
Bayesian Phylogenetic Inference using a

Combinatorial Sequential Monte Carlo Method

Liangliang Wang Alexandre Bouchard-Côté Arnaud Doucet

Abstract

The application of Bayesian methods to large scale phylogenetics problems

is increasingly limited by computational issues, motivating the development of

methods that can complement existing Markov Chain Monte Carlo (MCMC)

schemes. Sequential Monte Carlo (SMC) methods are approximate inference al-

gorithms that have become very popular for time series models. Such methods

have been recently developed to address phylogenetic inference problems but

currently available techniques are only applicable to a restricted class of phylo-

genetic tree models compared to MCMC. In this paper, we propose an original

Combinatorial SMC (CSMC) method to approximate posterior phylogenetic tree

distributions which is applicable to a general class of models and can be easily

combined with MCMC to infer evolutionary parameters. Our method only relies

on the existence of a flexible partially ordered set structure and is more gener-

ally applicable to sampling problems on combinatorial spaces. We demonstrate

that the proposed CSMC algorithm provides consistent estimates under weak

assumptions, is computationally fast and is additionally easily parallelizable.

KEY WORDS: sequential Monte Carlo; particle Markov chain Monte Carlo; phyloge-

netics; Bayesian inference; poset.

1

1 Introduction

Bayesian statistics has formed the basis for many advanced models in phylogenet-

ics, incorporating under a unified framework the numerous aspects of evolution—

phylogeography, sequence evolution, alignment, molecular clocks (Lemey et al. 2009;

Drummond and Suchard 2010; Huelsenbeck and Ronquist 2001; Ronquist and Huelsen-

beck 2003; Ronquist et al. 2012; Suchard and Redelings 2006). However, a main

challenge in Bayesian phylogenetics is the requirement to compute a posterior over

a phylogenetic tree space. The exact calculation of this posterior involves summing

over all possible trees, and for each tree, integrating over all possible combinations of

branch lengths.

This challenging posterior computation is typically carried out by running MCMC

algorithms for long periods (Yang and Rannala 1997; Larget and Simon 1999; Huelsen-

beck and Ronquist 2001; Rannala and Yang 2003). Due to combinatorial constraints,

the distribution on tree space is often a complex multimodal distribution (Lakner et al.

2008), and the main difficulty lies in the efficiency with which topology proposals sam-

ple the tree space. MCMC imposes relatively strict constraints on the types of propos-

als that can be used. More precisely, to alleviate the problem of a high rejection rate,

only small moves are allowed in proposals, making it challenging to design fast mixing

algorithms. With a few exceptions (Lakner et al. 2008; Höhna et al. 2008; Höhna and

Drummond 2012), the proposals used by current phylogenetic MCMC samplers have

remained largely unchanged in the past decade. Moreover, existing MCMC proposals

are computationally expensive, with a computational cost dominated by a subset of

the likelihood recursions that need to be recomputed each time local operations are

applied.1

1For simple moves such as Nearest Neighbor Interchange (Lakner et al. 2008) the number of
recursions to recomputed is proportional to the number of branches separating the two successive

2

SMC methods are another class of sampling algorithms which have become popular

for state-space models (Doucet et al. 2001; Liu 2001) and are now increasingly used in

more general settings (Del Moral, Doucet, and Jasra 2006). However, because of the

intricacies of phylogenetic tree spaces, it is non-trivial to directly apply SMC methods

to posterior tree inference, and previous work on applying SMC to phylogenetics has

been limited in two important ways. First, SMC methods currently available (Teh

et al. 2008; Görür and Teh 2009; Görür et al. 2012; Bouchard-Côté et al. 2012) are

limited in the types of phylogenetic proposals they can use. Second, these methods do

not provide a natural framework to handle non-clock trees and indeed, have never been

applied to compute posteriors over such trees in previous work. This is an important

limitation, as most current work in phylogenetics relies on non-clock tree models.

Our first contribution is to show how both of these limitations can be addressed

using a new approach for building SMC phylogenetic tree inference algorithms. In our

CSMC framework, the flexibility on the proposal distributions generalizes both MCMC

methods and previous work on phylogenetic SMC. In particular, this flexibility makes

it easy to construct non-clock tree proposals that are easy to parallelize, and that do

not require expensive likelihood recalculations at each proposal step.

The proposed CSMC algorithm is motivated by a certain over-counting problem in

sequentially constructing a non-clock phylogenetic tree. A conventional SMC algorithm

applied to such a tree would favour the trees which can be constructed in multiple

ways, whereas in our algorithm, a graded partially ordered set (poset) on an extended

combinatorial space is used to compute correction terms and provides a consistent

estimate of the posterior.

Our second contribution is a method to jointly infer the phylogenetic tree and the as-

operations. For more complicated moves such as Subtree Prune and Regraft, the number of recursions
to recompute is proportional to the total number of branches in the tree.

3

sociated evolutionary parameters based on particle MCMC (Andrieu et al. 2010). We

use the CSMC algorithm to design an efficient high dimensional proposal for MCMC

updating jointly the tree and the evolutionary parameters. This is of significant interest

since modelling uncertainty over evolutionary parameters is one of the key advantages

of Bayesian phylogenetic methods over classical approaches.

2 Background and notation

2.1 Phylogenetic trees

Let X be a set of observed taxa, related through a phylogenetic tree t that we wish

to estimate. A phylogenetic X-tree t represents the relationship among observed taxa

via two objects: a tree topology and a set of branch lengths.

A tree topology is a connected acyclic graph, (V,E), where V is the set of vertices,

and E is the set of edges. Vertices that have degree one are called leaves, representing

the observed taxa; the other vertices are called internal nodes, denoting the unob-

served taxa. In a phylogenetic rooted X-tree, there is a special vertex called ‘root’

that has degree two; the other internal nodes have three neighbours (the parent and

two children). We regard the edges as being directed away from the root, describing

the evolution of species originating from the root. In unrooted trees, this graph is

undirected and does not contain a root node.

Branch lengths are positive real numbers, b(e), associated with each edge e ∈ E. A

branch length quantifies the intensity of the evolutionary changes between two nodes.

In basic models, branch lengths are proportional to the expected number of mutations

in the evolutionary history between two nodes. For all v, v′ ∈ V , we define b(v, v′) as

the sum of the branch lengths along the unique path between v and v′.

4

A tree is ultrametric if it can be rooted in a way that satisfies the following property:

for any vertex v ∈ V , we have b(v, x) = b(v, x′) for all descendants x, x′ of v, as

illustrated in Figure 1 (a). This assumption implies a constant evolutionary rate along

the paths from v to all its descendants. However it is well known that evolutionary rates

vary substantially, for example because of unequal generation times. As a consequence,

developing phylogenetic inference methods that do not make ultrametric assumptions

is highly relevant to biologists. These general trees are called non-clock trees. We will

denote the set of non-clock trees by X = X (X). There has been work on generalizing

ultrametric models to handle non-constant evolutionary rates (Thorne et al. 1998;

Drummond and Suchard 2010), but due to the higher dimensional parameters of these

models, non-clock models are still widely used.

2.2 Bayesian phylogenetic inference

Phylogenetic reconstruction is based on observed information Y located at the leaves

X of phylogeny. For X ′ ⊂ X, we use the notation Y(X ′) for the subset of observations

corresponding to a subset X ′ of the leaves. For simplicity, we assume that the obser-

vations take the form of a matrix yx,s, where x ∈ X and s denotes an aligned position

on the genomes, called a site. See Morrison (2006) for an account of how this type of

information is extracted from the raw biological sequences.

Our objective is to use n = |X| observed biological sequences to estimate phylogenetic

trees and parameters in the evolutionary model. In a Bayesian framework, we need

to specify the prior distribution and likelihood function. Our tree and likelihood are

parameterized by a vector of parameters, θ, equipped with a prior with density p(θ).

For a tree t ∈ X , the prior density given θ is denoted by p(t|θ). Branch lengths

are here considered as being part of t, not part of θ. For example, a common prior

5

over non-clock trees consists in a uniform distribution over topologies and a product

of independent exponential distributions with rate λbl over the branch lengths. The

probability of the observed data Y given parameters θ and tree t is P(Y|θ, t).
Bayesian inference relies on the joint posterior density,

p(θ, t|Y) = p(θ|Y)p(t|Y, θ) =
P(Y|θ, t)p(t|θ)p(θ)

P(Y)
, (1)

however computing the normalization, P(Y) =
∫ ∫

P(Y|θ, t)p(t|θ)p(θ) dθ dt, is often

intractable—for example the total number of distinct labelled topologies of a rooted

tree of n leaves is (2n− 3)!! (Semple and Steel 2003).

As it is standard in the phylogenetic literature, we assume that the sites (columns

in the matrix yx,s) are independent, and we use a continuous-time Markov chain to

model the evolution of each site. Letting Q denote the rate matrix of the continuous-

time Markov chain, and ξv,s, the state of the genome for the species v ∈ V at site

s, we write the evolutionary model along branch e = (v → v′) as P(ξv′,s = j|ξv,s =

i) = (exp(b(e)Q))i,j. If t is rooted, the full likelihood model, P(Y|θ, t), is described

by a directed graphical model. This graphical model has a topology (V,E), a set of

conditional probabilities given by P(ξv′,s = j|ξv,s = i) as above, and a root distribution

given by the stationary distribution of the continuous-time Markov chain with rate Q.

Unrooted trees are approached by restricting the continuous-time Markov chain to be

reversible, a common assumption in phylogenetics. In this case, all rootings keep the

likelihood invariant, so P(Y|θ, t) can be computed by picking an arbitrary rooting.

