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1 Direct proof of invariance

Let µ
t

be the law of z (t). In the following, we prove invariance by explicitly verifying that the time
evolution of the density dµt

dt

= 0 is zero if the initial distribution µ

0

is given by ⇢(z) = ⇡ (x) (v)

in Proposition 1. This is achieved by deriving the forward Kolmogorov equation describing the
evolution of the marginal density of the stochastic process. For simplicity, we start by presenting
the invariance argument when �ref

= 0.

Notation and description of the algorithm. We denote a pair of position and velocity by
z = (x, v) 2 Rd ⇥ Rd and we denote translations by �

t

(z) = (�

pos

t

(z),�

dir

t

(z)) = (x+ vt, v). The
time of the first bounce coincides with the first arrival T

1

of a PP with intensity �(t) = �(�

t

(z))

where:
�(z) = max {0, hrU (x) , vi} . (1)

It follows that the probability of having no bounce in the interval [0, t] is given by:

No

t

(z) = exp

✓
�
ˆ

t

0

�(�

s

(z))ds

◆
, (2)

and the density of the random variable T

1

is given by:

q(t

1

; z) = 1[t
1

> 0]

d

dt1
(1�No

t1(z)) (3)
= 1[t

1

> 0]No

t1(z)�(�t1(z)). (4)

If a bounce occurs, then the algorithm follows a translation path for time T

1

, at which point the
velocity is updated using a bounce operation C(z), defined as:

C (z) = (x,R (x) v) (5)

where
R (x) v = v � 2

hrU (x) , virU (x)

krU (x)k2
. (6)

The algorithm then continues recursively for time t� T

1

, in the following sense: a second bounce
time T

2

is simulated by adding to T

1

a random increment with density q(·;C � �
t1(z)). If T

2

> t,
then the output of the algorithm is �

t�t1 �C ��
t1(z), otherwise an additional bounce is simulated,
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etc. More generally, given an initial point z and a sequence t = (t

1

, t

2

, . . . ) of bounce times, the
output of the algorithm at time t is given by:

 t,t (z) =

(
�

t

(z) if t

1

> 0 or t = ( ),

 t0,t�t1 (z) � C � �
t1(z) otherwise,

(7)

where ( ) denotes the empty list and t0 the suffix of t: t0 = (t

2

, t

3

, . . . ). As for the bounce times,
they are distributed as follows:

T

1

⇠ q( · ; z) (8)

T

i

� T

i�1

|T
1:i�1

⇠ q

⇣
· ;  

T1:i�1,Ti�1(z)| {z }
Pos. after collision i � 1

⌘
, i 2 {2, 3, 4, . . . } (9)

where T

1:i�1

= (T

1

, T

2

, . . . , T

i�1

) .

Decomposition by the number of bounces. Let h denote an arbitrary non-negative mea-
surable test function. We show how to decompose expectations of the form E[h( T,t

(z))] by the
number of bounces in the interval (0, t). To do so, we introduce a function #Col

t

(t), which returns
the number of bounces in the interval (0, t):

#Col

t

(t) = min {n � 1 : t

n

> t}� 1. (10)

From this, we get the following decomposition:

E[h( T,t

(z))] = E[h( T,t

(z))

1X

n=0

1[#Col

t

(T) = n]] (11)

=

1X

n=0

E[h( T,t

(z))1[#Col

t

(T) = n]]. (12)

On the event that no bounce occurs in the interval [0, t), i.e. #Col

t

(T) = 0, the function  T,t

(z)

is equal to �
t

(z), therefore:

E[h( T,t

(z))1[#Col

t

(T) = 0]] = h(�

t

(z))P(#Col

t

(T) = 0) (13)
= h(�

t

(z))No

t

(z). (14)

Indeed, on the event that n � 1 bounces occur, the random variable h(�

t

(z)) only depends on a
finite dimensional random vector, (T

1

, T

2

, . . . , T

n

), so we can write the expectation as an integral
with respect to the density eq(t

1:n

; t, z) of these variables:
E[h( T,t(z))1[#Colt(T) = n]] (15)
= E

⇥
h( T,t(z))1[0 < T1 < · · · < Tn < t < Tn+1]

⇤

=

ˆ
· · ·
ˆ

0<t1<···<tn<t<tn+1h( t1:n,t(z))q(t1; z)
n+1Y

i=2

q(t� ti�1; t1:i�1,ti�1 (z))dt1:n+1

=

ˆ
· · ·
ˆ

0<t1<···<tn<th( t1:n,t(z))eq(t1:n; t, z)dt1:n, (16)

where:

eq(t
1:n

; t, z) = q(t

1

; z)⇥
(
No

t�t1(�t1(z)) if n = 1

No

t�tn(�t1:n,tn(z))

Q
n

i=2

q

�
t

i

� t

i�1

; 

t1:i�1,ti�1(z)

�
if n � 2.

