of this representation. We use the TKF91 model [48] as a running
example to illustrate the construction.

4.1 Unary factors

We assume without loss of generality that the states of the automata are labelled by the integers
1, . . . ,K, and that state 1 is the start state, and K, the stop state.

We represent an automaton as a character-indexed collection, M , of K ×K matrices, where K is
the size of the state space of the automaton, and the index runs over the extended characters:

M =

(
Mσ̂ ∈MK

(
R+
))

σ̂∈Σ̂

Each entry Mσ̂(k, k′) encodes the weight of transitioning from states k to k′ while emitting σ̂ ∈ Σ̂.
An indexed collection M specifies a corresponding weight function wM : Σ∗ → [0,∞) as follows:

let p denote a valid path, p = q0, σ̂1, q1, σ̂2, q2, . . . , σ̂n, qn, and set

wM (p) = φ

(
n∏
i

Mσ̂i

)
,

where φ selects the entry (1,K) corresponding to the product of weights starting from the initial and
ending in the final state, φ(M) = M(1,K). The product denotes a matrix multiplication over the
matrices indexed by the emissions in p, in the order of occurrence.

In the TKF91 model for example, an automaton is needed to model the geometric root distribution,
θ(s). We have in Figure 3 the classical state diagram as well as the indexed matrix representation,
in the case where the length distribution has mean 1/(1 − q − p), and the proportion of ‘a’ symbols
versus ‘b’ symbols is p/q.

Another important example of an automaton is one that gives a weight of one to a single observed
string, and zero otherwise: wv(s) = 1[s = xv]. We show the state diagram and the indexed matrix
representation in Figure 4. Note that the indexed matrices are triangular in this case, a property that
will have important computational consequence in Section 6.
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a:1 b:1 a:1 Ma =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 Mb =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


Mε = 0

Figure 4: A unary factor encoding a string indicator function. In this example, only the string ‘aba’
is accepted (i.e. the string ‘aba’ is the only string emitted with positive weight).

(σ, σ')

(ε, σ)

(ε, σ)
(σ, σ') (σ, ε)

(σ, ε)

Mσ,σ′ = αλ
µ

(
(1− β) 0
(1− γ) 0

)
Pσ,σ′

Mσ,ε = λ(1−α)
µ

(
0 (1− β)
0 (1− γ)

)
Mε,σ = πσ

(
β 0
γ 0

)
Figure 5: A binary factor encoding a TKF91 model marginal.

4.2 Binary factors

We now turn to the weighted transducers, which we viewed as a collection of matrices as well, but
this time with an index running over pairs of symbols (σ̂, σ̂′) ∈ Σ̂:

M =

(
Mσ̂,σ̂′ ∈MK

(
R+
))

σ̂,σ̂′∈Σ̂

.

Note that in the context of transducers, epsilons need to be kept in the basic representation, otherwise
transducers could not give positive weights to pairs of strings where the input has a different length
than the output.

In phylogenetics, transducers represent the key component of the probabilistic model: the prob-
ability of a string given its parent, wv,v′(s, s

′) = θv′(s, s
′). For example, in the TKF91 model, this

probability is determined by three parameters: an insertion rate λ > 0, a deletion rate µ > 0, and a
substitution rate matrix Q. Given a branch of length t, the probability of all derivations between s
and s′ can be marginalized using the transducer shown in Figure 5, where the values of α, β and P
are obtained by solving a system of differential equations yielding [48], for all σ, σ′ ∈ Σ:

α(t) = exp(−µt)

β(t) =
λ(1− exp((λ− µ)t))

µ− λ exp((λ− µ)t)

γ(t) = 1− µβ(t)

λ(1− α(t))

Pt(σ, σ
′) =

(
exp(tQ)

)
(σ, σ′),

and πσ is the stationary distribution of the process with rate matrix Q.5 While the standard descrip-
tion of the TKF91 model uses three states, our formalism allows us to express it with two states, with
a state diagram shown in Figure 5. Note also that for simplicity we have left out the description of
the ‘immortal link’ [48], but it can be handled without increasing the number of states. This is done
by introducing an extra symbol # /∈ Σ̂ flanking the end of the sequence.

