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Abstract

Accurate and efficient inference in evolutionary trees is a central problem in com-
putational biology. While classical treatments have made unrealistic site inde-
pendence assumptions, ignoring insertions and deletions, realistic approaches re-
quire tracking insertions and deletions along the phylogenetic tree—a challenging
and unsolved computational problem. We propose a new ancestry resampling
procedure for inference in evolutionary trees. We evaluate our method in two
problem domains—multiple sequence alignment and reconstruction of ancestral
sequences—and show substantial improvement over the current state of the art.

1 Introduction

Phylogenetic analysis plays a significant role in modern biological applications such as ancestral
sequence reconstruction and multiple sequence alignment [1, 2, 3]. While insertions and deletions
(InDels) of nucleotides or amino acids are an important aspect of phylogenetic inference, they pose
formidable computational challenges and they are usually handled with heuristics [4, 5, 6]. Routine
application of approximate inference techniques fails because of the intricate nature of the combi-
natorial space underlying InDel models.

Concretely, the models considered in the phylogenetic literature take the form of a tree-shaped
graphical model where nodes are string-valued random variables representing a fragment of DNA,
RNA or protein of a species. Edges denote evolution from one species to another, with conditional
probabilities derived from the stochastic model described in Sec. 2. Usually, only the terminal nodes
are observed, while the internal nodes are hidden. The interpretation is that the sequence at the root
is the common ancestor of those at the terminal nodes, and it subsequently evolved in a branching
process following the topology of the tree. We will concentrate on the problem of computing the
posterior of these hidden nodes rather than the problem of selecting the topology of the tree—hence
we will assume the tree is known or estimated with some other algorithm (a guide tree assumption).

This graphical model can be misleading. It only encodes one type of independence relation, those
between generations. There is another important structure that can be exploited. Informally, InDel
events that operate at the beginning of the sequences should not affect, for instance, those at the
end. However, because alignments between the sequences are unknown in practice, it is difficult to
exploit this structure in a principled way.

In many previous works [4, 5, 6], the following heuristic approach is taken to perform inference on
the hidden nodes (refer to Fig. 1): First, a guide tree (d) and a multiple sequence alignment (a) (a
transitive alignment between the characters in the sequences of the modern species) are computed
using heuristics [7, 8]. Second, the problem is cast into several easy subproblems as follows. For
each equivalence class in the multiple sequence alignment (called a site, corresponding to a column
in Fig. 1(b)), a new graphical model is created with the same tree structure as the original problem,
but where there is exactly one character in each node rather than a string. For nodes with a character
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Figure 1: Comparison of different approaches to phylogenetic modeling: (a,b,c,d) heuristics based
on site independence; (e) Single Sequence Resampling; (f) Ancestry Resampling. The boxes denote
the structures that can be sampled or integrated out in one step by each method.

in the current equivalence class, the node in this new tree is observed, and the rest of the nodes are
considered as unobserved data (Fig. 1(c)). Note that the question marks are not the gaps commonly
seen in linearized representations of multiple alignments, but rather phantom characters. Finally,
each site is assumed independent of the others, so the subproblems can be solved efficiently by
running the forward-backward algorithm on each site.

This heuristic has several problems, the most important being that it does not allow explicit mod-
eling of insertions and deletions (InDel), which are frequent in real biological data and play an
important role in evolution [9]. If InDels are included in the probabilistic model, there is no longer
a deterministic notion of site on which independence assumptions can be made. This complicates
inference substantially. For instance, in the standard TKF91 model [10], the fastest known algorithm
for computing exact posteriors takes time O(2 N*") where F is the number of leaves and N is the
geometric mean sequence length [11].

Holmes et al. [2] developed an approximate Markov chain Monte Carlo (MCMC) inference proce-
dure for the TKF91 model. Their algorithm proceeds by sampling the entire sequence corresponding
to a single species conditioning on its parent and children (Fig. 1(e)). We will call this type of kernel
a Single Sequence Resampling (SSR) move. Unfortunately, chains based exclusively on SSR have
performance problems.