To include Equations (14) and (16) under the same notation, we define t

1:0

to the empty list, ( ),
eq(( ); t, z) = No

t

(z), and abuse the integral notation so that for all n 2 {0, 1, 2, . . . }:

E[h( T,t

(z))1[#Col

t

(T) = n]] =

ˆ
· · ·
ˆ

0<t1<···<tn<t

h( 

t1:n,t(z))eq(t1:n; t, z)dt1:n. (17)
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Marginal density. Let us fix some arbitrary time t > 0. We seek a convenient expression for
the marginal density at time t, µ

t

(z), given an initial vector Z ⇠ ⇢, where ⇢ is the hypothesized
stationary density ⇢(z) = ⇡ (x) (v) on Z. To do so, we look at the expectation of an arbitrary
non-negative measurable test function h:

E[h( T,t(Z))] = E
h
E[h( T,t(Z))|Z]

i
(18)

=

1X

n=0

E
h
E[h( T,t(Z))1[#Colt(T) = n]|Z]

i
(19)

=

1X

n=0

ˆ
Z
⇢(z)

ˆ
· · ·
ˆ

0<t1<···<tn<th( t1:n,t(z))eq(t1:n; t, z)dt1:ndz (20)

=

1X

n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t

ˆ
Z
⇢(z)h( t1:n,t(z))eq(t1:n; t, z)dzdt1:n (21)

=

1X

n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t

ˆ
Z
⇢( �1

t1:n,t(z
0
))h(z0)eq(t1:n; t, �1

t1:n,t(z
0
))

���detD �1
t1:n,t

��� dz0dt1:n

=

ˆ
Z
h(z0)

1X

n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t⇢( 
�1
t1:n,t(z

0
))eq(t1:n; t, �1

t1:n,t(z
0
))dt1:n

| {z }
µt(z0)

dz0. (22)

We used the following in the above derivation successively the law of total expectation, equa-
tion (12), equation (18), Tonelli’s theorem and the change of variables, z0 =  

t1:n,t(z), justified
since for any fixed 0 < t

1

< t

2

< · · · < t

n

< t < t

n+1

,  
t1:n,t(·) is a bijection (being a composition

of bijections). Now the absolute value of the determinant is one since  t,t (z) is a composition
of unit-Jacobian mappings and, by using Tonelli’s theorem again, we obtain that the expression
above the brace is necessarily equal to µ

t

(z

0
) since h is arbitrary.

Derivative. Our goal is to show that for all z0 2 Z

dµ

t

(z

0
)

dt

= 0.

Since the process is time homogeneous, once we have computed the derivative, it is enough to show
that it is equal to zero at t = 0. To do so, we decompose the computation according to the terms
I

n

in Equation (22):

µ

t

(z

0
) =

1X

n=0

I

n

(z

0
, t) (23)

I

n

(z

0
, t) =

ˆ
· · ·
ˆ

0<t1<···<tn<t

⇢( 

�1

t1:n,t
(z

0
))eq(t

1:n

; t, 

�1

t1:n,t
(z

0
))dt

1:n

. (24)

The categories of terms in Equation (23) to consider are:

No bounce: n = 0,  
t1:n,t(z) = �t

(z), or,

Exactly one bounce: n = 1,  
t1:n,t(z) = F

t,t1 := �

t�t1 � C � �
t1(z) for some t

1

2 (0, t), or,

Two or more bounces: n � 2,  
t1:n,t(z) =  t�t2 � C � F

t2,t1(z) for some 0 < t

1

< t

2

< t

In the following, we show that the derivative of the terms in the third category, n � 2, are all equal
to zero, while the derivative of the first two categories cancel each other.