5The rate matrix Q comes from a substitution model (we will assume the Jukes-Cantor model for simplicity, but all
our results carry over to the General Time Reversible models [13]).
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5 Operations on indexed matrices

In this section, we give a closed-form expression for all the operations described in Section 2. We start
with the simplest operations, epsilon-removal and normalization, and then cover marginalization and
pointwise products.

5.1 Unary operations

While epsilon symbols are convenient when defining new automata, some of the algorithms in the next
section assume that there are no epsilon transitions of positive weights. Formally, a factor M is called
epsilon-free if Mε = 0. Fortunately, converting an arbitrary unary factor into an epsilon-free factor,
can be done using the well known generalization of the geometric series formula to matrices. But in
order to apply this result to our situation, we need to assume that in all positive weight path, the
last emission is never an epsilon. Fortunately, this can be done without loss of generality by adding a
boundary symbol at the end of each string. We assume this thorough the rest of this paper and get:

Proposition 1. Let M denote a unary factor such that each of the eigenvalues λi of Mε satisfies
|λi| < 1. Then the transformed factor M (f) defined as:

M
(f)
σ̂ =

{
0 if σ̂ = ε
M∗εMσ̂ otherwise

M∗ = (1−M)−1

is epsilon-free and assigns the same weights to strings, i.e. wM (s) = wM(f)(s) for all s ∈ Σ∗.

We show a proof of this elementary result to illustrate the conciseness of our indexed matrices
notation:

Proof. Note first that the condition on the eigenvalues implies that (1−M) is invertible.
To prove equivalence of the weight functions wM and wM(f) , let s ∈ Σ∗ be a string of length N . We

need to show that the epsilon-removed automaton M
(f)
σ assigns the same weights wM(f)(s) to strings

as the original automaton Mσ̂:

wM (s) = φ

(∑
ŝ;s

∏
σ̂∈ŝ

Mσ̂

)

= φ

 ∑
(k1,...,kN )∈NN

Mk1
ε Ms1M

k2
ε Ms2 · · ·MkN

ε Ms1


= φ

(
N∏
n=1

( ∞∑
m=0

Mm
ε

)
Msn

)

= φ

(
N∏
n=1

M (f)
sn

)
= wM(f)(s).

Here we used the nonnegativity of the weights, which implies that if the automaton has a finite
normalization, then the infinite sums above are absolutely convergent, and can therefore be rearranged.

We also need the following elementary result on the normalizer of arbitrary automata.
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Proposition 2. Let M denote a unary potential, and define the matrix:

M̃ =
∑
σ̂∈Σ̂

Mσ̂,

with eigenvalues λi. Then the normalizer ZM of the unary potential is given by:

ZM =

{
φ
(
M̃∗

)
if for all i, |λi| < 1

+∞ otherwise,

where φ(M) = M(1,K).

Proof. Note first that for all indexed matrices M , we have the following identity:

∑
(σ̂1,...,σ̂N )∈Σ̂L

N∏
n=1

Mσn
=

∑
σ∈Σ̂

Mσ̂

N

= M̃N .

Therefore by decomposing the set of all paths by their path lengths N , we obtain:

ZM = φ

 ∞∑
N=0

∑
(σ̂1,...,σ̂N )∈Σ̂L

N∏
n=1

Mσn


= φ

( ∞∑
N=0

M̃N

)
.

The infinite sum in the last line converges to M∗ if and only if the eigenvectors satisfy |λi| < 1, and
diverges to +∞ otherwise since the weights are non-negative.

5.2 Binary operations

We now describe how the operations of marginalization and pointwise product can be efficiently
implemented using our framework. We begin with the marginalization operation.