In a Bayesian model, the rate matrix Q is obtained from a parametric function

depending on the unknown parameters θ. For example, in the General Time Reversible

(GTR) model (Tavaré 1986), θGTR includes the stationary state frequencies of the four

nucleotides, (πA, πC , πG, πT), as well as symmetric rates of change from nucleotide i to

j, denoted γij, for i, j ∈ {A,C,G, T} such that i < j.

6

Two commonly used models to describe rate variation among sites in a sequence are

based on a Gamma distributed rate variation across sites and a proportion of invari-

ant sites. The shape parameter of this Gamma distribution is denoted by α and the

proportion of invariant sites by p0. In the most parameter-rich model considered in

the present paper, the parameters are θGTR+Γ+I = (θGTR, α, p0). Many other paramet-

ric models exist, ranging from simple to very complex, but they can all be handled

similarly within the Bayesian framework (Shapiro et al. 2006; Yang 2006).

3 Methodology

In this section, we introduce CSMC, an original algorithm to sample approximately

from a target probability measure π̄ on a combinatorial space X when one is only able

to evaluate pointwise an unnormalized version π of π̄. We denote by ‖π‖ the integral

of π over X so that π̄ = π/‖π‖. We then show how CSMC can be used to sample from

the posterior of phylogenetic trees π̄(t) = p(t|Y , θ) and how it can be combined with

MCMC so as to sample from p(θ, t|Y). In this paper, with a slight abuse of notation,

we will not distinguish between a measure and its density.

3.1 Finite setup

To simplify the presentation, we first introduce the algorithm under the assumption

that X is a finite but large combinatorial set (for example, a set of tree topologies).

We will show in Section 3.5 how this can be relaxed to accommodate branch lengths

in phylogenetics. At a high level, the main assumption on which our algorithm relies

on is that any object t in the target sample space X can be constructed incrementally

using a sequence of R intermediate objects.

7

components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X|− r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

s0=
v

x x'

root(a) (b)

0.4
0.2

0.2 A B C D

s3

A B C D

s2

A B C D

s1

A B C D

Figure 1: (a) An example of an ultrametric tree. (b) An example of the partial states of a
discrete rooted X-tree.

In phylogenetics for example, the intermediate objects we will use are based on forests.

As we do not consider here branch lengths, the term ‘tree’ is a short-hand for ‘tree

topology’. Consider for example a discrete rooted X-tree as in Figure 1 (b). Such a

tree can be constructed by starting from the disconnected graph with vertices X, and

by adding, at each step, one internal node v /∈ X, and a pair of edges connecting v

to a pair of roots from the previous generation. This is done such that the number

of connected components decreases by one at every step (decreasing the number of

connected components is equivalent to ensuring that no cycles are created). More

precisely, we will build each rooted X-tree t by proposing a sequence of X-forests

s0, s1, . . . , sR, where an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti

such that the disjoint union of leaves of the trees in the forest is equal to the original

set of leaves,
⋃
iXi = X. The forest sr is actually a tree if and only if r = R, where

R = |X| − 1.

More generally, we will call the intermediate object sr a partial state of rank r.

Our terminology (partial states, rank) has an order theoretic motivation that will

be described shortly. The set of all partial states of rank r will be denoted by Sr
(continuing with the preceding example, the partial states of rank r are those composed

of |X| − r trees), and the set of partial states across all ranks will be denoted by

S =
⋃
r Sr. The sets of partial states considered in this section are assumed to satisfy

the following three conditions: (1) The sets of partial states of different ranks are

disjoint, i.e. Sr ∩ Ss = ∅ for all r 6= s (in phylogenetics, this holds since a forest with

8

r trees cannot be a forest with s trees when r 6= s). (2) The set of partial states of

smallest rank has a single element denoted by ⊥, i.e. S0 = {⊥} (in phylogenetics, ⊥ is

the disconnected graph on X). (3) The set of partial states of rank R coincides with

the target space, SR = X (in phylogenetics, at rank R = |X| − 1, forests have a single

tree and are members of the target space X). These conditions will be subsumed by

the more general framework of Section 3.5, but the more concrete conditions above

help understanding the poset framework.

In order to construct the CSMC algorithm, the user first needs to specify an extension

of the measure π, defined only on the target space X , into a measure over the larger

space S. The restriction of this extended measure to X should coincide with the target

measure π. We abuse notation and use π for both the original target measure on X

and its extension on S.

In a Bayesian phylogenetic context, we have π(t) = πY(t) = P(Y|θ, t)p(t|θ), where

we are assuming fixed parameters θ, an assumption we will relax in Section 3.7. A

natural choice in non-clock models to obtain an extension of π into forests is to take a

product over the trees in the forest s as follows:

π(s) =
∏

(ti,Xi)∈s

πY(Xi)(ti). (2)

We call this choice of extension the natural forest extension, other choices are possible

(see Section 5 for more examples).

3.2 CSMC methodology

In this section, we introduce the CSMC algorithm, a procedure that approximates the

target probability measure π̄ and its normalizing constant ‖π‖ in R steps. At each

step r, a list of K partial states is kept in memory. Each element of this list is called

a particle, denoted sr,1, sr,2, . . . , sr,K ∈ Sr. To each particle sr,k is associated a positive

9

weight wr,k. Refer to Algorithm 1 for an overview of the steps described in more detail

in the following.

The general form of the algorithm has similarities with standard SMC algorithms,

with the important exception of the weight updates, which needs to be altered to

accommodate general combinatorial structures.

Given a list of weighted particles at rank r ≥ 1, we construct a discrete positive

measure:

πr,K(s) = ‖πr−1,K‖
1

K

K∑

k=1

wr,kδsr,k(s), for all s ∈ S, (3)

where δs is the Kronecker delta function. The algorithm constructs these measures

recursively as follows.

Algorithm 1 : Combinatorial Sequential Monte Carlo (CSMC)

π0,K ← δ⊥
for rank r = 1, 2, . . . , R do

for all k ∈ {1, . . . ,K} do
sample s̃r−1,k ∼ π̄r−1,K

sample sr,k ∼ ν+
s̃r−1,k

compute wr,k = w(s̃r−1,k, sr,k) using Equation (4)
end for
construct πr,K using Equation (3)

end for
return πR,K

The algorithm is initialized at rank r = 0 by initializing the list with K copies of the

least partial state ⊥. Given the empirical measure πr−1,K from the previous population

of particles, a new list of particles and weights is created as follows at rank r.

First, we resample K times from the probability measure π̄r−1,K and denote the

sampled particles by s̃r−1,1, s̃r−1,2, . . . , s̃r−1,K . One can also optionally add an MCMC

step at each rank r = 1, 2, · · · , R (after the resampling stage) as in the Resample-Move

algorithm (Gilks and Berzuini 2001). Second, we grow each of the resampled particle,

s̃r−1,k, into a new particle of rank r, denoted by sr,k using a proposal distribution

10

ν+
s : S → [0, 1]. Given an initial partial state s and proposed partial state s′, we

denote the probability of proposing s′ from s by ν+
s (s′). We assume that the successors

proposed from a partial state of rank r will always have rank r + 1; i.e. if s ∈ Sr and

ν+
s (s′) > 0, then s′ ∈ Sr+1. For example, when building discrete rooted X-trees, the

proposal needs to select a pair of trees to merge. One simple choice is to pick a pair

uniformly at random among the
(|X|−r

2

)
pairs; other choices are discussed in Section 5.

Finally, we compute a weight for each of these new particles using the following formula:

wr,k = w(s̃r−1,k, sr,k) =
π(sr,k)

π(s̃r−1,k)
·
ν−sr,k(s̃r−1,k)

ν+
s̃r−1,k

(sr,k)
, (4)

where ν−s is a probability distribution over S correcting an overcounting problem, de-

tailed in Section 3.3. While the weight expression superficially looks like a Metropolis-

Hastings ratio, the fundamental difference is that ν+ 6= ν− in general. The overcount-

ing correction is more closely related to the backward kernels of Del Moral et al. (2006),

but due to the combinatorial nature of the space, the poset framework plays an in-

strumental role in constructing ν− in the types of spaces we are interested in.

The algorithm returns at the final rank R a Monte Carlo approximation πR,K of π.

In a phylogenetic context, its normalized version π̄R,K approximates π̄(t) = p(t|Y , θ)

while ‖πR,K‖ approximates the marginal likelihood P(Y|θ).

In the next section, we show how ν− can be selected to guarantee convergence of

π̄R,K and ‖πR,K‖ to π̄ and ‖π‖ as K → ∞. The precise meaning of convergence will

be discussed in Sections 3.4 and 3.5.

3.3 Overcounting correction

The CSMC algorithm previously introduced is similar to standard SMC, with the

exception of the extra overcounting correction ν− in the weight update. Before giving

further details on how to select ν−, we first describe in the specific case of phylogenetic

11

{A,B}
{C,D} {A,C} {B,D} {A,D}

{B,C}

{A
,B
},
{A
,B
,C
}

{A
,B
},
{A
,B
,D
}

{A
,B
},
{C
,D
}

{C
,D
},
{C
,D
,A
}

{C
,D
},
{C
,D
,B
}

{A
,C
},
{A
,C
,B
}

{A
,C
},
{A
,C
,D
}

{A
,C
},
{B
,D
}

{B
,D
},
{B
,D
,A
}

{B
,D
},
{B
,D
,C
}

{B
,C
},
{B
,C
,A
}

{B
,C
},
{B
,C
,A
}

{A
,D
},
{B
,C
}

{A
,D
},
{A
,D
,C
}

{A
,D
},
{A
,D
,B
}

!-1(0)

!-1(1)

!-1(2)

!-1(3)
A
B
C
D

A
B
C
D

A
B
C
D

A
C
B
D

A
C
B
D

A
C
B
D

(a)

(b) (c)

!-1(0)

!-1(1)

!-1(2)

!-1(3)

0

1 2 3

4 5 6

7 8 9 10 s
(s)

XXX: make sure the measure norm and normalized are carefully defined

Formally, we show that under Assumption 1, we have, for all test function

φ : X → R, πR,Kφ→ πφ a.s. and in L2.

