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We address the problem of the joint statistical inference of phylo-
genetic trees and multiple sequence alignments from unaligned
molecular sequences. This problem is generally formulated in terms
of string-valued evolutionary processes along the branches of a
phylogenetic tree. The classic evolutionary process, the TKF91model
[Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114–124]
is a continuous-time Markov chain model composed of insertion,
deletion, and substitution events. Unfortunately, this model gives
rise to an intractable computational problem: The computation of
the marginal likelihood under the TKF91 model is exponential in the
number of taxa. In this work, we present a stochastic process, the
Poisson Indel Process (PIP), in which the complexity of this computa-
tion is reduced to linear. The Poisson Indel Process is closely related to
the TKF91 model, differing only in its treatment of insertions, but it
has a global characterization as a Poisson process on the phylogeny.
Standard results for Poisson processes allow key computations to be
decoupled, which yields the favorable computational profile of in-
ference under the PIP model. We present illustrative experiments
in which Bayesian inference under the PIP model is compared with
separate inference of phylogenies and alignments.
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The field of phylogenetic inference is being transformed by the
rapid growth in availability of molecular sequence data. There

is an urgent need for inferential procedures that can cope with
data from large numbers of taxa and that can provide inferences
for ancestral states and evolutionary parameters over increasingly
large time spans. Existing procedures are often not scalable along
these dimensions and can be a bottleneck in analyses of modern
molecular datasets.
A key issue that renders phylogenetic inference difficult is that

sequence data are generally not aligned a priori, having undergone
evolutionary processes that involve insertions and deletions.
Consider Fig. 1, which depicts an evolutionary tree in which each
node is associated with a string of nucleotides, where the string
evolves via insertion, deletion, and substitution processes along
each branch of the tree. Even if we consider evolutionary models
that are stochastically independent along the branches of the tree
(conditioning on ancestral states), the inferential problem of in-
ferring evolutionary paths (conditioning on observed data at the
leaves of the tree) does not generally decouple into independent
computations along the branches of the tree. Rather, alignment
decisions made throughout the tree can influence the posterior
distribution on alignments along any branch.
This issue has come to the fore in a line of research beginning in

1991 with a seminal paper by Thorne et al. (1). In the “TKF91
model,” a simple continuous-timeMarkov chain (CTMC) provides
a string-valued stochastic process along each branch of an evolu-
tionary tree. This makes it possible to define joint probabilities on
trees and alignments, and thereby obtain likelihoods and posterior
distributions for statistical inference. A further important de-
velopment has been the realization that the TKF91 model can be
represented as a hidden Markov model, and that generalizations
to a broader class of string-valued stochastic processes with finite-
dimensional marginals are therefore possible (2–9). This has the
appeal that statistical inference under these processes (known as

transducers) can be based on dynamic programming (10–13).
Unfortunately, however, despite some analytical simplification that
is feasible in restricted cases (14), the memory needed to represent
the state space in these models is generally exponential in the
number of leaves in the tree (15). Moreover, even in the simple
TKF91 model, there does not appear to be additional structure in
the state space that allows for simplification of the dynamic pro-
gram. Indeed, the running time of the most sophisticated algorithm
for computing marginals (16) depends on the number of homology
linearizations, which is exponential in sparse alignments (17).
As a consequence of this unfavorable computational complex-

ity, there has been extensive work on approximations, specifically
on approximations to the joint marginal probability of a tree and
an alignment, obtained by integrating over the derivation (8, 18). A
difficulty, however, is that thesemarginal probabilities play a role in
tree inference procedures as the numerators and denominators of
acceptance probabilities for Markov chain Monte Carlo (MCMC)
algorithms. Loss of accuracy in these values can have large, un-
controlled effects on the overall inference. A second approach is to
consider joint models that are not obtained by marginalization of
a joint continuous-time, string-valued process. A range of combi-
natorial (19–24) and probabilistic (25–29) models fall into this
category. Although often inspired by continuous-time processes,
obtaining a coherent and calibrated estimate of uncertainty in these
models is difficult.
A third possible response to the computational complexity of