The marginalization operation that we first focus on, shown in Figure 2, takes as input a binary
factor M , and returns a unary factor M (m). A precondition of this operation is that one of the nodes
connected to M should have no other potentials attached to it. We use the variable σ′ for the values
of that node. This node is eliminated from the factor graph after applying the operation. The other
node is allowed to be attached to other factors, and its values are denoted by σ.

Proposition 3. If M is a binary factor, then the unary factor M (m) defined as:

M
(m)
σ̂ =

∑
σ̂′∈Σ̂

Mσ̂,σ̂′

satisfies wM(m)(s) =
∑
s′∈Σ∗ wM (s, s′) for all s ∈ Σ∗.

Proof. We first note that for any matrices At̂, t̂ ∈ Σ̂∗ with non-negative entries, we have

∑
t∈Σ∗

∞∑
N=0

∑
t̂;N t

At̂ =
∞∑
N=0

∑
t̂∈Σ̂N

At̂,

where we write ŝ;L s if ŝ has length L and ŝ; s.
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We now fix s ∈ Σ. Applying the result above, with

Aŝ′ =
∑
ŝ;Ns

N∏
n=1

Mŝn,ŝ′n ,

for all ŝ′, and where N = |ŝ′|, we get:

∑
s′∈Σ∗

wM (s, s′) = φ

( ∑
s′∈Σ∗

∞∑
N=0

∑
ŝ;Ns

∑
ŝ′;Ns′

N∏
n=1

Mŝn,ŝ′n

)

= φ

( ∑
s′∈Σ∗

∞∑
N=0

∑
ŝ′;Ns′

Aŝ′

)

= φ

 ∞∑
N=0

∑
ŝ′∈Σ̂N

Aŝ′


= φ

 ∞∑
N=0

∑
ŝ;Ns

N∏
n=1

∑
σ̂∈Σ̂

Mŝn,σ̂


= wM(m)(s).

Next, we move to the pointwise multiplication operations, where the epsilon transitions need a
special treatment. In the following, we use the notation {A|B|C| . . . } to denote the tensor product of
the matrices A, B, C, . . . .6

Proposition 4. If M (1) and M (2) are two epsilon-free unary factors, then the unary factor M (p)

defined as:

M (p)
α =

{
M (1)
σ

∣∣∣∣M (2)
σ

}
(2)

is epsilon-free and satisfies:

wM(1)(s) · wM(2)(s) = wM(p)(s) (3)

for all s ∈ Σ∗.

Proof. Clearly, M
(p)
ε is equal to the zero matrix, so M (p) is epsilon-free. To show that it satisfies

Equation 3, we first note that since M (i) is epsilon free,∑
ŝ;s

∏
σ̂∈s

M
(i)
σ̂ =

∏
σ∈s

M (i)
σ ,

6Note that we avoided the standard tensor product notation ⊗ because of a notation conflict with the automaton
and transducer literature, in which ⊗ denotes multiplication in an abstract semi-ring (the generalization of normal
multiplication, · used here). The operator ⊗ is also often overloaded to mean the product or concatenation of automata
or transducers, which is not the same as the pointwise product as defined here.

10



ε

aa

Ma =

0 0 α
0 0 α
0 0 0


Mε =

0 α 0
0 0 0
0 0 0


Figure 6: Counter-example used to illustrate that the epsilon-free condition in Proposition 4 is neces-
sary. Here α is an arbitrary constant in the open interval (0, 1).

for i ∈ {1, 2}. Hence:

wM(1)(s) · wM(2)(s) = φ

(∑
ŝ;s

∏
σ̂∈s

M
(1)
σ̂

)
φ

(∑
ŝ′;s

∏
σ̂′∈s′

M
(1)
σ̂′

)

= φ

(∏
σ∈s

M (1)
σ

)
φ

(∏
σ∈s

M (2)
σ

)

= φ

(∏
σ∈s

{
M (1)
σ

∣∣∣∣M (2)
σ

})
= wM(p)(s),

for all s ∈ Σ∗.