No bounce in the interval. From Equation (14):

I

0

(z

0
, t) = ⇢(��t

(z

0
))No

t

(��t

(z

0
)). (25)

We now compute the derivative at zero of the above expression:

d

dt

I

0

(z

0
, t)

����
t=0

= No

0

(�

0

(z

0
))

d⇢(��t

(z

0
))

dt

����
t=0

+

⇢(�

0

(z

0
))

dNo

t

(��t

(z

0
))

dt

����
t=0

(26)
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The first term in the above equation can be simplified as follows:

No

0

(�

0

(z

0
))

d⇢(��t

(z

0
))

dt

=

d⇢(��t

(z

0
))

dt

(27)

=

⌧
@⇢(��t

(z

0
))

@�

pos

�t

(z

0
)

,

d�

pos

�t

(z

0
)

dt

�
+

*
@⇢(��t

(z

0
))

@�

dir

�t

(z

0
)

,

d�

dir

�t

(z

0
)

dt| {z }
=0

+
(28)

=

⌧
@⇢(z)

@x

,�v

0
�

(29)

=

⌧
@

@x

1

Z

exp (�U(x)) (v) ,�v

0
�

= ⇢(��t

(z

0
)) hrU(x), v

0i , (30)

where x = �

pos

�t

(z

0
). The second term in Equation (26) is equal to:

⇢(�

0

(z

0
))

dNo

t

(��t

(z

0
))

dt

����
t=0

= �⇢(�
0

(z

0
))No

0

(z

0
)�(�

0

(z

0
)) (31)

= �⇢(z0)�(z0), (32)

using Equation (4). In summary, we have:

d

dt

I

0

(z

0
, t)

����
t=0

= ⇢(z

0
) hrU(x

0
), v

0i � ⇢(z

0
)�(z

0
).

Exactly one bounce in the interval. From Equation (16), the trajectory consists in a bounce
at a time T

1

, occurring with density (expressed as before as a function of the final point z

0)
q(t

1

;F

�1

t,t1
(z

0
)), followed by no bounce in the interval (T

1

, t], an event of probability:

No

t�t1(C � �
t1(z)) = No

t�t1(C � �
t1 � F�1

t,t1
(z

0
)) (33)

= No

t�t1(�t1�t

(z

0
)), (34)

where we used that C

�1

= C. This yields:

I

1

(z

0
, t) =

ˆ
t

0

q(t

1

;F

�1

t,t1
(z

0
))⇢( 

�1

t1:1,t
(z

0
))No

t�t1(�t1�t

(z

0
))dt

1

. (35)

To compute the derivative of the above equation at zero, we use again Leibniz’s rule:

d

dt

I

1

(z

0
, t)

����
t=0

= ⇢(C(z

0
))�(C(z

0
)).

Two or more bounces in the interval. For a number of bounce, we get:

In(z
0, t) =

ˆ t

0

" ˆ
· · ·
ˆ

t2:n:t1<t2···<tn<t⇢( 
�1
t1:n,t(z

0
))eq(t1:n; t, �1

t1:n,t(z
0
))dt2:n

| {z }
Ĩ(t1,t,z0)

#
dt1, (36)

and hence, using Leibniz’s rule on the integral over t

1

:

d

dt

I

n

(z

0
, t)

����
t=0

=

˜

I(0, 0, z

0
) = 0. (37)

Putting all terms together. Putting everything together, we obtain:

dµ

t

(z

0
)

dt

����
t=0

= ⇢(z

0
) hrU(x

0
), v

0i�⇢(z0)�(z0) + ⇢(C(z

0
))�(C(z

0
)).| {z } (38)
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From the expression of �(·), we can rewrite the two terms above the brace as follows:

� ⇢(z

0
)�(z

0
) + ⇢(C(z

0
))�(C(z

0
))

=� ⇢(z

0
)�(z

0
) + ⇢(z

0
)�(C(z

0
))

=� ⇢(z

0
)max{0, hrU(x

0
), v

0i}+ ⇢(z

0
)max{0, hrU(x

0
), R (x

0
) v

0i}
=� ⇢(z

0
)max{0, hrU(x

0
), v

0i}+ ⇢(z

0
)max{0, hrU(x

0
), R (x

0
) v

0i}
=� ⇢(z

0
)max{0, hrU(x

0
), v

0i}+ ⇢(z

0
)max{0,�hrU(x

0
), v

0i}
=� ⇢(z

0
) hrU(x

0
), v

0i ,

where we used that ⇢(z0) = ⇢(C(z

0
)), hrU(x

0
), R (x

0
) v

0i = �hrU(x

0
), v

0i and �max{0, f} +

max{0,�f} = �f for any function f . Hence we have dµt(z
0
)

dt

���
t=0

= 0, establishing that that the
bouncy particle sampler �ref

= 0 admits ⇢ as invariant distribution. The invariance for �ref

> 0

then follows from Lemma 1 given below.