There are two factors behind these problems. The first factor is a random walk behavior that arises
in tall chains found in large or unbalanced trees [2, 12]: initially, the InDel events resampled at
the top of the tree are independent of all the observations. It takes time for the information from
the observations to propagate up the tree. The second factor is the computational cost of each SSR
move, which is O(IN3) with the TKF91 model and binary trees. For long sequences, this becomes
prohibitive, so it is common to use a “maximum deviation pruning strategy” (i.e., putting a bound
on the relative positions of characters that mutate from one to the other) to speed things up [12]. We
observed that this pruning can substantially hurt the quality of the estimated posterior (see Sec. 4).

In this paper, we present a novel MCMC procedure for phylogenetic InDel models that we refer to as
Ancestry Resampling (AR). AR addresses both of the efficiency and accuracy problems that arise for
SSR. The intuition behind the AR approach is to use an MCMC kernel that combines the advantages
of the two approaches described above: like the forward-backward algorithm in the site-independent
case, AR always directly conditions on some part of the observed data, but, like SSR, it is capable
of resampling the InDel history. This is illustrated in Fig. 1(f).

2 Model

For concreteness, we describe the algorithms in the context of the standard TKF91 model [10], but
in Sec. 5 we discuss how the ideas extend to other models. We assume that a phylogenetic directed
tree topology 7 = (V, E) is fixed, where nodes in this tree are string-valued random variables, from



an alphabet of K characters—K is four in nucleotide sequences and about twenty in amino-acid
sequences. Also known is a positive time length . associated to each edge e € F.

We start the description of the model in the simple case of a single branch of known length ¢, with a
string x at the root and a string y at the leaf. The model, TKF91, is a string-valued Continuous-Time
Markov Chain (CTMC). There is one rate p for deletion (death in the original TKF terminology)
and one rate \ for insertions, which can occur either to the right of one of the existing character
(birth), or to the left of the sequence (immigration). Additionally, there is an independent CTMC
substitution process on each character.

Fortunately, the TKF91 model has a closed form solution for the conditional distribution over strings
y at the leaf given the string « at the root. The derivation of this conditional distribution is presented
in [10] and its form is:

IP(a character in z survived and has n descendants in y) = 3" 1 (1 — ) forn=1,2,...
P(a character in « died and has n descendants in y) = (1 — a)(1 —7) forn =0

=(1—-a)yp" (1 -p) forn=12,...

P(immigrants inserted at the left have n descendants in y) = " (1 — 3) forn=0,1,...

In defining descendants, we count the character itself, its children, grandchildren, etc. «, 3, are
functions of ¢, 14, A. See [2] for the details. Since we only work with these conditionals, note that the
situation resembles that of a standard weighted edit process with a specific, branch-length dependent
structure over insertions and deletions.

To go from a single branch to a tree, we simply compose this process. The full generative process
works as follows: starting at the root, we generate the first string according to the stationary distribu-
tion of TKF91. Then, for each outgoing edge e, we use the known time ¢, and the equations above
to generate a child string. We continue in preorder recursively.

2.1 Auxiliary variables

We now define some auxiliary variables that will be useful in the next section. Between each pair
of nodes a,b € V connected by an edge and with respective strings «,y , we define an alignment
random variable: its values are bipartite matchings between the characters of the strings « and y.
Links in this alignment denote survival of a character (allowing zero or more substitutions). Note
that this alignment is monotonic: if character ¢ in @ is linked to character j in y, then the characters
¢’ > iin @ can only be unlinked or linked to a character with index j* > j in y. The random variable
that consists of the alignments and the strings for all the edges and nodes in the phylogenetic tree 7
will be called a derivation.