Note that the epsilon-free condition is necessary. Consider for example the unary potential M over
Σ = {a} shown in Figure 6. We claim that this factor M (which has positive epsilon transitions) does
not satisfy the conclusion of Proposition 4. Indeed, for s = a, we have that (wM (s))2 = α4 +2α3 +α2,
but wM(p)(s) = α4 + α2, where M (p) is defined as in Equation 2.

We now turn to pointwise products of the second kind, where an automaton is pointwise multiplied
with a transducer. The difference is that all epsilons cannot be removed from a transducer: without
emissions of the form (σ, ε), (ε, σ), transducers would not have the capacity to model insertions and
deletions. Fortunately, as long as the automaton M (2) is epsilon free, pointwise multiplications of the
second kind can be implemented as follows:

Proposition 5. If M (2) is epsilon free and M (1) is any transducer, then the transducer M (p) defined
by:

M
(p)
σ̂,σ̂′ =


{
M

(1)
σ̂,σ̂′

∣∣M (2)
σ̂

}
if σ̂ 6= ε{

M
(1)
σ̂,σ̂′

∣∣I} otherwise

satisfies

wM(1)(s, s′) · wM(2)(s) = wM(p)(s, s′)

for all s, s′ ∈ Σ∗.

Proof. Note first that since M (2) is epsilon-free, we have

∏
α∈s

M (2)
α =

N∏
n=1

{
I if ŝn = ε

M
(2)
ŝn

otherwise

11



for all N ≥ |s|, ŝ;N s. Moreover, for all matrix Ai, φ(
∑
iAi) =

∑
i φ(Ai), hence:

w(1)(s, s′) · w(2)(s) = φ

( ∞∑
N=0

∑
ŝ;Ns

∑
ŝ′;Ns

N∏
n=1

M
(1)
ŝn,ŝ′n

)
φ

(∏
σ∈s

M (2)
σ

)

=

∞∑
N=0

∑
ŝ;Ns

∑
ŝ′;Ns

φ

(
N∏
n=1

M
(1)
ŝn,ŝ′n

)
φ

(
N∏
n=1

{
I if ŝn = ε

M
(2)
ŝn

otherwise

)

=

∞∑
N=0

∑
ŝ;Ns

∑
ŝ′;Ns

φ

(
N∏
n=1

M
(p)
ŝn,ŝ′n

)
= wM(p)(s, s′).

Now that we have a simple expression for all of the operations required by the elimination algorithm
on string-valued graphical models, we turn to the problem of analyzing the time complexity of exact
inference in SFGs.

6 Complexity analysis

In this section, we start by demonstrating the gains in efficiency brought by our framework in the
general case, that is without assuming any structure on the potentials. We then show that by adding
one extra assumption on the factors, triangularity, we get further efficiency gains. We conclude the
section by giving several examples where triangularity holds in practice.

6.1 General SFGs

Here we compare the local running-time of the indexed matrix representation with previous approaches
based on graph algorithms [38]. By local, we mean that we do the analysis for a single operation at the
time. We present global complexity analyses for some important special cases in the next section. The
results here are stated in terms of K, the size of an individual transducer, but note that in sequence
alignment problems, K grows in terms of L because of potentials at the leaves of the tree. This is
explained in more details in the next section.

Normalization: Previous work has relied on generalizations of shortest path algorithms to Conway
semirings [10], which run in time O(K3). In contrast, since our algorithm is expressed in terms
of a single matrix inversion, we achieve a running time of O(Kω), where ω < 2.3727 is the
exponent of the asymptotic complexity of matrix multiplication [53]. Note that even though the
size of the original factors’ state spaces may be small (for example of the order of the length
of the observed sequences), the size of the intermediate factors created by the tensor products
used in the elimination algorithm makes K grow quickly.

Epsilon-removal: Classical algorithms are also cubic [37]. Since we perform epsilon removal using
one matrix multiplication followed by one matrix inversion, we achieve the same speedup of
O(K3−ω). Note however that this operation does not preserve sparsity in the general case, both
with the classical and the proposed method. This issue is addressed in the next section.