Lemma 1. Suppose P

t

is a continuous time Markov kernel and Q is a discrete time Markov kernel
which are both invariant with respect to µ. Suppose we construct for �ref

> 0 a Markov process ˆ

P

t

as follows: at the jump times of an independent PP with intensity �ref we make a transition with
Q and then continue according to P

t

, then ˆ

P

t

is also µ-invariant.

Proof. The transition kernel is given by

ˆ

P

t

= e

��t

P

t

+

ˆ
t

0

dt

1

�e

�t1
e

��(t�t1)
P

t�t1QP

t1

+

ˆ
t

0

dt

1

ˆ
t2

t1

dt

2

�

2

e

�t1
e

�(t2�t1)
e

��(t�t2)
P

t�t2QP

t2�t1QP

t1 + . . .

Therefore

µ

ˆ

P

t

= µ

 
e

��t

+ �te

��t

+

(�t)

2

2

e

��t

. . .

!

= µ.

Hence ˆ

P

t

is µ-invariant.

2 Invariance of the local sampler

The generator of the local BPS is given by

Lh(z) = hr
x

h (x, v) , vi (39)

+

X

f2F

�

f

(x, v) {h(x,R
f

(x) v)� h(x, v)}

+�

ref

ˆ
(h(x, v

0
)� h(x, v)) ( dv

0
) .

The proof of invariance of the local BPS is very similar to the proof of Propostion 1. We have
ˆ

Lh(z)⇢ (z) dz =

ˆ ˆ
hr

x

h (x, v) , vi ⇢ (z) dz (40)

+

ˆ ˆ X

f2F

�

f

(x, v) {h(x,R
f

(x) v)� h(x, v)}]⇢ (z) dz (41)

+�

ref

ˆ ˆ ˆ
(h(x, v

0
)� h(x, v)) ( dv

0
) ⇢ (z) dz (42)
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where the term (42) is straightforwardly equal to 0 while, by integration by parts, the term (40)
satisfies ˆ ˆ

hr
x

h (x, v) , vi ⇢ (z) dz =

ˆ ˆ
hrU (x) , vih (x, v) ⇢ (z) dz. (43)

as h is bounded. Now a change-of-variables shows that for any f 2 F

ˆ ˆ
�

f

(x, v)h(x,R

f

(x) v)⇢ (z) dz =

ˆ ˆ
� (x,R

f

(x) v)h(x, v)⇢ (z) dz (44)

as R

�1

f

(x) v) = R (x) v and kR
f

(x) vk = kvk implies  (R

f

(x) v) =  (v). So the term (41)
satisfies ˆ ˆ X

f2F

�

f

(x, v) {h(x,R
f

(x) v)� h(z)}]⇢ (z) dz

=

ˆ ˆ X

f2F

[� (x,R

f

(x) v)� � (x, v)]h(x, v)⇢ (z) dz

=

ˆ ˆ X

f2F

[max{0, hrU

f

(x), R (x) vi}�max{0, hrU

f

(x), vi}]h(x, v)⇢ (z) dz

=

ˆ ˆ X

f2F

[max{0,�hrU

f

(x), vi}�max{0, hrU

f

(x), vi}]h(x, v)⇢ (z) dz

= �
ˆ ˆ X

f2F

[hrU

f

(x) , vi]h(x, v)⇢ (z) dz

= �
ˆ ˆ

hrU (x) , vi]h(x, v)⇢ (z) dz, (45)

where we have used hrU

f

(x), R

f

(x) vi = �hrU

f

(x), vi and max{0,�f} � max{0, f} = �f for
any f . Hence, summing (43)-(45)-(42), we obtain

´
Lh(z)⇢ (z) dz = 0 and the result now follows

by [1, Proposition 34.7].

3 Calculations in the isotropic normal case

As we do not use refreshment, it follows from the definition of the collision operator that

D
x

(i)

, v

(i)

E
=

*
x

(i)

, v

(i�1) �
2

⌦
x

(i)

, v

(i�1)

↵
��
x

(i)

��2
x

(i)

+

= �
D
x

(i)

, v

(i�1)

E
= �

D
x

(i�1)

, v

(i�1)

E
� ⌧

i

=

(
�
p
� log V

i

if
⌦
x

(i�1)

, v

(i�1)

↵
 0

�
q⌦

x

(i�1)

, v

(i�1)

↵
2 � log V

i

otherwise
,

and therefore

���x(i)

���
2

=

(��
x

(i�1)

��2 �
⌦
x

(i�1)

, v

(i�1)

↵
2 � log V

i

if
⌦
x

(i�1)

, v

(i�1)

↵
 0��

x

(i�1)

��2 � log V

i

otherwise.
.