Note also that a derivation D defines another graph that we will call a derivation graph. Its nodes
are the characters of all the strings in the tree. We put an edge between two characters x, y in this
graph iff two properties hold. Let a,b € V be the nodes corresponding to the strings from which
respectively x, y belongs to. We put an edge between x, y iff (1) there is an edge between a and b
in E and (2) there is a link between z, y in the alignment of the corresponding strings. Examples of
derivation graphs are shown in Fig. 2.

3 [Efficient inference

The approximate inference algorithm we propose, Ancestry Resampling (AR), is based on the
Metropolis-Hastings (MH) framework. While the SSR kernel resamples the whole sequence cor-
responding to a single node, AR works around the difficulties of SSR by joint resampling of a “thin
vertical slice” (Fig. 1(f)) in the tree that is composed of a short substring in every node. As we will
see, if we use the right definition of vertical slice, this yields a valid and efficient MH algorithm.

3.1 Ancestry Resampling

We will call one of these “thin slices” an ancestry A, and we now discuss what its definition should
be. Some care will be needed to ensure irreducibility and reversibility of the sampler.
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Figure 2: (a): the simple guide tree used in this example (left) and the corresponding sequences
and alignments (right). (a,b,c): the definitions of Ay, A, A respectively are shaded (the “selected
characters”). (d,e): An example showing the non-reversibility problem with A,

We first augment the state of the AR sampler to include the derivation auxiliary variable described
in Sec. 2.1. Let D be the current derivation and let  be a substring of one of the terminal nodes, say
in node e. We will call  an anchor. The ancestry will depend on both a derivation and an anchor.
The overall MH sampler is a mixture of proposal distributions indexed by a set of anchors covering
all the characters in the terminal strings. Each proposal resamples a new value of A(D, ) given the
terminal nodes and keeping A(D, x)¢ frozen.

We first let Ag(D, ) be the set of characters connected to some character in @ in the derivation
graph of D (see Fig. 2(a)). This set Ao (D, ) is not a suitable definition of vertical slice, but will
be useful to construct the correct one. It is unsuitable for two reasons. First, it does not yield an
irreducible chain, as illustrated in same figure, where nine of the characters of this sample (those
inside the dashed curve) will never be resampled, no matter which substring of the terminal node
is selected as anchor. Secondly, we would like the vertical slices to be contiguous substrings rather
than general subsequences to ease implementation.

We therefore modify the definition recursively as follows. See Fig. 2(b) for an illustration of this
definition. For ¢ > 0, we will say that a character token y is in A; (D, x) if one of the following
conditions is true:

1. yis connected to A;_1 (D, x),

/ 1"

2. yappearsinastring - -y’ ---y---y" -+ such that both ¢’ and y" are in A;_; (D, x),

3. y appears in a string - - -y’ - - -y - - - such that 3/’ is in A4;_1 (D, «) and x is a suffix,

4. yappears in astring -- -y -- -y’ --- such that ¢ is in A;_1 (D, ) and « is a prefix.

Then, we define A (D, x) := U2 ,A;(D, x). In words, a symbol is in A, (D, ) if it is linked to
an anchored character through the alignments, or if it is “squeezed” between previously connected
characters. Cases 3 and 4 handle the boundaries of strings. With this property, irreducibility could

be established with some conditions on the anchors, but it turns out that this definition is still not
quite right.

With A, the main problem arises when one tries to establish reversibility of the chain. This is
illustrated in Fig. 2(d). In this example, the chain first transitions to a new state by altering the
circled link. One can see that with the definition of A, (D, ) given above, from the state 2 (e), the
state in 2 (d) is now unreachable by the same resampling operator, the reason being that the substring
labeled z in the figure belongs to the frozen part of the state if the transition is visited backwards.

While there exist MCMC methods that are not based on reversible chains [13], we prefer to take a
simpler approach: a variation on our definition solves the issue, informally by taking vertical slices
A(D, x) to be the “complement of the ancestry taken on the complement of the anchor.” More
precisely, if € = x’xa’ is the string at the anchor node e, we let the resampled section to be
A(D,z) := (Ao (D, x") U Axe (D, z’"))¢. This creates slightly thicker slices (Fig. 2(c)) but solves
the reversibility problem. We will call A(D, x) the ancestry of the anchor . With this definition,
the proposal distribution can be made reversible using a MH acceptance ratio; it is also irreducible.