The proof has two steps. First, we note that when the induced Hasse

diagram is acyclic, previous SMC consistency proofs apply directly. Second,

we show that in the cyclic case, we can construct a certain distribution π̌ and

proposal q̌+ on a larger space Ŝ with the following properties.

1. The target distribution π can be obtained from π̌ by straightforward

marginalisation of the samples.

2. The induced Hasse diagram is acyclic, so the algorithm on Š is consistent

by the first step of the proof.

3. The proposal steps and weight updates in the algorithm on Š can be

shown to be equivalent to those of the original algorithm on S. This

shows that the algorithm on S is also consistent.

As described above, let us start by assuming the poset is acyclic. In this

case, we claim that we can invoke Proposition 4 of XXX. First, the bound-

edness assumptions required in Proposition 4 are automatically satisfied since

here |S| < ∞. Second, the connectedness assumption made in this previous

work, Assumption 2b, can be shown to hold using the following argument: as-

sume on the contrary that there is a connected component C ⊂ S in the Hasse

diagram that does not contain ⊥, and let s be a minimal element, where

s ∈ C by finiteness. Since {s� : ν−(s → s�) > 0} ⊂ ρ−1(ρ(s) − 1), we have a

contradiction. Therefore there can be only one connected component.

If the poset is not acyclic, we now present the reduction to the acyclic case.

Let S0:r = S0 × S1 × · · ·× Sr, the set of paths of length r in S. We will view

22

XXX: make sure the measure norm and normalized are carefully defined

Formally, we show that under Assumption 1, we have, for all test function

φ : X → R, πR,Kφ→ πφ a.s. and in L2.

The proof has two steps. First, we note that when the induced Hasse

diagram is acyclic, previous SMC consistency proofs apply directly. Second,

we show that in the cyclic case, we can construct a certain distribution π̌ and

proposal q̌+ on a larger space Ŝ with the following properties.

1. The target distribution π can be obtained from π̌ by straightforward

marginalisation of the samples.

2. The induced Hasse diagram is acyclic, so the algorithm on Š is consistent

by the first step of the proof.

3. The proposal steps and weight updates in the algorithm on Š can be

shown to be equivalent to those of the original algorithm on S. This

shows that the algorithm on S is also consistent.

As described above, let us start by assuming the poset is acyclic. In this

case, we claim that we can invoke Proposition 4 of XXX. First, the bound-

edness assumptions required in Proposition 4 are automatically satisfied since

here |S| < ∞. Second, the connectedness assumption made in this previous

work, Assumption 2b, can be shown to hold using the following argument: as-

sume on the contrary that there is a connected component C ⊂ S in the Hasse

diagram that does not contain ⊥, and let s be a minimal element, where

s ∈ C by finiteness. Since {s� : ν−(s → s�) > 0} ⊂ ρ−1(ρ(s) − 1), we have a

contradiction. Therefore there can be only one connected component.

If the poset is not acyclic, we now present the reduction to the acyclic case.

Let S0:r = S0 × S1 × · · ·× Sr, the set of paths of length r in S. We will view

22

0:1

Figure 2: An example of a simple cyclic poset.

the algorithm as incrementally building partial states over a larger space, with

š0 ∈ S0, š1 ∈ S0:1, š2 ∈ S0:2, . . . , šR ∈ S0:R. In other words, instead of viewing

the algorithm as operating over S =
�R

r=0 Sr, we will view it as operating over

Š =
�R

r=0 S0:r.

XXX: say we abuse notation in finite measure for π(s)

Let us start by introducing a new measure π̌ on Š. Let š be an element

in Š, i.e. a sequence of forests, say of length r, š = šr = (s0, s1, . . . , sr) ∈

S0:r. Following XXX, we define the new measure by a product π̌(ŝr) =

π(sr)
�r−1

j=1 ν
−(sj → sj−1). Note that since the ν−(s → ·) are assumed to be

normalized probability densities, marginalization over s0, s1, . . . , sr−1 recovers

the original extended measure π.

The proposal over Š creates an identical copy of the sequence of forests,

and adds to it a new elements by sampling from the original proposal density

ν+. Note that with this definition, given an element š ∈ Š, there can be only

23

(d)

Figure 2: (a) All the different sequences of partial states (forests) leading to fully specified
states (rooted X-trees). (b) An example of a simple cyclic poset. (c) An example of changing
the simple cyclic poset in (b) to an acyclic case. (d) An example of the set of parents %(s) of
a partial state s.

non-clock inference the problem that would arise if we were to omit this correction

factor. To simplify the discussion, we start by considering a model where there are no

observations.

In Figure 2 (a), we show all the different sequences of partial states (forests) leading

to one of the 1 · 3 · 5 = 15 fully specified states (rooted X-trees). An arrow between

partial states s and s′ means that s′ can be obtained from s by one application of the

proposal, i.e. that ν+
s (s′) > 0.

A balanced binary tree on four taxa, for example one with rooted clades {A,B}, {C,D},

can be constructed in two distinct ways: either by first merging A and B, then C and

D, or by first merging C and D, then A and B. On the other hand, an unbalanced tree

on the same set of taxa can be constructed in only one way, for example the tree with

clades {A,B}, {A,B,C} can only be constructed by first proposing to merge A and B,

then C and {A,B}. A consequence of this dichotomy is that under the uniform pro-

posal, the expected fraction of particles with a balanced topology of each type is 2/18,

12

while it is 1/18 for unbalanced topologies (since there are 18 proposal paths, 2 for each

balanced topology, 1 for each unbalanced one). Since we would like the probability of

each topology to be close to 1/15, the naive estimate is therefore inconsistent.

In order to resolve this issue (by defining an appropriate overcounting function), it

will be useful to formalize the graph shown in Figure 2 (b). This can be done by

defining a partial order ≤ on S. Recall that (S,≤) is called a partially ordered set,

or briefly a poset, if ≤ is a binary relation on S that is reflexive, anti-symmetric, and

transitive (Stanley 1986). Also, for s, s′ ∈ S, we say that s is covered by s′, written

s ≺ s′, if s ≤ s′ and there is no z ∈ S between s and s′. The covering relation

determines the partial order in a finite ordered set, implying that in our combinatorial

setup we can induce a poset on the extended space S by deeming that s′ covers s if

and only if ν+
s (s′) > 0.

Recall that S =
⋃
r Sr. Our poset (S,≤) is equipped with an extra structure called

a rank ρ: a function from S to {0, 1, · · · , R} such that ρ(s0) = 0 if s0 is a minimal

element of the poset, and ρ(s′) = ρ(s)+1 if s ≺ s′ in S. With these definitions, graphs

such as Figure 2 (b) can then be regarded as the Hasse diagram corresponding to this

induced poset, namely a graph where the set of vertices is S, and there is an edge

between s and s′ whenever s ≺ s′.

In previous work (Bouchard-Côté et al. 2012), the overcounting problem has been

avoided by forbidding proposals ν+ that induce a cyclic Hasse diagram. In the CSMC

algorithm, ν− is used to avoid this artificial restriction. We present the solution when

S is a finite space in this section. The finite assumption is lifted in Section 3.5.

In order to have consistency as in Proposition 2, the only requirement on ν− is:

Assumption 1. For all s, s′ ∈ S, ν+
s (s′) = 0 implies ν−s′ (s) = 0.

We now give an example where Assumption 1 is satisfied. Let %(s) denote the set

13

of possible parents of a partial state s and |%(s)| its cardinality. When |%(s′)| is finite

then selecting ν−s′ (s) = |%(s′)|−1 × 1[ν+
s (s′) > 0] ensures Assumption 1 holds. As

∑
s 1[ν+

s (s′) > 0] = |{s : ν+
s (s′) > 0}| = |%(s′)|, this choice of overcounting correction

ν−s′ (s) is indeed a probability measure for any s′. In phylogenetics, |%(s)| is equal to

the number of nontrivial trees in the forest s, where a tree is said to be trivial if it has

a single leaf in it (see Figure 2 (d)), i.e. |%(s′)| = ∑(ti,Xi)∈s′ 1[|Xi| > 1].

While Assumption 1 is weak, one can select ν− so as to minimize the variance of the

weights appearing in the CSMC algorithm by generalizing Proposition 3.1 in Del Moral

et al. (2006).

3.4 Analysis in the finite case

To motivate further the overcounting correction, we sketch in this section an elementary

proof that CSMC estimates converge in L2 norm. We write µφ as a short-hand for the

integral of a function φ with respect to a measure µ.

Formally, we will prove the following result, where for simplicity, in this paper →

denotes convergence as the number of particles K →∞ in L2 unless stated otherwise.

Proposition 2. Under Assumption 1, we have πR,Kφ→ πφ for all φ : X → R.

This implies that π̄R,Kφ→ π̄φ and ‖πR,K‖ → ‖π‖ where ‖πR,K‖ =
∏R

r=1

(
1
K

∑K
k=1wr,k

)
.

In our Bayesian context, this means that our estimates of the posterior expectations

and of the marginal likelihood are convergent.

Proposition 2 can be established in two steps. First, previous SMC results apply

directly when the induced Hasse diagram is acyclic. Second, we show that in the

cyclic case, we can construct a certain distribution π̌ and proposal ν̌+ on a larger

space Š with the following properties: (1) The target distribution π can be obtained

from π̌ by marginalization; (2) The induced Hasse diagram is acyclic, so the algorithm

14

on Š is consistent by the first step of the proof; (3) The proposal steps and weight

updates of a standard SMC algorithm on Š are equivalent to the CSMC algorithm.