joint inference of trees and alignments is to retreat tomethods that
treat these problems separately. In particular, as is often done in
practice, one can obtain a multiple sequence alignment (MSA) via
any method (often based on a heuristically chosen “guide tree”)
and then infer a tree based on the fixed alignment. This latter in-
ferential process is generally based on the assumption that the
columns of the alignment are independent; in such case, the
problem decouples into a simple recursion on the tree [the “Fel-
senstein” or “sum-product” recursion (30)]. Such an approach can
introduce numerous artifacts, however, both in the inferred phy-
logeny (28, 29, 31), and in the inferred alignment (32, 33).
It is also possible to iterate the solution of theMSAproblem and

the tree inference problem (34, 35), which can be viewed as a
heuristic methodology for attempting to perform joint inference.
The drawbacks of these systems include a lack of theoretical un-
derstanding, the difficulty of getting calibrated confidence inter-
vals, and overalignment problems (17, 36).
Finally, other methods have focused on analyzing only pairs of

sequences at a time (17, 37–39). Although this approach can con-
siderably simplify computation (40, 41), it has the disadvantage that it
is not based on an underlying joint posterior probability distribution.
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In the current paper, we present a model-based approach to the
joint probabilistic inference of trees and alignments. Our ap-
proach is based on a model that is closely related to TKF91, al-
tering only the insertion process but leaving the deletion and
substitution processes intact. Surprisingly, this relatively small
change has a major mathematical consequence: Under our model,
evolutionary paths have an equivalent global description as a
Poisson process on the phylogenetic tree. We are then able to
exploit standard results for Poisson processes (notably, Poisson
thinning) to obtain significant computational leverage on the
problem of computing the joint probability of a tree and an
alignment. Indeed, under our model, this computation decouples
in such a way that this joint probability can be obtained in linear
time (linear in the number of taxa and the sequence length) rather
than in exponential time, as in TKF91.
Our model has two descriptions: the first as a local continuous-

time Markov process that is closely related to the TKF91 model
and the second as a global Poisson process. We treat the latter as
the fundamental description and refer to the newly developed
process as the Poisson Indel Process (PIP). The global de-
scription not only sheds light on computational issues but opens
up new ways to extend evolutionary models, allowing, for ex-
ample, models that incorporate structural constraints and slip-
ped-strand mispairing phenomena.
Under the Poisson process representation, another interesting

perspective on our process is to view it as a string-valued coun-
terpart to stochastic Dollo models (42, 43), which are defined on
finite state spaces. In particular, the general idea of the two-step
generation process used in Section 2 has antecedents in the liter-
ature on probabilistic modeling of morphological or lexical char-
acters, but the literature did not address the string-valued processes
that are our focus here.
The remainder of the paper is organized as follows. First, Section

1 provides some basic background on the TKF91 model. Next, in
Section 2, we present the PIP model, in both its local and global
formulations. Section 3 delves into the computational aspects of
inference under the PIP model, describing the linear-time algorithm
for computing the exact marginal density of an MSA and a tree. In
Section 4, we present an empirical evaluation of the inference al-
gorithm, and, finally, we present our conclusions in Section 5.

1. Background
We begin by giving a brief overview of the TKF91 model. Instead
of following the standard treatment based on differential equations,

we present a Doob–Gillespie view of the model (44, 45) that will be
useful in our subsequent development.
Let us assume that at some point in time t, a sequence has

length n. In the TKF91 process, the sequence stays unchanged
for a random interval of time Δt, and after this interval, a single
random mutation (substitution, insertion, or deletion) alters the
sequence. This is achieved by defining a total of 3n + 1 inde-
pendent exponential random variables, n of which correspond to
deletion of a single character, n of which correspond to the
mutation of a single character, and n + 1 of which yield insertions
after one of the n characters (including one “immortal” position
at the leftmost position in the string). These 3n + 1 exponential
random variables are simulated in parallel, and the value of the
smallest of these random variables determines Δt. The index of
the winner determines the nature of the event at time Δt
(whether it is a substitution, deletion, or insertion).
The random variables corresponding to a deletion have expo-

