Supplementary Document

Monir Hajiaghayi Bonnie Kirkpatrick
Department of Computer Science Department of Computer Science
University of British Columbia University of Miami
monirh@cs.ubc.ca bbkirk@cs.miami.edu
Liangliang Wang

Department of Statistical and Actuarial Sciences
Simon Fraser University
liangliang.wang@sfu.ca

Alexandre Bouchard-Coté
Statistics Department
University of British Columbia
bouchard@stat.ubc.ca

This Supplement contains the proofs and pseudo-codes of the methods referenced in the Method-
ology section of the paper, as well as supplemental figures and tables for the Numerical examples
section of the paper. The proofs involve the basic properties of our CTMC approach, and pro-
vide rigorous justification for the algorithms presented in the paper. The pseudo-codes illustrate the
overviews of the steps of different methods used in the manuscript. The supplemental figures and
tables also provide more extensive justification for the practical applicability of our method to both
the phylogenetic and RNA settings.

1 Methodology
We prove here the results stated in the methodology section of the main paper.

1.1 Proposition 1

Proof. We have, for any z* = (z1, xa, . . . € X*,
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Since the right hand side is a conditional distribution,
m(2") =P (X" = 2" | Xy =),

is indeed a normalized probability mass function. O

1.2 Proposal distributions

We show that the proposal defined in Equation (2) of the main paper hits the target end point y with
probability one under the following assumptions:
1. The potential p¥(x) takes the value zero if and only if z = y.

2. The potential always changes by one in absolute value for all proposed states:
P, (|p¥(X2) = p¥(2)| = 1) = L.

3. For all states x # y, there is always a way to propose a state that results in a decrease in
potential:

P,(p?(X2) < p¥(z)) >0 forallz € X,z #y.

To simplify the notation, we will drop the y superscript for the remaining of this section.

To prove that the process always hits y, it is enough to show that the sequence p(X,,) is a super-
martingale, which in our case reduces to showing that E[p(X2)| X1] < p(X71).
Note that the last condition ensures that the normalizer nge p(xy) V(X1,25) is always positive,

hence our expression of the proposal is always well defined. Note that technically, we should also
require P, (p¥(X2) < p¥(x)) > 0 to ensure that the second normalizer, nggw(xl) (X1, 24), is
also positive, but if this is not the case, the proposal can always be replaced by v in these cases
without changing the conclusion of the result proven here.

Using the second condition, we have:
E[p(X2)[X1] = ax, (p(X1) = 1) + (1 — ax,)(p(X1) + 1)
—1—2ax, + p(X1)
< p(Xy).

Finally, since the supermartingale p(X,,) is non-negative, P(N < oo) = 1, we conclude that the
process always hits .

1.3 Proposition 2

Let X1, Xo,... and Hy, Hs, ... denote the states and holding times respectively of a CTMC with
rate matrix (). The states take values in {1,2,...,n+1}, and we let [P, denote the path probabilities
under this process conditioned on starting at X; = 1. Let N be defined similarly to N (the random
number of states visited):

n—1 n
i=1 1=1
= {weﬁ:iﬁi(w) ST<zn:ﬁi(W)}-

Here, ) is an auxiliary probability space used to define the above random variables:



Proof. For all i € {2,...,n 4+ 1}, only state ¢ — 1 has a positive rate of transitioning to state i,

therefore (X; = j) C (X;—1 = j — 1) for all j. Applying this inductively yields:
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In this part, for further clarity, we give the pseudo-codes of the proposed algorithms.

Our novel method (denoted as Time Integrated Path Sampling, TIPS) is demonstrated in Algorithm
[I] This method uses the propose method introduced in Algorithm[2]in order to sample each particle,
consisting of a sequence of states starting at  and ending at the target, y. The propose method also
employs Algorithm [3]as a part of its structure to sample the particles hitting the target.