Hence Proposition 2 follows from standard SMC results.

As described above, let us start by assuming the poset is acyclic. In this case, we

claim that we can invoke Proposition 4 of Bouchard-Côté et al. (2012). First, the

boundedness assumptions required in Proposition 4 are automatically satisfied since

here |S| < ∞. Second, the connectedness assumption made in this previous work,

Assumption 2b (which states that the Hasse diagram, viewed as an acyclic graph,

needs to be connected), can be shown to hold using the following argument: assume

on the contrary that there is a connected component C ⊂ S in the Hasse diagram that

does not contain ⊥, and let s be a minimal element, where s ∈ C by finiteness. Since

{s′ : ν−s (s′) > 0} ⊂ ρ−1(ρ(s) − 1), we have a contradiction. Therefore there can be

only one connected component.

We present the reduction to the acyclic case. Let S0:r = S0 × S1 × · · · × Sr, the set

of paths of length r + 1 in S. We will view the algorithm as incrementally building

partial states over a larger space, with š0 ∈ S0, š1 ∈ S0:1, š2 ∈ S0:2, . . . , šR ∈ S0:R. In

other words, instead of viewing the algorithm as operating over S =
⋃R
r=0 Sr, we will

view it as operating over Š =
⋃R
r=0 S0:r.

Let us start by introducing a new measure π̌ on Š. Let š be an element in Š, i.e.

a sequence of forests, say of length r + 1, š = šr = (s0, s1, . . . , sr) ∈ S0:r. Follow-

ing Del Moral et al. (2006), we define the new unnormalized measure by a product

π̌(šr) = π(sr)
∏r

j=1 ν
−
sj

(sj−1). Since the ν−s are assumed to be probability distributions,

marginalization over s0, s1, . . . , sr−1 recovers the original measure π.

The proposal over Š creates an identical copy of the sequence of forests, and adds to

it a new element by sampling from the proposal density ν+. With this definition, given

an element š ∈ Š, there can be only one predecessor %(š), namely the prefix of the

15

sequence with the last element removed. As a simple example, Figure 2 (c) shows the

acyclic poset over the extended space for the simple finite cyclic poset in Figure 2 (b).

Finally, standard SMC operating on this extended space can be seen to be equivalent

to CSMC, since the weight updates simplify to:

π̌(šr)

ν+
šr−1

(šr)π̌(šr−1)
=

π(sr)
∏r
j=1 ν

−
sj (sj−1)

ν+
šr−1

(šr)π(sr−1)
∏r−1
j=1 ν

−
sj (sj−1)

=
π(sr)ν

−
sr (sr−1)

π(sr−1)ν+
sr−1(sr)

.

This completes the proof in the finite cyclic case.

3.5 General setup

In this section, we extend the result of the previous section to more general spaces.

As before, π denotes the unnormalized target measure, but in this section we do not

restrict π to be defined over a discrete space. More precisely, let FX denote a sigma-

algebra on X , and let π : FX → [0,∞). We assume that the user has provided an

extension π : FS → [0,∞), and a pair of forward and backward probability kernels

ν+, ν− : S × FS → [0, 1].

Next, we define the following measures on the product space S × S: τ+(A × B) =

πA(ν+(B)) =
∫
πA(dx)ν+

x (B), τ−(A × B) = πB(ν−(A)) =
∫
πB(dx)ν−x (A), where

A,B ∈ FS , and for any measure λ and measurable A, λA(B) denotes λ(A ∩B).

We will make two assumptions.

Assumption 3. We have τ− � τ+.

This assumption implies by the Radon-Nikodym theorem the existence of a derivative

τ−/τ+ : S ×S → [0,∞). We also assume that there is a version w = τ−/τ+ such that:

Assumption 4. There is a ranked poset (S,≺, ρ) such that s′ covers s if and only

if w(s, s′) > 0. Using the notation πr as a shorthand for πρ−1(r), the Hasse diagram

16

induced by ≺ is (a) connected and (b) there is an R such that πr = π for r ≥ R, and

that πr is a Dirac delta for r ≤ 0.

To get a compact notation for CSMC, we introduce the following Monte Carlo prop-

agation operator :

(propK λ)φ = ‖λ‖
(

1

K

K∑

k=1

w(Sk, S
′
k)φ(S′k)

)
,

where Sk ∼ λ̄, S ′k|Sk ∼ ν+
Sk

(·), independently, λ : FS → [0,∞) is an arbitrary positive

measure on the poset, and φ : S → R is a test function. We remind the reader that

these operators are random. We have dropped the dependence on Sk, S
′
k to simplify

the notation.

The propagation operator incorporates both a multinomial resampling step and a

proposal step in one equation. If we denote the composition of these operators by

prop2
K π0 = (propK(propK π0)), where π0 = δ⊥, then the full CSMC algorithm can be

summarized by πR,K = propRK π0. With this notation, we can write the main result as:

Proposition 5. Under Assumptions 3 and 4, and if φ : X → R is measurable, |φ| ≤ C1

and w ≤ C2 for some C1 and C2, then for all r ∈ {1, 2, . . . , R}, πr,Kφ → πrφ. In

particular, πR,Kφ→ πφ.

The proof and supporting lemmas can be found in the appendix.

3.6 A concrete non-clock phylogenetic tree example

We now apply the theory of the last section to construct a detailed example of a CSMC

algorithm handling non-clock trees with continuous branch lengths. More precisely we

will describe the poset, the extended distribution on this poset, the proposal, and the

overcounting correction.

17

The poset we will use is defined over rooted non-clock forests s = {(ti, Xi)}, which

we formally define as a set of rooted non-clock Xi-trees ti. The poset structure defined

over this set S is induced by forest inclusion: a forest s is deemed to precede another

forest s′ if the topology of s is a subset of the topology of s′, and the branch lengths

of the shared edges match in s and s′.

Note that the extended distribution over S defined by Equation (2) can accommodate

non-clock trees with branch lengths, for example by setting its constituents P(Y|θ, t)

and p(t|θ) to those described in Section 2.2.

To specify a proposal over rooted non-clock forests, three elements need to be sam-

pled: the pair of trees to merge, the length of the added branch b′, and the new position

of the root. To pick the pair of trees to merge, the cheapest option is to pick the pair

of trees in s uniformly at random among the
(|s|

2

)
pairs.

For the proposal over branch lengths, we need to consider two subcases, depending

on the number of trees in the forest. If there are exactly two trees in the forest before

applying the proposal (in other words, if this is the last iteration of CSMC), we propose

a single length b′1 distributed according to an exponential distribution with parameter

λbl (see Section 2.2). Otherwise if there are more than two trees, we propose two

independent branch lengths, b′1, b
′
2, each with rate λbl. The density of the proposal ν+

is therefore given by:

ν+
s (s′) =

(|s|
2

)−1

λbl exp(−b′1λbl)
(
1[|s| = 2] + λbl exp(−b′2λbl)1[|s| > 2]

)

For the overcounting correction, we can still apply the choice of ν− discussed in the

finite setup even though S is continuous. Indeed, the way we construct the partial

order ensures |%(s′)| <∞.

Putting everything together, writing (without loss of generality)

s′ = s ∪ {(tm, Xm)}\{(t1, X1), (t2, X2)},

18

for some merged subtree (tm, Xm) connecting the subtrees (t1, X1) and (t2, X2), we get

the weight update:

w(s, s′) =
P(Y(Xm)|θ, tm)

P(Y(X1)|θ, t1)P(Y(X2)|θ, t2)

1∑
(ti,Xi)∈s′ 1[|Xi| > 1]

.

3.7 Particle Markov chain Monte Carlo

We have seen in the previous sections how CSMC can be used to obtain approximations

p̂(t|θ,Y) and P̂(Y|θ) of both p(t|θ,Y) and P(Y|θ). However, as discussed in Section

2.2, in most realistic scenarios the evolutionary parameters θ are unknown and we are

interested in sampling from p(θ, t|Y).

Designing efficient MCMC methods in this context is challenging. Standard strategies

consist of updating the parameters given the tree and updating the tree given the

parameters. Even when θ is known, it is difficult to sample from p(t|Y , θ) and this

was the main motivation for the introduction of the CSMC method. Moreover, even if

it were possible to sample efficiently from p(t|Y , θ), such a Gibbs type strategy would

mix slowly when the tree and parameters are strongly correlated under the posterior.

We propose here an alternative algorithm where we update jointly the parameter and

the tree. This algorithm can be thought of an approximation of the ‘ideal’ marginal

Metropolis-Hastings algorithm targeting p(θ, t|Y) using a proposal qmmh((θ, t), (θ∗, t∗))

= qparam(θ, θ∗)p(t∗|Y , θ∗), where qparam(θ, ·) is a proposal distribution to propose a new

parameter from the current value θ. The terminology “marginal” stems from the fact

that this is somewhat equivalent to integrating out t as the resulting acceptance ratio

is independent of t. Unfortunately this algorithm cannot be implemented as it requires

being able to sample from p(t|Y , θ) and the acceptance ratio is dependent on P(Y|θ).