It follows that
⌦
x

(j)

, v

(j)

↵
 0 for j > 0 if

⌦
x

(0)

, v

(0)

↵
 0 so, in this case, we have

6



���x(i)

���
2

=

���x(i�1)

���
2

�
D
x

(i�1)

, v

(i�1)

E
2

� log V

i

=

���x(i�1)

���
2

+ log V

i�1

� log V

i

=

���x(i�2)

���
2

�
D
x

(i�1)

, v

(i�1)

E
2

� log V

i�1

+ log V

i�1

� log V

i

...
...

=

���x(1)

���
2

�
D
x

(1)

, v

(1)

E
2

� log V

i

In particular for x

(0)

= e

1

and v

(0)

= e

2

with e

i

being elements of standard basis of Rd, the norm
of the position at all points along the trajectory can never be smaller than 1.

4 Supplementary information on the evolutionary parame-

ters inference experiments

4.1 Model

We consider an over-parameterized generalized time reversible rate matrix [2] with d = 10 cor-
responding to 4 unnormalized stationary parameters x

1

, . . . , x

4

, and 6 unconstrained substitution
parameters x{i,j}, which are indexed by sets of size 2, i.e. where i, j 2 {1, 2, 3, 4} , i 6= j. Off-
diagonal entries of Q are obtained via q

i,j

= ⇡

j

exp

�
x{i,j}

�
, where

⇡

j

=

exp (x

j

)

P
4

k=1

exp (x

k

)

.

We assign independent standard Gaussian priors on the parameters x
i

. We assume that a matrix of
aligned nucleotides is provided, where rows are species and columns contains nucleotides believed to
come from a shared ancestral nucleotide. Given x =

�
x

1

, . . . , x

4

, x{1,2}, . . . , x{3,4}
�
, and hence Q,

the likelihood is a product of conditionally independent continuous time Markov chains over {A, C,
G, T}, with “time” replaced by a branching process specified by the phylogenetic tree’s topology and
branch lengths. The parameter x is unidentifiable, and while this can be addressed by bounded or
curved parameterizations, the over-parameterization provides an interesting challenge for sampling
methods, which need to cope with the strong induced correlations.

4.2 Baseline

We compare the BPS against a state-of-the-art HMC sampler [3] that uses Bayesian optimization
to adapt the the leap-frog stepsize ✏ and trajectory length L of HMC. This sampler was shown
in [4] to be comparable or better to other state-of-the-art HMC methods such as NUTS. It also
has the advantage of having efficient implementations in several languages. We use the author’s
Java implementation to compare to our Java implementation of the BPS. Both methods view the
objective function as a black box (concretely, a Java interface supporting pointwise evaluation
and gradient calculation). In all experiments, we initialize at the mode and use a burn-in of 100
iterations and no thinning. The HMC auto-tuner yielded ✏ = 0.39 and L = 100. For our method,
we use the global sampler and the global refreshment scheme.
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Figure 1: Estimate of the ACF of the log-likelihood statistic for BPS (left) and HMC (right). A
similar behavior is observed for the ACF of the other statistics.
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Figure 2: Left: sensitivity of BPS’s ESS/s on the log likelihood statistic. Right: sensitivity of
HMC’s ESS/s on the log likelihood statistic. Each setting is replicated 10 times with different
algorithmic random seeds.

4.3 Additional experimental results

To ensure that BPS outperforming HMC does not come from a faulty auto-tuning of HMC pa-
rameters, we look at the ESS/s for the log-likelihood statistic when varying the stepsize ✏. The
results in Figure 2(right) show that the value selected by the auto-tuner is indeed reasonable, close
to the value 0.02 found by brute force maximization. We repeat the experiments with ✏ = 0.02

and obtain the same conclusions. This shows that the problem is genuinely challenging for HMC.

The BPS algorithm also exhibits sensitivity to �ref . We analyze this dependency in Figure 2(left).
We observe an asymmetric dependency, where values higher than 1 result in a significant drop in
performance, as they bring the sampler closer to random walk behavior. Values one or more orders
of magnitudes lower than 1 have a lower detrimental effect. However for a range of values of �ref
covering six orders of magnitudes, BPS outperforms HMC at its optimal parameters.
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