Pointwise products: The operation corresponding to pointwise products in the previous transducer
literature is the intersection operation [11, 38]. In this case, the complexity of our algorithm
is the same as previous work, but our algorithm is easier to implement when one has access
to a matrix library. Moreover, tensor products preserve sparsity. More precisely, we use the
following simple results: if A has k nonzero entries, and B, l nonzero entries, then forming the

12



tensor product takes time kl. We assume throughout this section that matrices are stored in a
sparse representation.

Note that these running times scale linearly in |Σ| for operations on unary factors, and quadratically
in |Σ| for operations on binary factors.

6.2 Triangular SFGs

When executing the elimination algorithm on SFGs, the intermediate factors produced by pointwise
multiplications are fed into the next operations, augmenting the size of the matrices that need to be
stored. We show in this section that by making one additional assumption, part of this growth can
be managed using sparsity and properties of tensor products.

We will cover the following two SFG topologies: the star SFG, and the perfect binary SFG, shown
in Figure 7. We denote the number of leaves by L, and we let N and c be bounds on the sizes of the
unary potentials at the leaves and the binary potentials respectively (by a size N potential M , we
mean that the matrices Mσ have size N by N). For example, in the phylogenetics setup, N is equal
to an upper bound on the lengths of the sequences being analyzed, L is the number of taxa under
study, and c = 2 in the case of the TKF91 model. We start our discussion with the star SFG.

In Figure 7, we show the result of the first two steps of the elimination algorithm.7 The operations
involved in this first step are pointwise products of the second kind. The intermediate factors produced,
M (1), . . . ,M (L) are each of size cN . The second step is a marginalization, which does not increase
the size of the matrices. We therefore have:

Z = φ

∑
σ̂∈Σ̂

{(
M (1)
ε

)∗
M

(1)
σ̂

∣∣∣∣ . . . ∣∣∣∣ (M (L)
ε

)∗
M

(L)
σ̂

}∗ . (4)

Computing the right-hand-side naively would involve inverting an (cN)L by (cN)L dense matrix—

even if the matrices M
(l)
σ̂ are sparse, there is no a priori guarantee for

(
M

(l)
ε

)∗
to be sparse as well.

This would lead to a slow running time of (cN)Lω. In the rest of this section, we show that this can
be considerably improved by using properties of tensor products and an extra assumptions on the
factors:

Definition 6. A factor, transducer or automaton is called triangular if its states can be ordered in
such a way that all of its indexed matrices are upper triangular. A SFG is triangular if all of its leaf
potentials are triangular.

Note that we do not require that all the factors of SFG be triangular. In the case of the TKF91
model for example, only the factors at the leaves are triangular. This is enough to prove the main
proposition of this section:

Proposition 7. If a star-shaped or perfect binary triangular SFG has L unary potentials of size N
and binary potentials of size c then the normalizer of the SFG can be computed in time (cN)L.

In order to prove this result, we need the following standard properties [29]:

Lemma 8. Let A(l) be m× k matrices, and B(l) be k × n matrices. We have:{
A(1)B(1)

∣∣∣∣ . . . ∣∣∣∣A(L)B(L)

}
=

{
A(1)

∣∣∣∣ . . . ∣∣∣∣A(L)

}{
B(1)

∣∣∣∣ . . . ∣∣∣∣B(L)

}
.

7We omit the factor at the root since its effect on the running time is a constant independent of L and N .
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... ...
...

M(1) M(L)M(2)

(a) (b)

Figure 7: (a) The binary topology. (b) The star topology with the first two steps of the elimination
algorithm on that topology. Note that in both cases we ignore the root factor, which only affect the
running time by a constant independent of L and N .

Lemma 9. If A(l) are invertible, then:{(
A(1)

)−1
∣∣∣∣ . . . ∣∣∣∣ (A(L)

)−1
}

=

{
A(1)

∣∣∣∣ . . . ∣∣∣∣A(L)

}−1

.