Algorithm 1 : TIPS(z,y, T)

5+0
fork=1,2,...,Kdo
(L, p,p) < propose(z, {y})
Q < Q(L) {See Section ‘Analytic jump integration’ }
n = |L| {The length of the list of states L}
s < s+ px (exp(TQ))1,n/P
end for
return s/K

Algorithm 2 : propose(z, A)

(L, p,p) < proposeHittingPath(z, A, false)
n ~ Geo(-, B) {Geometric with support 1, 2, ...}
p < p X Geo(n; 8) {Multiply by geometric probability mass function}
fori=2,3,...,ndo
a’ < last(L) {Last state visited in the list L}
(L',p',p’) +proposeHittingPath(x’, A, true)
pepx i
pepxp
L + Lo L' {Concatenation of the two lists}
end for
return (L, p,p)




Algorithm 3 : proposeHittingPath(z, A, b)

p+1
p+1
L + list(x) {Creates a new list containing the point z}
for:=1,2,... do
if z € A and (not(b) or ¢ > 1) then
return (L, p,p)
endif _
|z ~P(:|X;—1 = 2)
]N) — ﬁ X P(Xl = I,|X7;_1 = I)
p <+ pxv(r,z)
L+ Lod
x <+ a
end for

An overview of the parameter estimation method explained in the manuscript is also shown in Al-
gorithm 4] In this algorithm, statio() computes the stationary probability mass function, for example
Poisson in the Poisson Indel Process example |Bouchard-Coété & Jordan| (2012)).

Algorithm 4 : TIPS-parameters({z;, y;, T;})

Initialization:
Choose initial parameter §(1)
z+0
for (t=2,---,7)do
0* ~ q(-‘ﬁ(t_l))
zF+1
for all data index 7 do
2% 2" x TIPS(z;, y;, T;) X statio(x;)
end for

p(6%) 2% a(6~V]6%)
T ey @ e D)

Sample u ~ Uniform(0, 1)
if w < min{1,r} then

Z 42"

6t — 6*

else
Pt  pt=1)
end if
end for

Moreover, Algorithm E], extends Saeedi & Bouchard-Coté| (2011) and demonstrate the revised se-
quential Monte Carlo (SMC) method for approaching more general types of observations, for exam-
ple a series of partially observed states, or a phylogenetic tree with observed leaves. Note that this
algorithm is amenable to parallelization |Lee et al.[(2010); Jun et al.| (2012).

2 Numerical examples

In this section we have figures and tables for both the phylogenetic and RNA settings. These give
more detail on the results that we have obtained from applying our method to these CTMCs.



Algorithm 5 : TIPS-SMC(A4;,T;)

Initialization:
Wo, k < ]./K
2o, < nil
forg=1,2,...,Gdo
fork=1,2,..., K do
(L..p) + propose(zg—1 . Ay)
Q@ < Q(L) {See Section ‘Analytic jump integration’}
n = |L| {The length of the list of states L}
Wy, k — Wg—1,k X p X (exp(zng))l,n/l3
xg) < last(L)
end for
if ESS(wy,.) < threshold then
(wg,., xg,.) < resample(w, ., z,.) {Perform SMC resampling step}
end if
end for

2.1 Phylogenetics
2.1.1 Validation

We generated 200 pair-wise alignments with 7" = 3/10,A = Ay = 2,4 = pp = 1/2 and held
out the mutations and the true value of parameters \ and p. We approximate the posterior using
our method. We show the results of X in the paper and p in Figure[I] In both cases the posterior
approximation is shown to closely mirror the numerical approximation. The evolution of the Monte
Carlo quartiles computed on the prefixes of Monte Carlo samples also show that the convergence is
rapid in this case.

Exact TIPS-parameters Samples Monte Carlo Quartiles
0.40 0.50 0.60 0.70 0 10000 20000 30000 o 0 10000 20000 30000 "
o ~ o S ' < - 25.0[3
Y + 50.0)
© ko ® 3 75.0l0
: ; © = S
< N kY <
i N 3 kA
: > =] o
N o
/N
. =3 (=}
o o o N g4 S 1S
030 * 050 ' 0b0 " 0.70 040 050 ' 0.60 S8 10000 * 20600 ' 30000 '© 5" 10600 20000 * 30000
1.0 15 2.0 25 3.0 0 10000 20000 30000 0 10000 20000 30000
< -~ o o - _
o H N N o~
Y «
0] I3 L0 0
- HE — -
[ 3
2 i 3 O o
=1 T L) [~ il
! i
H H < <
10 | H H Lo 0 - [
(=] K % c =) |
|
=] — N e gl — ol o ol o
.0 15 2.0 25 3.0 1.0 .5 2.0 25 0 10000 " 20000 " 30000 0 10000 " 20000 " 30000

Figure 1: Results of parameter p (1°¢ row) in the validation of the implementation using the Pois-
son Indel Process (PIP). From left to right: posterior obtained via numerical methods; approximate
posterior using our method with 64 particles and 35,000 GIMH iterations; sampled parameter val-
ues; convergence of the quantile computed from the GIMH output. For further clarity, the results of
parameter \ (2"¢ row) are also shown.