nential rate μTKF, whereas those corresponding to an insertion
have exponential rate λTKF. If the event is a mutation, a multino-
mial random variable with parameters obtained from the sub-
stitution rate matrix θ is drawn to determine the new value of the
character. Finally, if an insertion occurs, a multinomial random
variable is drawn to determine the value of the new character, with
parameters generally taken from the stationary distribution of θ.
This describes the evolution of a string of characters along

a single edge of a phylogenetic tree. The extension to the entire
phylogeny is straightforward; we simply visit the tree in preorder
and apply the single-edge process to each edge. The distribution
of the sequences at the root is generally assumed to be the sta-
tionary distribution of the single-edge process (conceptually, the
distribution obtained along an infinitely long edge).
Although the TKF91 model is reversible (and the PIP model as

well, as we prove in Section 2.3), making the location of the root
unidentifiable, it is useful to assume for simplicity that an arbi-
trary root has been picked, and we will make that assumption
throughout. The likelihood is not affected by this arbitrary choice.

2. PIP
In this section, we introduce the PIP. This process has two
descriptions: a local description that is closely related to the
TKF91 model and a global description as a Poisson process.
We require some additional notation (Fig. 2). A phylogeny τ

will be viewed as a continuous set of points, and its topology will
be denoted by ðL ; E Þ, where V ⊂ τ is equal to the finite subset
containing the branching points, the leaves L ⊂ V and the root
Ω, and where E is the set of edges. Parent nodes will be denoted
by pa(v), for v∈ V , and the branch lengths will be denoted by b
(v), which is the length of the edge from pa(v) to v. For any x ∈ τ
(whether x is a branch point in or an intermediate point on an
edge), we write τx for the rooted phylogenetic subtree of τ rooted

AC GAT T A C

AC T C

TG C C

TA C

Fig. 1. Depiction of the evolution of a set of strings of nucleotides along
the branches of a tree with leaves L = fv1; v2; v3g and root Ω, where each
string is subject to insertion, deletion, and substitution processes. Stars de-
note nucleotide insertion events, crosses denote deletion events, and circles
denote substitution events.

Fig. 2. Notation used for describing the PIP. Given a phylogenetic tree τ and
a point x ∈ τ on that tree, τx is defined as the subtree rooted at x. H. Sapiens,
Homo sapiens; M. Fuscata, Macaca fuscata; M. Sylvanus, Macaca sylvanus.
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at x (dropping all points in the original tree that are not
descendants of x). Finally, the set of characters (nucleotides or
amino acids) will be denoted as Σ.

2.1. Local Description. The stochastic process we propose has
a local description that is very similar to the TKF91 process, with
the only change being that the insertion rate no longer depends
on the sequence length. Therefore, instead of using 3n + 1
competing exponential random variables to determine the next
event as in the TKF91 model (n for substitutions, n + 1 for
insertions, and n for deletions), we now have 2n + 1 variables (n
for substitutions, 1 for insertion, with rate λ, and n for deletion,
each of rate μ). When an insertion occurs, its position is selected
uniformly at random.* We assume that the process is initialized
by sampling a Poisson-distributed number of characters, with
parameter λ/μ. Each character is sampled independently and
identically according to the stationary distribution of θ.
Note that if λ/λTKF is an integer and the sequence has the length

(λ/λTKF) − 1 at some point in time, the distribution over the time
and type of the next mutation is the same as in TKF91, using the
fact that the minimum of exponential variables with λi is expo-
nential, with a rate equal to the sum of the λi. However, in general,
the distributions are different. We discuss some of the biological
aspects of these differences in Section 5; for now, we focus on the
computational and statistical aspects of the PIP model.