The problem of resampling a single slice decomposes along the tree structure 7, but an unbounded
number of InDels could occur a priori inside the thin slice. It may seem at the first glance that we
are back at our initial problem: sampling from a tree-structured directed graphical model where the
support of the space of the nodes is a countably infinite space. But in fact, we have made progress:
the distribution is now concentrated on very short sequences. Indeed, the anchors & can be taken
relatively small (we used anchors of length 3 to 5 in our experiments).

Another important property to notice is that given an assignment of the random variable A(D, x), it
is possible to compute efficiently and exactly an unnormalized probability for this assignment. The
summation over the possible alignments can be done using a standard quadratic dynamic program
known in its max version as the Needleman-Wunsch algorithm [14].

3.2 Cylindric proposal

We now introduce the second idea that will make efficient inference possible: when resampling
an ancestry given its complement, rather than allowing all possible strings for the resampled value
of A(D, x), we restrict the choices to the set of substitutes that are close to its current value. We
formalize closeness as follows: Let aj, az be two values for the ancestry A(D, ). We define the
cylindric distance as the maximum over all the nodes e of the Levenshtein edit distance between the
substrings in a; and as at node e. Fix some positive integer m. The proposal distribution consider
the substitution ancestry that are within a ball of radius m centered at the current state in the cylindric
metric. The value m = 1 worked well in practice.

Here the number of states in the tree-structured dynamic program at each node is polynomial in the
lengths of the strings in the current ancestry. A sample can therefore be obtained easily using the
observation we have made that unnormalized probability can be computed.! Next, we compute the
acceptance ratio, i.e.:

min {1 P(ap) x Q(a6|ap)}
"P(ac) x Q(aplac) J'

where a., a,, are the current and proposed ancestry values and Q(az|a; ) is the transition probability
of the MH kernel, proportional to P(-), but with support restricted to the cylindric ball centered at
aj.

4 Experiments

We consider two tasks: reconstruction of ancestral sequences and prediction of alignments between
multiple genetically-related proteins. We are interested in comparing the ancestry sampling method
(AR) presented in this paper with the Markov kernel used in previous literature (SSR).

4.1 Reconstruction of ancestral sequences

Given a set of genetically-related sequences, the reconstruction task is to infer properties of the
common ancestor of these modern species. This task has important scientific applications: for
instance, in [1], the ratio of G+C nucleotide content of ribosomal RNA sequences was estimated to
assess the environmental temperature of the common ancestor to all life forms (this ratio is strongly
correlated with the optimal growth temperature of prokaryotes).

Just as in the task of topology reconstruction, there are no gold ancestral sequences available to eval-
uate ancestral sequence reconstruction. For this reason, we take the same approach as in topology
reconstruction and perform comparisons on synthetic data [15].

We generated a root node from the DNA alphabet and evolved it down a binary tree of seven nodes.
Only the leaves were given to the algorithms (a total of 124010 nucleotides); the hidden nodes were
held out. Since our goal in this experiment is to compare inference algorithms rather than methods

'"What we are using here is actually a nested dynamic programs, meaning that the computation of a prob-
ability in the outer dynamic program (DP) requires the computation of an inner, simpler DP. While this may
seem prohibitive, this is made feasible by designing the sampling kernels so that the inner DP is executed most
of the time on small problem instances. We also cached the small-DP cost matrices.
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Figure 3: Left: Single Sequence Resampling versus Ancestry Resampling on the sequence recon-
struction task. Right: Detrimental effect of a maximum deviation heuristic, which is not needed
with AR samplers.

of estimation, we gave both algorithms the true parameters; i.e., those that were used to generate the
data.