Lemma 10. If A is a m× k invertible matrix, and B is a k×n matrix such that A−B is invertible,
then

(
A−1B

)∗
= A(A−B)−1.

The next lemma states that in a sense triangular factors are contagious:

Lemma 11. If a factor is triangular, then marginalizing it or making it epsilon-free creates a trian-
gular potential. Moreover, the outcome of a pointwise product (either of the first or second kind) is
guaranteed to be triangular whenever at least one of its input automaton or transducer is triangular.

Proof. For marginalization and pointwise products, the result follows directly from Proposition 3, 4,
and 5. For epsilon-removal, it follows from Proposition 1 and the fact that the inverse of a triangular
matrix is also triangular.

We can now prove Proposition 7:

Proof. Note first that by Lemma 11, the matrices M
(i)
ε is upper triangular. Since the intermediate

factors represent probabilities, wM(l)(s) = Pτ (XΩ = s,Y ), we have that M
(i)
ε (j, j) < 1. It follows

that the eigenvalues of M
(i)
ε are strictly smaller than one, so Proposition 1 can be applied to M (i) for

each i ∈ {1, . . . , L}.
Next, by applying Proposition 2, we get:

Z = φ

∑
σ̂∈Σ̂

{(
M (1)
ε

)∗
M

(1)
σ̂

∣∣∣∣ . . . ∣∣∣∣ (M (L)
ε

)∗
M

(L)
σ̂

}∗ .
This expression can be simplified using Lemma 8 9, and 10 to get:

Z = φ

({(
M (1)
ε

)∗ ∣∣∣∣ . . . ∣∣∣∣ (M (L)
ε

)∗}∑
σ̂∈Σ

{
M

(1)
σ̂

∣∣∣∣ . . . ∣∣∣∣M (L)
σ̂

})∗

= φ

{M̄ (1)
ε

∣∣∣∣ . . . ∣∣∣∣M̄ (L)
ε

}({
M̄ (1)
ε

∣∣∣∣ . . . ∣∣∣∣M̄ (L)
ε

}
−
∑
σ̂∈Σ

{
M

(1)
σ̂

∣∣∣∣ . . . ∣∣∣∣M (L)
σ̂

})−1


= φ
(
A(A−B)−1

)
, (5)

where M̄ = I −M , A =

{
M̄

(1)
ε

∣∣∣∣ . . . ∣∣∣∣M̄ (L)
ε

}
, and B =

∑
σ̂∈Σ

{
M

(1)
σ̂

∣∣∣∣ . . . ∣∣∣∣M (L)
σ̂

}
.
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Figure 8: Wall clock times for computing the normalization of the SFG shown on the top left. By
varying the size of the leaf factors, we obtain five normalization problems. Each box plot compares
the running time of our method (denoted optimized, and built on top of the efficient matrix package
BLAS/ATLAS [52]) to a baseline implementation of the classical transducer algorithms [38]. See
Section 7 for details.

Equation (5) allows us to exploit sparsity patterns. By Lemma 11, the matrices M
(i)
ε , M

(i)
σ̂ are

upper triangular sparse matrices (more precisely: cN by cN matrices with cN non zero entries),
so the matrices A and B are upper triangular as well, with only O((cN)L) non-zero components.
Furthermore, if we let C = (A − B)−1, we can see that only its last column x is actually needed to
compute Z. At the same time, we can write (A−B)x = [0, 0, . . . , 0, 1], which can be solved using the
back substitution algorithm, getting an overall running time of O((cN)L).

Note that in the above argument, the only assumption we have used on the factors at the leaves
is triangularity. The same argument hence applies when these factors come from the elimination
algorithm executed on a binary tree. The running time for the binary tree case can therefore be
established by an inductive argument on the depth where the inductive step is the same as the
argument above.

7 Numerical simulations

In this section, we illustrate one practical advantage of our formalism: expressing SFG normalization
purely in terms of matrix equations makes it simple to transfer advances in numerical linear algebra
into the seemingly disconnected question of SFG normalization. These advances include platform-
specific self-tuning, efficient memory access, and algorithmic improvements [52].