2.2. Poisson Process Representation. We turn to a seemingly very
different process for associating character strings with a phylog-
eny. This process consists of two steps, with the first involving
insertions and the second involving deletions and substitutions.
In the first step, depicted in Fig. 3A, a multiset of insertion

points is sampled from a Poisson process defined on the phy-
logeny τ (46). The rate measure for this Poisson process has an
atomic mass at the root of the tree; hence, the need for multisets
rather than simple point sets. Except for the root, no other points
on the tree have an atomic mass (in particular, and in contrast to
population genetics models, the probability that evolutionary
events occur at branching points is 0). We denote this multiset
of insertion points by X.
In the second step, we visit the insertion points one at a time.

The order of the visits of the insertions is sampled uniformly at
random, ðX1;X2; . . . ;XIÞ∼PermðXÞ. An insertion visit consists
of two substeps. First, we extract the directed subtree rooted at
the insertion location Xi. Examples of these subtrees are shown
in Fig. 3B (Left). Second, we simulate the fate of the inserted
character along τXi . This is done via a substitution-deletion
CTMC whose state space Σ« =Σ∪ f«g consists of the basic al-
phabet Σ augmented with an empty string symbol «. As shown in
Fig. 3B (Right), the substitution-deletion CTMC yields paths
along subtrees in which a single character either mutates or is
deleted. The latter event, represented by «, is an absorbing state.
We define a homology path Hi as the single-character history

generated by a substitution-deletion CTMC along a phylogeny. If
a point x ∈ τ is a descendant of the insertion Xi, Hi(x) is set to the
state of the substitution-deletion CTMC at x. If x ∈ τ is not
a descendant of Xi, we set Hi(x) to the absorbing symbol «. Thus,
formally, a homology path Hi is a random map from any point on
τ to Σ«.
Given a set of homology paths for each inserted character in-

dex i, the sequence at any point on the tree, x ∈ τ, is obtained as
follows (Fig. 3C, Right). First, we construct a list of all the values

taken by Hi(x) at the given point: ðH1ðxÞ;H2ðxÞ; . . . ;HIðxÞÞ. Sec-
ond, we remove from the list any characters that are equal to the
absorbing symbol «. The string obtained thereby is denoted by
Y(x). The set of observed data comprises the values of Y at the
leaves of the tree: Y = fðv;Y ðvÞÞ : v∈L g.
We can also construct an MSAM from a set of homology paths

(Fig. 3C, Left). From each homology path Hi, we extract the
characters at the leaves, arranging these characters in a column.
Delete any column in which all the characters are the character «.
Arrange these columns in the order of the visits to the insertion
points. The resulting matrix, whose entries range over the aug-
mented alphabet Σ«, is the MSA M.
For a given rooted phylogenetic tree τ, we will denote by pτ(m)

the marginal probability that this process generates an MSA m,
integrating over all homology paths, pτðmÞ=PðM = mÞ. For joint
inference, we make the phylogenetic tree T random, with a dis-
tribution specified by a prior with density p(τ).
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M. Fuscata

M. Sylvanus
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Fig. 3. Example of a PIP sample. Here, Σ has two symbols, represented by
red and green squares, and the absorbing deletion symbol « is represented
in black. (A) Sample from a Poisson process on τ. (B) Each sampled point
corresponds to a rooted tree on which a CTMC path is sampled. (C) Align-
ments and sequences are obtained as a deterministic function of the first
two steps. H. Sapiens, Homo sapiens; M. Fuscata, Macaca fuscata; M. Syl-
vanus, Macaca sylvanus.

*More precisely, assume there is a real number ri in the interval [0, 1] assigned to each
character in the string in increasing order: 0< r1 < r2 <⋯< rn < 1. When an insertion
occurs, sample a new real number r0 uniformly in the interval [0, 1] and insert the
new character at the unique position (with a probability one of 1), such that an in-
creasing sequence of real numbers 0<⋯< r0 <⋯< 1 is maintained.