19

Algorithm 2 : Particle marginal Metropolis-Hastings

Initialization, i = 0,
set θ(0) arbitrarily and
run the CSMC algorithm targeting p(t|Y, θ(0)), sample t(0) ∼ p̂(·|Y, θ(0)) and

let P̂(Y|θ(0)) denote the marginal likelihood estimate.
for iteration i ≥ 1 do

sample θ∗ ∼ qparam(θ(i− 1), ·),
run the CSMC algorithm targeting p(t|Y, θ∗), sample t∗ ∼ p̂(·|Y, θ∗) and

let P̂(Y|θ∗) denote the marginal likelihood estimate. With probability

min

(
1,

P̂(Y|θ∗)p(θ∗)
P̂(Y|θ(i− 1))p(θ(i− 1))

qparam(θ∗, θ(i− 1))

qparam(θ(i− 1), θ∗)

)
, (5)

set θ(i) = θ∗, t(i) = t∗, and P̂(Y|θ(i)) = P̂(Y|θ∗); otherwise set θ(i) = θ(i− 1), t(i) = t(i− 1)

and P̂(Y|θ(i)) = P̂(Y|θ(i− 1)).
end for

The main idea behind the particle marginal Metropolis-Hastings (Andrieu et al. 2010)

is to substitute the CSMC estimates p̂(t|θ,Y) and P̂(Y|θ) for p(t|Y , θ) and P(Y|θ). In

our context, this algorithm takes the form described in Algorithm 2. The key result

of Andrieu et al. (2010), which can be straightforwardly adapted here, states that

whatever being the number K of particles used in the CSMC, the particle MCMC

kernel admits p(θ, t|Y) as invariant distribution. However, the choice of K will affect

the performance of the algorithm. Doucet et al. (2015) give theory showing that

one should select K such that the standard deviation of the log-likelihood estimate is

around one so as to minimize the asymptotic variance of the resulting particle MCMC

estimates for fixed computational efforts.

4 Numerical examples

We checked the correctness of our implementation of the CSMC algorithm (within

particle MCMC) using the joint distribution testing methodology of Geweke (2004)

(see Supplementary Document) before giving the following numerical examples. In

this section, we used the commonly adopted four rate category discrete approximation

20

Poset-correction Standard-SMC

ratio in the MH ratio is

q{�(i� 1)|�⇥}
q{�⇥|�(i� 1)} = m.

4 Numerical examples

4.1 Synthetic posets

We start with an illustration of the e�ect that a lack of appropriate correction

can have on the approximation in cyclic posets. We use a small synthetic

poset where the exact target distribution can be computed easily, namely the

finite poset S from Figure 3 (left). Here both the exact solution and the

approximations are low-dimensional multinomial distributions, so the total

variation distance can be computed e⇤ciently.

First, we use this simple test case to show that Assumption 2 on ⇥� is

necessary to have consistency (Proposition 4). Two versions of the parti-

cle algorithm presented in the previous section are compared: the first one,

‘Poset-correction’ uses a backward kernel satisfying Assumption 2, while the

second one, ‘Standard-SMC’, does not. The latter uses a backward proposal

proportional to ⇥̃� ⇥ 1, in which case the weight update reduces to the weight

update found in state-space SMC algorithm. It can be checked easily that this

choice violates Assumption 2.

In Figure 4 (left), we compare the performance of the two algorithms as

the number of particles increases. Performance is measured using the total

variation distance, and the experiment for each number of particle is repeated

1000 times using di�erent random seeds. The results show that only the algo-

rithm satisfying Assumption 2 gives an approximation with a total variation

26

ratio in the MH ratio is

q{�(i� 1)|�⇥}
q{�⇥|�(i� 1)} = m.

4 Numerical examples

4.1 Synthetic posets

We start with an illustration of the e�ect that a lack of appropriate correction

can have on the approximation in cyclic posets. We use a small synthetic

poset where the exact target distribution can be computed easily, namely the

finite poset S from Figure 3 (left). Here both the exact solution and the

approximations are low-dimensional multinomial distributions, so the total

variation distance can be computed e⇤ciently.

First, we use this simple test case to show that Assumption 2 on ⇥� is

necessary to have consistency (Proposition 4). Two versions of the parti-

cle algorithm presented in the previous section are compared: the first one,

‘Poset-correction’ uses a backward kernel satisfying Assumption 2, while the

second one, ‘Standard-SMC’, does not. The latter uses a backward proposal

proportional to ⇥̃� ⇥ 1, in which case the weight update reduces to the weight

update found in state-space SMC algorithm. It can be checked easily that this

choice violates Assumption 2.

In Figure 4 (left), we compare the performance of the two algorithms as

the number of particles increases. Performance is measured using the total

variation distance, and the experiment for each number of particle is repeated

1000 times using di�erent random seeds. The results show that only the algo-

rithm satisfying Assumption 2 gives an approximation with a total variation

26

ι1-ι

T
ot

a
l

va
ri

at
io

n
d

is
ta

n
ce

1e+01 1e+03 1e+050.
0

0.
1

0.
2

0.
3

0.
4

0.
5

● Poset−correction
Standard−SMC

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
35

0.
45

●

●

●

●

●

●

●

Posets Number of particles Backward parameter ι
(a) (b) (c)

Figure 3: (a) The support of the backward kernels used in the synthetic poset experiments.
(b) Total variation distance of the particle approximation to the exact target distribution using
the two algorithms as the number of particles K increases. (c) The total variation distance as
a function of the parameter ι for K = 10.

to approximate a gamma rate distribution (Yang 2006). The Java software allowing

to reproduce all the experiments in this section is available at http://people.stat.

sfu.ca/~lwa68/csmcphylo/CSMC-Phylo.html.

4.1 Synthetic posets

We start with an illustration of the effect that a lack of appropriate correction can

have on the approximation in cyclic posets. We use a synthetic poset with a small

cardinality |S| < ∞ so that the target distribution can be computed exactly. The

poset has a support as in Figure 2 (b), with each value on the support generated

from independent uniform distributions, and then normalized. 2 Here both the exact

solution and the approximations are low-dimensional multinomial distributions, so the

total variation distance can be computed efficiently.

First, we use this simple test case to show that Assumption 3 on ν− ensures con-

sistency of the estimates (Proposition 5). Two SMC algorithms are compared: the

first one, ‘Poset-correction’ is a CSMC algorithm using a backward kernel satisfying

2The values of π, ν+, ν− can be downloaded from http://people.stat.sfu.ca/~lwa68/

csmcphylo/syntheticPoset.

21

http://people.stat.sfu.ca/~lwa68/csmcphylo/CSMC-Phylo.html
http://people.stat.sfu.ca/~lwa68/csmcphylo/CSMC-Phylo.html
http://people.stat.sfu.ca/~lwa68/csmcphylo/syntheticPoset
http://people.stat.sfu.ca/~lwa68/csmcphylo/syntheticPoset

Assumption 3, while the second one, ‘Standard-SMC’, does not. The latter can be

equivalently viewed as using a backward proposal proportional to ν̃−s′ (s) = 1 on all s

such that ρ(s′) = ρ(s) + 1 , in which case the weight update reduces to a standard

SMC weight update. It can be checked easily that this choice violates Assumption 3.

The supports of the two backward kernels are shown in Figure 3 (a).

In Figure 3 (b), we compare the performance of the two algorithms as the number

of particles increases. The performance of the algorithms is measured using the total

variation distance, and the experiment for each number of particle is repeated 1000

times using different random seeds. The results show that only the algorithm satisfying

Assumption 3 gives an approximation with a total variation distance going to zero as

the number of particles K increases.

We did a second experiment to give an example where cycles in posets are ben-

eficial. In this experiment, we fix the structure of the backward kernel as in the

‘Poset-correction’, with the exception of one of the backward transition, which we

parameterize with a number ι ∈ [0, 1] shown in Figure 3 (a). When ι ∈ {0, 1}, this

effectively corresponds to removing a cycle in the Hasse diagram of the poset. We

show in Figure 3 (c) the total variation distance as a function of this parameter ι for

K = 10. It can be seen that the best performance is attained away from the points

{0, 1}, demonstrating that cycles can indeed be beneficial.

4.2 Phylogenetic experiments

Reconstruction of synthetic phylogenies. In this study, we evaluate the quality

of phylogenetic trees reconstructed using the proposed CSMC method. In each exper-

iment, we summarize the posterior tree distribution using the majority-rule consensus

tree (Felsenstein 2003), and we calculate the tree distance between the majority-rule

22

consensus trees and the true trees using the Robinson Foulds metric (Robinson and

Foulds 1981). Smaller tree distances reflect better tree reconstructions.

We simulated 1000 ultrametric trees of 100 taxa, assuming the waiting time be-

tween two coalescent events was exponentially distributed with rate 10. The non-clock

trees were obtained by perturbing the branch lengths of ultrametric trees. Specifi-

cally, we modified a branch of length b by adding to it a noise randomly sampled

from Unif(−.3b, .3b). For each tree, we generated 10 datasets, each consisting of

100 DNA sequences of length 2000, using the continuous-time Markov chain that

is parameterized by the GTR+Γ+I model with (πA, πC , πG, πT) = (0.3, 0.2, 0.2, 0.3),

(γAC , γAG, γAT , γCG, γCT , γGT) = (0.26, 0.18, 0.17, 0.15, 0.11, 0.13), α = 0.5, and p0 = 0.

The CSMC algorithm was applied to each of these datasets. For comparison, we

also used a popular Bayesian phylogeny software package, MrBayes, which provides an

efficient implementation of MCMC for a range of tree models (Huelsenbeck and Ron-

quist 2001; Ronquist et al. 2012). In this set of experiments, we fixed the parameters

to the true values and focused on comparing their performance in phylogenetic tree

estimation (results with unknown parameters are presented further in this section).

Priors for the branch lengths were exponential distributions with rate 10. We set a

uniform prior over tree topologies.

In both the CSMC and MCMC algorithms, the computational bottleneck is the peel-

ing recurrence (Felsenstein 1981)—the sum-product or belief propagation recurrence,

specialized to phylogenetics—, which needs to be computed at each speciation event.