ESS
Parameter N. Particles FS TIPS

A 10 1759 1,556.2
100 44.6 17,082.7

1000  25.6 927.8

10000  35.2 147.5

100000  12.2 12.4

[ 10 113 774.1
100 902 6,761.2

1000 31.0 9035

10000 483 1289

100000 16.7 12.0

Table 1: Varying the number of particles per MCMC step. We show the effective sample size
obtained in a fixed computational budget (wall clock time of 3 days), comparing a GIMH based on
our method (TIPS), compared to the forward sampling method (FS). Refer to Section 3 of the main
paper for details.

2.1.2 Tree inference

We start by introducing some notation for data on a phylogenetic tree 7. Let vy denote the root,
and V(7) the other nodes. Let o(v) denote the parent of the node v € V(7). Let X*() =

(X 1(U), e ,XJ(\};) denote the sequence of molecular strings that evolve from g(v) to v. The string

X ](\}’3 at Node v is also denoted by X (*) for simplicity. Note that only the strings at the leaves are

observed, denoted . Denote all unobserved strings by X*(7) = {X*(*) : v € V(7)}\), where \
is the set difference symbol. The probability of ) and X*(7) = x*(7) given 7, 0 is

Py ()/,X*(T) =z"(7) T> =

P (X*(Uo) — m*(”o)) IT P.cons (X*w) — x*(“)) .
veV(r)

We use an improper uniform distribution over the strings as the distribution for the root sequence.

In the Bayesian framework, we aim at the posterior on 7, X*(7), 6 given ), which has a density
proportional to y(7,2*(7),0) = Pe(Y, X*(7) = x*(7)|7)p(7)p(0), where p(T) is a prior for 7.

For fixed evolutionary parameters, we use the framework of [Wang| (2012)) to estimate the posterior
of 7. In this framework, we let the r-th partial state s,. be a forest that includes the forest topology
and the associated branch lengths, denoted 7,., as well as the unobserved strings at the root of each
tree in that forest, *(7,.); i.e. s, = (7,2 (7-)). We used the following sequence of intermediate
distributions over forests: y(s;) = [[,.c, (7, 2"(7:))). In the weight update step, besides propos-
ing two branch lengths and randomly choosing a pair of trees from the current forest to merge (as in
Wang| (2012)), we use the proposal distribution described in the Methodology Section of the main
paper for proposing the hidden strings, with the only difference that a root sequence is selected uni-
formly among the intermediate strings on the proposed path. Algorithm [6] shows the component of
the algorithm not present in previous work: proposing a root sequence and two discrete paths Lieg
and Lygn linking this root to its two children. We assume that the pair of sequences to merge, Zief
and Zrgne, as well as the branch lengths connecting each to the newly formed root, Ties;, Tiigne, have
been picked by a standard phylogenetic SMC proposal, with proposal density pye.. These become
inputs to Algorithm @ which returns ( Lief, Liigh, Ps p). From this output, we compute two auxiliary

rate matrices, Qefy = Q(Liest) and Qrighl = (Q(Lsignt), one for each newly formed branch, using the
same method as before.



Given all this information, we update the particle weights as followsﬂ

p statio(yes) - -
Wg,k = Wg—1,k 715]5 - (eXP(ﬂeftheﬂ))1,|L,en\ (eXP(Trigthright))1,|Lr;gm|'
tree

Algorithm 6 : phylo-sequence-proposal(ics, Tieft, Tright> L right)

(La ﬁ7p) <~ propose(xlefh Lright 71]eft + T'right)
i ~Unif{1,2,...,|L|}

b px1/|L]

Liese < reverse(sublist(L, 1, 1))

Lright «— Sl.lbliSt(L, Z'7 ‘L|)

return (Llefh Lright ’ ]37 p)