To investigate the gains achievable by this technology transfer, we generated a first set of nor-
malization problems from a factor graph with five factors (Figure 8, top left), and a second set from
a factor graph with eleven factors (Figure 9, left). We vary the size of the factors at the leaves to
obtain two series of increasingly computationally intensive problems. Size is measured here by the
length of the matrix M in Proposition 3. We used binary factors of the same size as those described in
Section 2, generated artificial data at the leaves and computed the normalization using two methods.

15



●
10000

15000

20000

25000

30000

baseline optimized
method

T
im

e 
(m

s)

Size = 2187

●1e+05

2e+05

3e+05

4e+05

baseline optimized
method

T
im

e 
(m

s)

Size = 5184

Figure 9: Wall clock times for computing the normalization of the SFG shown on the left. Refer to
Figure 8 and the text.
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Figure 10: Left: Wall clock time as a function of the instance size for the graph with five factors.
This shows that the empirical gains of our optimized method increase with the problem size. Right:
Histogram of the running times providing a more detailed picture of the running times for the fourth
datapoint on this plot.

The first method, denoted optimized, is based on our matrix formulation and is implemented on
top of an optimized matrix library, BLAS/ATLAS [52]. We compare this to a baseline implementation
of the classical transducer algorithms [38]. The goal of this experiment is to show that advances in
numerical linear algebra can be translated into performance gains in SFG normalization. Note that
neither methods exploit triangular properties in this experiment.

In each experiment, the two methods provide the same final result (up to numerical precision),
but with widely different execution times. For each problem instance, we measured the wall-clock
time in milliseconds needed for computing the normalization operation under both methods, and we
replicated all experiments ten times. We show Figure 8 that for all but the smallest problem instance
size, the optimized method outperforms the baseline method. The same trend is visible in the larger
tree, Figure 9. We also show in Figure 10 that the empirical gains of the optimized method increase
with the problem size.

8 Discussion

By exploiting closed-form matrix expressions rather than specialized automaton and transducer algo-
rithms, our method gains several advantages. Our algorithms are arguably easier to understand and
implement since their building blocks are well-known linear algebra operations. At the same time,
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our algorithms have asymptotic running times better or equal to previous transducer algorithms, so
there is no loss of performance incurred, and even potential gains. In particular, by building imple-
mentations on top of existing matrix packages, our method automatically gets access to optimized
libraries [52], or to graphical processing unit (GPU) parallelization from off-the-shelf libraries such
as gpumatrix [36]. This last point is particularly attractive as GPUs are increasingly used outside
graphics as inexpensive massively parallel processing units. Last but not least, our method also has
applications as a proving tool. For example, despite a large body of theoretical work on the com-
plexity of inference in the TKF91 model [17, 46, 18, 31, 19], basic questions such as computing the
expectation of additive metrics under the TKF91 model remain open [8]. Our concise closed-form
expression for exact inference could be useful to attack this type of problems.

In phylogenies that are too large to be handled by exact inference algorithms, our results can still
be used as building blocks for approximate inference algorithms. For example, the acceptance ratio
of most existing MCMC samplers for the TKF91 model can be expressed in terms of normalization
problems on a small subtree of the original phylogeny [25]. The simplest way to obtain this subtree is
to fix the value of the strings at all internal nodes except for two adjacent internal nodes. Resampling
a new topology for these two nodes amounts to computing the normalization of two SFGs over a
subtree of four leaves (their ratio appears in the Metropolis-Hastings ratio) [40]. Our approach can
also serve as the foundation of Sequential Monte Carlo (SMC) approximations [47, 15, 5]. In this case,
the ratio of normalizations appears as a particle weight update. The matrix formulation also opens
the possibility of using low-rank matrices as an approximation scheme.
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[3] A Bouchard-Côté and M. I. Jordan. Evolutionary inference via the Poisson indel process. Proceedings of the
National Academy of Sciences of the USA, 10.1073/pnas.1220450110, 2012.
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