The running time of each recurrence call is proportional to the number of sites times

the squares of the number of characters.3 Since our algorithms and MrBayes are im-

plemented in different programming languages (Java versus C), we first report running

3This can be accelerated by parallelization (Ayres et al. 2012), but this is orthogonal as it is
possible to do so with both CSMC and MCMC.

23

R
ob

in
so

n
F

ou
ld

s

1e+05 1e+06 1e+07 1e+08

0
5

10
15

20

1e+05 1e+06 1e+07 1e+08

0
5

10
15

20

1e+05 1e+06 1e+07 1e+08

0
5

10
15

20● CSMC
MCMC

● ● ● ●

1e+05 5e+06 1e+08

0
5

10
15

20
25

30

1e+05 5e+06 1e+08

0
5

10
15

20
25

30

1e+05 5e+06 1e+08

0
5

10
15

20
25

30

● CSMC
MCMC

●

● ● ● ● ● ● ● T
im

e
(m

il
li

se
co

n
d

s)

1 2 3 40e
+

00
3e

+
05

6e
+

05

of peeling recurrences # of peeling recurrences Number of threads

(a) (b) (c)

Figure 4: The mean Robinson Foulds metric (standard deviation) versus the # of peeling
recurrences in log scale averaged over 1000 datasets simulated from ultrametric trees (a) and
non-clock trees (b). (c) Computing time in milliseconds versus different number of threads.

times here as the number of times the peeling recurrence is calculated—but we also

report wall clock times below. Figure 4 (a) and (b) show the mean and standard de-

viation of the Robinson Foulds metric versus the number of peeling recurrences in log

scale using the datasets simulated from ultrametric trees and non-clock trees, respec-

tively. In this setup, CSMC generally outperformed MrBayes in terms of providing a

higher mean accuracy as well as a smaller variance for any given computational budget.

More specifically, for ultrametric trees, CSMC can achieve a Robinson Foulds metric

that is very close to zero with the number of particles as small as 1000 (equivalently

105 peeling recurrences) in about 3.6 minutes. In contrast, MrBayes used more than

80 minutes to reach similar performance. For non-clock trees, CSMC outperformed

MrBayes when the number of peeling recurrences is smaller than about 108; using a

larger number of iterations (in MCMC) and particles (in CSMC), CSMC and MrBayes

performed similarly for the simulated datasets.

Gains from parallelization. To illustrate the computational gains achievable by

parallelizing CSMC, we ran CSMC on two simulated datasets from an ultrametric tree

and a non-clock tree, each containing 30 observed taxa and 2000 sites. We ran our

algorithm using 100,000 particles, varying the number of threads used on a 2.40GHz

24

πA πC πG γAC γAG γAT γCG γCT α
True 0.3 0.2 0.2 0.26 0.18 0.17 0.15 0.11 0.5

pMCMC .28(.01) .21(.01) .22(.01) .31(.02) .18(.02) .17(.02) .13(.02) .12(.01) .48(.04)
MrBayes .28(.01) .21(.01) .22(.01) .30(.02) .18(.02) .17(.02) .13(.02) .12(.01) .49(.05)

Table 1: True values of the evolutionary parameters, and posterior means and standard
deviations obtained using MrBayes and particle MCMC. We omit the parameters πT , γGT ,
which are deterministic functions of those shown here (via simplex and rate normalization
constraints).

Intel Xeon 16-cores E7330 architecture. Figure 4 (c) shows the computing time in mil-

liseconds versus different number of threads for the two datasets. The results show that

notable speed gains can even be made by adding a small number of additional cores.

In this experiment, only the proposal was parallelized. The resampling step, which

can be expensive when a large number of particles is used, could also be parallelized

(Lee and Whiteley 2014).

Estimation of evolutionary parameters. We generated a random ultrametric tree

of 50 taxa and simulated sequences of length 1000 from the same GTR+Γ model as the

previous experiment, but holding out all GTR+Γ parameters this time. We used 10,000

particles in the CSMC algorithm, and ran 10,000 MCMC iterations (total running time:

3h19m). We used the default setting for MrBayes and ran 107 MCMC iterations (total

running time: 5h30m). We used trace plots to ensure that the number of iterations was

sufficient for both MrBayes and particle MCMC. Table 1 shows the true values and

the posterior means and standard deviations of the evolutionary parameters obtained

using MrBayes and particle MCMC. Figure 5 shows the histograms of the parameter

posteriors and the log-likelihood of the posterior trees obtained using particle MCMC

(first row) and MrBayes (second row). While the parameter posteriors are similar,

particle MCMC generally samples higher likelihoods, with an average log-likelihood

of −5960 (2.4) versus −5969 (6.4) for MrBayes. The cause of the difference is most

likely that the posterior distribution of trees is multimodal and that MCMC can be

25

0.35 0.45 0.55 0.65

0
2

4
6

8
10

0.18 0.22

0
10

20
30

0.12 0.16 0.20 0.24

0
5

10
15

20

−5970 −5960

0.
00

0.
10

0.4 0.5 0.6 0.7

0
2

4
6

8

0.16 0.20 0.24

0
10

20
30

0.15 0.20 0.25

0
5

10
15

20

−6000 −5980 −5960

0.
00

0.
02

0.
04

0.
06

α πC rAG Loglikelihood

Figure 5: Histograms of a representative subset of the parameter posterior distributions, and
of the log-likelihood of the posterior trees obtained using particle MCMC (first row, computed
in 3h19m) and MrBayes (second row, computed in 5h30m). Dashed vertical lines represent the
true values of the parameters.

more easily trapped in a local maximum. To verify this, we initialized MrBayes with

the tree obtained from particle MCMC at the last iteration (t(ilast) in the notation of

Algorithm 2, where ilast denotes the last particle MCMC iteration) and ran MrBayes

for 107 iterations. With this initialization, the average log-likelihood of MrBayes was

−5962 (5.4), which is closer to the result from particle MCMC.

Primate dataset. To illustrate our method, we analyzed a set of mitochondrial DNA

sequences for the protein coding regions of nine primates (Brown et al. 1982) with

a GTR+Γ model. Each DNA sequence has 888 sites. To select an efficient trade-off

between the number of particles K and the number of MCMC iterations, we follow

Doucet et al. (2015), which prescribes selecting K such that the standard deviation of

the log-likelihood estimate is around one. Let σ(θ̂;K) denote the standard deviation

of the log-likelihood estimate obtained from CSMC using K particles, where θ̂ is the

posterior mean of the evolutionary parameters from a short particle MCMC chain

using a large number of particles (50, 000 in this example). Table 2 shows that σ(θ̂;K)

26

K 1,000 10,000 11,000 12,000 15,000 50,000

σ(θ̂;K) 12.798 1.356 1.189 0.998 0.993 0.553

Table 2: The standard deviations of the log-likelihood estimates obtained using CSMC run
on the primate dataset.

Particle MCMC MrBayes

Figure 6: The majority-rule consensus trees for the primate dataset estimated by the particle
MCMC and MrBayes. The numbers on the trees represent the clade posterior probabilities
(number 100 is omitted).

decreases as the number of K increases, having σ(θ̂; 12, 000) close to one. We ran the

particle MCMC using 12,000 particles for 10,000 iterations, which took 56 minutes.

For comparison, we ran MrBayes for 107 iterations, which took 55 minutes. The

mean (standard deviation) log-likelihoods are −5038 (2.6) using the particle MCMC

and −5040 (3.8) using MrBayes. Figure 6 depicts the majority-rule consensus trees

with log-likelihoods −5655 and −5873, obtained by the particle MCMC and MrBayes,

respectively.

Cichlid Fishes. We analyzed aligned protein coding mitochondrial DNA sequences

obtained from 12 species from two tribes (Ectodini and Lamprologini) of African cichlid

fish (Kocher et al. 1995; Cheon and Liang 2008). Each DNA sequence consists of 1047

sites. Since about a half of the sites have identical nucleotides, we used the GTR+Γ+I

model, where there is one parameter, p0, to consider the proportion of the invariant

27

sites. We used 20,000 particles in the CSMC algorithm at each iteration of the particle

MCMC algorithm, and ran it for 10,000 iterations. Figure 7(a) shows the estimated

majority-rule consensus trees and the clade posterior probabilities.

Chloroplast dataset. In this section, we investigated the performance of a simpler

strategy mixing CSMC and MCMC for reconstructing phylogenetic trees: running

CSMC for η% of the budget followed by MCMC for the remaining (1 − η)% of the

budget. We analyzed two randomly selected sub-datasets of 30 and 50 ribosomal RNA

sequences obtained from the chloroplast of 199 plant species (Cannone et al. 2002)

using a simpler model: Kimura’s two parameter (K2P) model (Kimura 1980). The

only unknown parameter, the transition/transversion rate, was approximated by its

posterior mean obtained from a pilot run of MrBayes. We applied to this dataset

CSMC, MrBayes, and a simple combination of the two methods (MIX), which consists

in running CSMC with a number of particles calibrated for 30% of the allowed compu-

tational budget, followed by MCMC for the rest of the allowed time, but initialized by

sampling from the CSMC approximation. Figure 7(b,c) shows the log-likelihood of the

majority-rule consensus trees of using CSMC, MrBayes, and MIX versus the number

of peeling recurrences. The three methods obtained similar majority-rule consensus

trees given a sufficiently large budget. On a limited computational budget, CSMC

outperformed MCMC by a large margin. Moreover, the MIX strategy outperformed

both CSMC and MCMC for all computational budgets considered (except for CSMC

performing slightly better than MIX on the smallest budget considered).