The task is to predict the sequences at the root node with error measured using the Levenshtein edit
distance /. For both algorithms, we used a standard approximation to minimum Bayes risk decoding
to produce the final reconstruction. If sq, so, ..., sy are the samples collected up to iteration I, we

return min;eq. s Zjel...] U(s4,55).

Fig. 3 (left) shows the error as a function of time for the two algorithms, both implemented efficiently
in Java. Although the computational cost for one pass through the data was higher with AR, the AR
method proved to be dramatically more effective: after only one pass through the data (345s), AR
already performed better than running SSR for nine hours. Moreover, AR steadily improved its
performance as more samples were collected, keeping its error at each iteration to less than half of
that of the competitor.

Fig. 3 (right) shows the detrimental effect of a maximum deviation heuristic. This experiment was
performed under the same setup described in this section. While the maximum deviation heuristic
is necessary for SSR to be able to handle the long sequences found in biological datasets, it is not
necessary for AR samplers.

4.2 Protein multiple sequence alignment

We also performed experiments on the task of protein multiple sequence alignment, for which the
BAIiBASE [16] dataset provides a standard benchmark. BAIiBASE contains annotations created by
biologists using secondary structure elements and other biological cues.

Note first that we can get a multiple sequence alignment from an InDel evolutionary model. For a
set S of sequences to align, construct a phylogenetic tree such that its terminal leaves coincide with
S. A multiple sequence alignment can be extracted from the inferred derivation D as follows: deem
the amino acids z, y € S aligned iff y € Ao(D, x).

The state-of-the-art for multiple sequence alignment systems based on an evolutionary model is
Handel [2]. It is based on TKF91 and produces a multiple sequence alignment as described above.
The key difference with our approach is that their inference algorithm is based on SSR rather than
the AR move that we advocate in this paper.

While other heuristic approaches are known to perform better than Handel on this dataset [8, 17],
they are not based on explicit evolutionary models. They perform better because they leverage more
sophisticated features such as affine gap penalties and hydrophobic core modeling. While these
features can be incorporated in our model, we leave this for future work since the topic of this paper
is inference.
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Figure 4: Left: performance on the ref] directory of BAIiBASE. Center, right: Column-Score (CS)
and Sum-of-Pairs score (SP) as a function of the depth of the generating trees.

We built evolutionary trees using weighbor [7]. We ran each system for the same time on the
sequences in the ref! directory of BAIiBASE v.1. Decoding for this experiment was done by picking
the sample with highest likelihood. We report in Fig. 4(left) the CS and SP Scores, the two standard
metrics for this task. Both are recall measures on the subset of the alignments that were labeled,
called the core blocks; see, e.g., [17] for instance for the details. For both metrics, our approach
performs better.

In order to investigate where the advantage comes from, we did another multiple alignment exper-
iment, plotting performance as a function of the depth of the trees. If the random walk argument
presented in the introduction holds, we would expect the advantage of AR over SSR to increase as
the tree gets taller. This prediction is confirmed as illustrated in Fig. 4 (center, right). For short trees,
the two algorithms perform equally, SSR beating AR slightly for trees with three nodes, which is
not surprising since SSR actually performs exact inference in this tiny topology. However, as the
trees get taller, the task becomes more difficult, and only AR maintains good performance.

5 Conclusion

We have described a principled inference procedure for InDel trees. We have evaluated its per-
formance against a state-of-the-art statistical alignment procedure and shown its clear superiority.
In contrast to heuristics such as Clustalw [8], it can be used both for reconstruction of ancestral
sequences and multiple alignment.

While our algorithm was described in the context of TKF91, it can be extended to more sophisticated
models. Incorporating affine gap penalties and hydrophobic core modeling is of particular interest
as they are known to dramatically improve multiple alignment performance [2]. These models
typically do not have closed forms for the conditional probabilities, but this could be alleviated
by using a discretization of longer branches. This creates tall trees, but as we have seen, AR still
performs very well in this setting.
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