We simulated subsets of molecular sequences with different random seeds according to our evo-
lutionary model. The parameters are: SSM length=3, 04,;, = 0.03, A,y = 0.05, ppy = 0.2,
Assyv = 2.0, and pussar = 2.0. A subset of the data is shown in the Figure

internal_0|CA--G---C---A--G------------- T
internal_1!-GAG-C---G-G------AA----GA----TGC-TGC
internal_2|--AG-CAG--CC------ CG--C-GAC---TG-----
internal_3|-GAG-C---G-G------AA----GA----TGC----
internal_4|-GAG-C---G-G------AA----GA----TGC----
internal_5|-GAG-C---G-G------AA----GA----TGC----
internal_6!-GAG-C---G-G------AA----GA----TGC----
internal_7|-TAG-C---G-C------CA--C-GAC---TGC----
internal_8|ATAG-C---G------C----A----G-C-GGCA---
leaf @  |CA--G---C---A--G----C--A---G-TG--A---
leaf_1  |-GAG-C---G-G------AA----GT----TGC-TGC
leaf_2  |-GAG-C---G-G------AA----GA----TGC-TGC
leaf_3  |-GAG-C---G-G------AA----GA----TGC----
leaf_4  |CA--G---C---A--G-mmmmmmmmmmm- TG--A---
leaf_5  |-GAT-C---G-G------AA----GA----TGC----
leaf_6  |--AG-CAG--CC------ CG--C-GAC---TG-----
leaf_7  1-GAG-C---G-G------AA----GA----TGC----
leaf_8  |--AG-CAG--CC-GC--CCG--C-GAC---CG-----
leaf 9  [-GAT-----G-G------ GA----GT-----GC----

Figure 2: Sequence Simulation. One subset of simulated sequence data for the experiments on
trees via SMC.

2.2 RNA Folding Pathways

To compare our method (denoted as TIPS) to that of forward sampling (denoted as FS), we first
obtained an absolute accuracy by computing the matrix exponential. Then we computed the absolute
log error estimate p (i.e., error(p) = | log p—log P, (X n = y)|) of our method and forward sampling
on the RNA molecules shown in Table@ These RNA sequences are short, due to the limit in the size
of matrix computed using the matrix exponential. The state spaces for the first two RNA sequences
were sufficiently small for computation of the matrix exponential. The complete state space of the
last two RNAs were too large for the matrix exponential, so we sampled a subset of the state space.

Figures , show the performance of the FS and TIPS methods, for two short molecules 1AFX
and 1XV6, on selective folding times, {0.5, 2, 8}. Figures , show the CPU times (in millisec-
onds) corresponding to the minimum number of particles required to satisfy the certain accuracy
level, I = {p : error(p) < 1.0} on different folding times including the selective ones.

"Note that this formula assumes that the process is reversible, but can be extended to the non-reversible
case.



Sequence | Length |X| |S|
1AFX 12 70 -
1XV6 12 48 -
RNA21 21 ~ 1100 657
HIV 23 ~ 1500 266

Table 2: Biological RNA Sequences.

The variances of FS and TIPS weights, for 55 = 15625 particles, are also computed and compared
on different folding times (see Figures 3, 3f).
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Figure 3: Performance of our method (TIPS) and forward sampling (FS) on 1AFX and 1XV6
molecules with their whole state space. The relative errors of the estimates vs. folding times,
{0.5,2,8} are shown (left) along with the CPU times corresponding to the minimum number of
particles required to satisfy the accuracy level I in milliseconds (middle) and the variance of TIPS
and FS estimations (right) on folding times, {0.5,1,--- , 8}.

Our method has two main tuning parameters, a geometric parameter, 3, over the number of repeated
excursions from y to itself, and a parameter, «, weighting the probability of the steps decreasing
the value of the potential. We found that the accuracy of the sampler in the case of RNA folding
pathways was sensitive to the setting of the parameters (see Figure f). Parameter tuning is an
important area of future work.
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Figure 4: Tuning parameter «. Performance of our method (TIPS) using different values of «
compared to forward sampling (FS) for estimating the folding pathway of the 1XV6 molecule on its
whole state space.
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Figure 5: An example of a sampled folding pathway for the HIV23 molecule with 7' = 0.125.
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