28

L
o
g-

li
ke

li
h

o
o
d

s

5e+04 5e+05 5e+06

−
14

00
−

12
00

−
10

00

5e+04 5e+05 5e+06

−
14

00
−

12
00

−
10

00

5e+04 5e+05 5e+06

−
14

00
−

12
00

−
10

00

● CSMC
MCMC
MIX

●

●

●
●

5e+04 5e+05 5e+06 5e+07

−
24

00
−

20
00

−
16

00

5e+04 5e+05 5e+06 5e+07

−
24

00
−

20
00

−
16

00

5e+04 5e+05 5e+06 5e+07

−
24

00
−

20
00

−
16

00

● CSMC
MCMC
MIX

●

●

●

●

of peeling recurrences # of peeling recurrences

(a) (b) (c)

Figure 7: (a) The majority-rule consensus trees for cichlid fish estimated by particle MCMC.
The numbers on the trees represent the clade posterior probabilities. (b) Log-likelihood of the
majority-rule consensus trees using CSMC, MrBayes, and a combination strategy (MIX, see
text), as a function of the number of peeling recurrences, on the Chloroplast RNA datasets of
30 taxa, and (c), 50 taxa.

5 Conclusion and discussion

We have presented an original SMC methodology that provides a complementary ap-

proach to MCMC for Bayesian phylogenetic inference. While SMC methods and re-

lated approaches such as sequential importance sampling and approximate Bayesian

computation are already popular in population genetics, they have not yet become

widely used in phylogenetics. This is because a richer class of trees is needed in phy-

logenetics models, whereas related SMC work on population genetics typically focuses

on coalescent models (Griffiths and Tavaré 1996; Liu 2001; Beaumont et al. 2002;

Marjoram et al. 2002; Iorio and Griffiths 2004; Paul et al. 2011). In contrast to

previous phylogenetic SMC methods (Teh et al. 2008; Görür and Teh 2009; Tom et al.

2010; Bouchard-Côté et al. 2012), our proposed CSMC methodology is not restricted

to ultrametric trees and can handle the full range of combinatorial structures required

by modern phylogenetic models. CSMC can additionally be easily combined with

MCMC through particle MCMC so as to estimate evolutionary parameters. We have

demonstrated numerically that in many Bayesian phylogenetic scenarios, CSMC can

efficiently complement MCMC methods in terms of computation speed and estimation

29

accuracy.

We have also shown that our method benefits from parallel architectures. While

this is also true to some extent with parallel Metropolis coupled MCMC (Altekar

et al. 2004), there are important differences in how CSMC and the parallel Metropolis

coupled MCMC sampler make use of parallelization. In the parallel Metropolis coupled

MCMC sampler, the additional gains from parallelism can quickly decrease as more

chains are added, because many swaps are needed to get from the most heated chain

to the main chain. In contrast, the CSMC sampler has a structure well-adapted to

parallelization.

There are a range of possible ways to further improve the current methodology. Many

of the sophisticated strategies developed for standard SMC methods directly apply in

our context, including using improved resampling schemes or additional local MCMC

steps; see Doucet and Johansen (2011) for a recent review.

Our framework also specifies weak order-theoretic conditions for choosing a proposal

distribution and an extension of π, while preserving asymptotic guarantees. Since

samplers use a finite number of particles in practice, these choices obviously impact

the algorithm performance. For example, it might be possible to develop sampling

analogues of informed search techniques (Russell and Norvig 2009). Additionally,

there are various ways to define the sequence of partial states as long as the objects

obtained at the last step of CSMC are in the target space. This could lead to new

algorithms.

While we have concentrated on the computational gains in our experiments, there are

also modelling motivations behind CSMC. For example, some evolutionary models have

been put forward recently that take into account the evolving structure of molecules

(Nasrallah et al. 2011). Since the likelihood is intractable in all of these models, a

sampler would therefore need to augment the space with the state of the string at

30

intermediate points of phylogeny. Unfortunately, because it is non-trivial to propose

new values for these latent strings in an MCMC sampler, these more accurate models

have not yet been used for phylogenetic inference; their use has been limited to forward

data simulation. It is simpler to propose values for these latent strings with CSMC,

where the task reduces to an end-point conditioned simulation problem (Hobolth and

Stone 2009).

Finally, although the proposed method is motivated by Bayesian phylogenetic infer-

ence, CSMC has potential applications outside of this domain, for example in the field

of multiple sequence alignment (Edgar and Batzoglou 2006). Multiple sequence align-

ment methods can be broadly categorized into heuristic sequential methods (Larkin

et al. 2007), or model-based approaches (Holmes and Bruno 2001; Redelings and

Suchard 2005). Despite the theoretical and practical limitations of heuristic alignment

methods over model-based methods, the former are often preferred by practitioners

in practice, mostly on computational grounds. By proposing alignments sequentially,

CSMC provides a promising framework to bring the benefits of model-based alignment

models to a wider range of situations.

6 Acknowledgements

The authors would like to thank the editor, the associate editor, the reviewers and

Jens Lagergren from KTH Royal Institute of Technology for their constructive com-

ments which helped improve the paper significantly. The authors would like to thank

Westgrid for the computing support. This research was supported by grants from the

Natural Science and Engineering Research Council of Canada to Liangliang Wang and

Alexandre Bouchard-Côté. Arnaud Doucet’s research was partly funded by the En-

gineering and Physical Sciences Research Councils under grants EP/K000276/1 and

31

EP/K009850/1.

Appendix: Proof of L2 convergence

We present a simple proof of Proposition 5 showing L2 convergence of the CSMC estimate. There

are many sharper convergence results available for standard SMC (Del Moral 2004) that could be

adapted to our setup. However the main point here is to illustrate how the conditions on the poset

are used in the proof. We assume throughout this section that the assumptions of Proposition 5 hold.

Recall also that we are assuming multinomial resampling at every step, and that this step is included

in the definition of the operator propK .

We start by introducing a series of lemmas.

Lemma 6. For any positive measure λ with ‖λ‖ < ∞, we have E[(propK λ)φ] = (propλ)φ, where

(propλ)φ =
∫
λ(dx)

∫
ν+
x (dy)w(x, y)φ(y), and propK λ is defined in Section 3.5.

Proof. By linearity:

E[(propK λ)φ] = ‖λ‖E[w(S1, S
′
1)φ(S′1)]

= ‖λ‖
∫
λ̄(dx)

∫
ν+
x (dy)w(x, y)φ(y) = (propλ)φ

Lemma 7. For any positive measure λ with ‖λ‖ < ∞, we have E [(propK λ)φ− (propλ)φ]
2 ≤

(C1C2)2‖λ‖2
K , so (propK λ)φ

L2−→ (propλ)φ.

Proof. Using independence of (Sk, S
′
k) and (Sk′ , S

′
k′), k 6= k′ in the definition of propK , we have:

E [(propK λ)φ− (propλ)φ]
2

= ‖λ‖2
K Var[w(Sk, S

′
k)φ(S′k)] ≤ (C1C2)2‖λ‖2

K .

Corollary 8. We have E [πr,Kφ− (propπr−1,K)φ]
2 → 0.

Proof. Since ‖πr,K‖ ≤ Cr2 <∞,

E [πr,Kφ− (propπr−1,K)φ]
2

= E
{
E
[
(πr,Kφ− (propπr−1,K)φ)

2 ∣∣πr−1,K

]}
≤ E

[‖πr−1,K‖2C2
1C

2
2

K

]
→ 0.

32

Lemma 9. For all r, (propπr)φ = πr+1φ.

Proof. By definition, we have for all bounded measurable f : S2 → R,
∫ ∫

π(dx)ν+
x (dy)f(x, y) =

∫ ∫
τ+(dx, dy)f(x, y). Similarly,

∫ ∫
π(dy)ν−y (dx)f(x, y) =

∫ ∫
τ−(dx, dy)f(x, y). Using these iden-

tities and basic properties of the Radon-Nikodym derivative w = dτ−/ dτ+:

(propπr)φ =

∫
1[ρ(x) = r]π(dx)

∫
ν+
x (dy)w(x, y)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]π(dx)ν+

x (dy)w(x, y)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]τ+(dx, dy)w(x, y)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]τ−(dx, dy)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]π(dy)ν−y (dx)φ(y) =

∫
1[ρ(y) = r + 1]π(dy)φ(y)

∫
ν−y (dx) = πr+1φ.

Here to change the indicator 1[ρ(x) = r] into 1[ρ(y) = r+ 1], we have used the definition of the poset

and the fact that its Hasse diagram is connected.

Lemma 10. If for all bounded measurable φ, πr,Kφ
L2−→ πrφ, then we also have (propπr,K)φ

L2−→

(propπr)φ. Moreover, by Lemma 9 the right-hand side of the last equation is equal to πr+1φ.

Proof. Let φ be a bounded function, so that there exists a new constant C such that |φ| < C.

Let φ̃(x) =
∫
A
ν+
x (dy)w(x, y)φ(y). Since w < C2, |φ̃′| < CC2, we can use the test function φ̃ in

πr,Kφ
L2−→ πrφ to obtain (propπr,K)φ

L2−→ (propπr)φ.

Proof. (of the main proposition) We proceed by induction, showing for r ≥ 0, and for all bounded

φ, we have πr,Kφ
L2−→ πrφ. The base case is trivial, since π0,K and π0 are equal to a Dirac delta on

the same atom. To prove the induction hypothesis, we first decompose the L2 norm using Minkowski

inequality, and control each term separately:

E1/2 [πr+1,Kφ− πr+1φ]
2 ≤E1/2 [πr+1,Kφ− (propπr,K)φ]

2
+ E1/2 [(propπr,K)φ− πr+1φ]

2
.

But by Corollary 8, the first term goes to zero; and by Lemma 10 and the induction hypothesis, the

second term also goes to zero.

33

References

Altekar, G., S. Dwarkadas, J. Huelsenbeck, and F. Ronquist (2004). Parallel Metropolis coupled

Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415.

Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods.

Journal of the Royal Statistical Society B 72 (3), 269–342.

Ayres, D. L., A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O. Lewis, J. P. Huelsenbeck,

F. Ronquist, D. L. Swofford, M. P. Cummings, A. Rambaut, and M. A. Suchard (2012). Beagle:

An application programming interface and high-performance computing library for statistical

phylogenetics. Systematic Biology 61 (1), 170–173.

Beaumont, M. A., W. Zhang, and D. J. Balding (2002). Approximate Bayesian computation in

population genetics. Genetics 162, 2025–2035.

Bouchard-Côté, A., S. Sankararaman, and M. I. Jordan (2012). Phylogenetic inference via sequen-

tial Monte Carlo. Systematic Biology 61, 579–593.

Brown, W., E. Prager, A. Wang, and A. Wilson (1982). Mitochondrial DNA sequences of primates:

Tempo and mode of evolution. Journal of Molecular Evolution 18 (4), 225–239.

Cannone, J., S. Subramanian, M. Schnare, J. Collett, L. D’Souza, Y. Du, B. Feng, N. Lin, L. Mad-

abusi, K. Muller, N. Pande, Z. Shang, N. Yu, and R. Gutell (2002). The comparative RNA

web (CRW) site: An online database of comparative sequence and structure information for

ribosomal, intron, and other RNAs. BMC Bioinformatics 3 (1), 15.

Cheon, S. and F. Liang (2008). Phylogenetic tree construction using sequential stochastic approx-

imation Monte Carlo. Biosystems 91 (1), 94–107.

Del Moral, P. (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with

Applications. New York: Springer.

Del Moral, P., A. Doucet, and A. Jasra (2006). Sequential Monte Carlo samplers. Journal of the

Royal Statistical Society B 68 (3), 411–436.

Doucet, A., N. de Freitas, and N. Gordon (2001). Sequential Monte Carlo methods in practice.

Springer.

Doucet, A. and A. M. Johansen (2011). A tutorial on particle filtering and smoothing: fifteen years

later. In Handbook of Nonlinear Filtering. Cambridge University Press.

34

Doucet, A., M. Pitt, G. Deligiannidis, and R. Kohn (2015). Efficient implementation of Markov

chain Monte Carlo when using an unbiased likelihood estimator. Biometrika. To appear.

Drummond, A. and M. Suchard (2010). Bayesian random local clocks, or one rate to rule them all.

BMC biology 8 (1), 114.

Edgar, R. C. and S. Batzoglou (2006). Multiple sequence alignment. Current Opinion in Structural

Biology 16 (3), 368–373.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach.

J. Mol. Evol. 17, 368–376.

Felsenstein, J. (2003). Inferring phylogenies. Sinauer Associates.

Geweke, J. (2004). Getting it right. Journal of the American Statistical Association 99 (467), 799–

804.

Gilks, W. R. and C. Berzuini (2001). Following a moving target-Monte Carlo inference for dynamic

Bayesian models. Journal of the Royal Statistical Society B 63 (1), 127–146.

Görür, D., L. Boyles, and M. Welling (2012). Scalable inference on Kingman’s coalescent using pair

similarity. Journal of Machine Learning Research 22, 440–448.

Görür, D. and Y. W. Teh (2009). An efficient sequential Monte Carlo algorithm for coalescent

clustering. In Advances in Neural Information Processing Systems (NIPS).

Griffiths, R. and S. Tavaré (1996). Monte Carlo inference methods in population genetics. Math.

Comput. Modelling 23, 141–158.

Hobolth, A. and E. A. Stone (2009). Simulation from endpoint-conditioned, continuous-time

Markov chains on a finite state space, with applications to molecular evolution. Annals of

Applied Statistics 3 (3), 1204–1231.

Höhna, S., M. Defoin-Platel, and A. Drummond (2008). Clock-constrained tree proposal operators

in Bayesian phylogenetic inference. In 8th IEEE International Conference on BioInformatics

and BioEngineering, pp. 1–7.

Höhna, S. and A. J. Drummond (2012). Guided tree topology proposals for Bayesian phylogenetic

inference. Syst. Biol. 61 (1), 1–11.

Holmes, I. and W. J. Bruno (2001). Evolutionary hmms: a Bayesian approach to multiple align-

ment. Bioinformatics 17 (9), 803–820.

35

Huelsenbeck, J. P. and F. Ronquist (2001). MRBAYES: Bayesian inference of phylogenetic trees.

Bioinformatics 17 (8), 754–755.

Iorio, M. D. and R. C. Griffiths (2004). Importance sampling on coalescent histories. Adv. Appl.

Prob. 36, 417–433.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through

comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

Kocher, T. D., J. A. Conroy, K. R. McKaye, J. R. Stauffer, and S. F. Lockwood (1995). Evolu-

tion of nadh dehydrogenase subunit 2 in east african cichlid fish. Molecular phylogenetics and

evolution 4 (4), 420–432.

Lakner, C., P. van der Mark, J. P. Huelsenbeck, B. Larget, and F. Ronquist (2008). Efficiency of

Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. Syst. Biol. 57 (1), 86–103.

Larget, B. and D. Simon (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis

of phylogenetic trees. Mol. Biol. Evol. 16, 750–759.

Larkin, M., G. Blackshields, N. Brown, R. Chenna, P. McGettigan, H. McWilliam, F. Valentin,

I. Wallace, A. Wilm, R. Lopez, J. Thompson, T. Gibson, and D. Higgins (2007). Clustal W

and Clustal X version 2.0. Bioinformatics 23 (21), 2947–2948.

Lee, A. and N. Whiteley (2014). Forest resampling for distributed sequential Monte Carlo.

arXiv:stat. 1406.6010.

Lemey, P., A. Rambaut, A. J. Drummond, and M. A. Suchard (2009). Bayesian phylogeography

finds its roots. PLoS Computational Biology 5 (9), e1000520.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer.

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavaré (2002). Markov chain Monte Carlo without

likelihoods. Proc. Nat. Acad. Sci. 100, 15324–15328.

Morrison, D. A. (2006). Multiple sequence alignment for phylogenetic purposes. Australian Sys-

tematic Botany 19 (6), 479–539.

Nasrallah, C. A., D. H. Mathews, and J. P. Huelsenbeck (2011). Quantifying the impact of depen-

dent evolution among sites in phylogenetic inference. Syst. Biol. 60 (1), 60–73.

Paul, J. S., M. Steinrücken, and Y. S. Song (2011). An accurate sequentially Markov conditional

sampling distribution for the coalescent with recombination. Genetics 187, 1115–1128.

36

Rannala, B. and Z. Yang (2003). Bayes estimation of species divergence times and ancestral pop-

ulation sizes using DNA sequences from multiple loci. Genetics 164 (4), 1645–1656.

Redelings, B. D. and M. A. Suchard (2005). Joint Bayesian estimation of alignment and phylogeny.

Syst. Biol. 54 (3), 401–418.

Robinson, D. and L. Foulds (1981). Comparison of phylogenetic trees. Mathematical Biosciences 53,

131–147.

Ronquist, F. and J. P. Huelsenbeck (2003). Mrbayes 3: Bayesian phylogenetic inference under

mixed models. Bioinformatics 19 (12), 1572–1574.

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu,

M. A. Suchard, and J. P. Huelsenbeck (2012). MrBayes 3.2: Efficient Bayesian phylogenetic

inference and model choice across a large model space. Syst. Biol. 61, 539–542.

Russell, S. and P. Norvig (2009). Artificial Intelligence: A Modern Approach. Prentice Hall.

Semple, C. and M. Steel (2003). Phylogenetics. Oxford.

Shapiro, B., A. Rambaut, and A. J. Drummond (2006). Choosing appropriate substitution models

for the phylogenetic analysis of protein-coding sequences. Mol. Biol. Evol. 23 (1), 7–9.

Stanley, R. P. (1986). Enumerative Combinatorics. Volume I. Cambridge University Press.

Suchard, M. A. and B. D. Redelings (2006). Bali-phy: simultaneous Bayesian inference of alignment

and phylogeny. Bioinformatics 22 (16), 2047–2048.

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences.

Lectures on Mathematics in the Life Sciences 17, 56–86.

Teh, Y. W., H. Daumé III, and D. M. Roy (2008). Bayesian agglomerative clustering with coales-

cents. In Advances in Neural Information Processing Systems (NIPS).

Thorne, J. L., H. Kishino, and I. S. Painter (1998). Estimating the rate of evolution of the rate of

molecular evolution. Mol. Biol. Evol. 15 (12), 1647–1657.

Tom, J. A., J. S. Sinsheimer, and M. A. Suchard (2010). Reuse, recycle, reweigh: Combating

influenza through efficient sequential Bayesian computation for massive data. Annals of Applied

Statistics 4, 1722–1748.

Yang, Z. (2006). Computational Molecular Evolution. Oxford University Press.

37

Yang, Z. and B. Rannala (1997). Bayesian phylogenetic inference using DNA sequences: a Markov

chain Monte Carlo method. Mol. Biol. Evol. 14, 717–724.

38

	Introduction
	Background and notation
	Phylogenetic trees
	Bayesian phylogenetic inference

	Methodology
	Finite setup
	CSMC methodology
	Overcounting correction
	Analysis in the finite case
	General setup
	A concrete non-clock phylogenetic tree example
	Particle Markov chain Monte Carlo

	Numerical examples
	Synthetic posets
	Phylogenetic experiments

	Conclusion and discussion
	Acknowledgements