1162 | www.pnas.org/cgi/doi/10.1073/pnas.1220450110 Bouchard-Côté and Jordan

www.pnas.org/cgi/doi/10.1073/pnas.1220450110


2.3. Characterization. In this section, we show that the local and
the global descriptions of the PIP given in the previous two
subsections are, in fact, alternative descriptions of the same
string-valued stochastic process. In stating our theorem, we let ν
denote the rate measure characterizing the insertion process in
the global description and Q and π denote the transition matrix
and the initial distribution for the substitution-deletion CTMC.
2.3.1. Theorem 1. Let τ be a phylogenetic tree with an arbitrary
rooting, and let us denote the Lebesgue measure on τ by the
same symbol. For any insertion rate λ > 0, deletion rate μ > 0,
and reversible substitution rate matrix θ, the local and global
processes described in Sections 2.1 and 2.2 coincide if we set for
all σ, σ0 ∈Σ«:

νðdxÞ= λ

�
τðdxÞ+ 1

μ
δΩðdxÞ

�
;

Qσ;σ0 =

8>><
>>:

−
P

σ}≠ σ0 Qσ;σ} if σ = σ0

0 if σ = «
μ if σ0 = «
θσ;σ0 o:w: ;

and set π to be the quasi-stationary distribution of Q (47).
The proof is given in SI Appendix, Section 1. Note that in the

case of interest here, where the rate of deletion does not depend
on the character being deleted, πσ is equal to the entry of the
stationary distribution of θ corresponding to σ when σ ≠ «, and
0 otherwise. The following result establishes some basic prop-
erties of the PIP model. Its proof can be found in SI Appendix,
Section 1.
2.3.2. Proposition 2. For all μ, λ > 0 and reversible rate matrix θ, the
PIP model is reversible, with a stationary length distribution
given by a Poisson distribution with mean λ/μ.
The Poisson stationary length distribution represents a mod-

eling advantage of PIP over TKF91, which has a geometrically
distributed stationary distribution. Based on a study of protein-
length distributions for the three domains of life (48), the Pois-
son distribution has been suggested (49) as a more adequate
length distribution.
From proposition 2, we can also obtain an alternative repar-

ameterization of the PIP model, in terms of asymptotic expected
length η = λ/μ and insertion-deletion (indel) intensity ζ = λ ·μ.

3. Computational Aspects
We turn to a consideration of the computational consequences
of the Poisson representation of the PIP model. We first consider
how the Poisson process characterization allows us to compute
the marginal likelihood, pτ(m), in linear time, which is a signifi-
cant improvement over methods based on the TKF91 model. In
SI Appendix, Section 4, we provide a brief discussion of the role
that the marginal likelihood plays in inference.
To compute the marginal likelihood, pτ(m), we first condition

on the number of homology paths, jXj. Although the number of
homology paths is random and unknown, we know that it can be
no less than the number of columns jmj in the postulated
alignment m. We need to consider an unknown and unbounded
number of birth events with no observed offspring in the MSA,
but because they are exchangeable, they can be marginalized
analytically. This is done as follows:

pτðmÞ=E½PðM =mjjXjÞ�
=

P∞
n=jmj

PðjXj= nÞ ·
�

n
jmj

�
· ðpðc ÞÞn−jmj ∏

c∈m
pðcÞ ;

where the first factor captures the probability of sampling n
homology paths, the second captures the number of ways to pick

the jmj observed homology paths (the columns, which contain at
least one descendent character at the leaves) out of the n paths,
the factor pðcÞ=PðC= cÞ is the likelihood of a single MSA col-
umn c, and c is a column with an absorbing deletion symbol at
every leaf v∈L : c ≡ « (in this section, we drop subscripts for
column-specific random variables, such as C, H, and X, because
they are exchangeable). Note that such simplification is not pos-
sible in the TKF91 model, because the rate of insertion depends
on the length of the internal sequences, and hence of the
deletion events.
This expression can be simplified by introducing the function j

defined as follows for all z∈ ð0; 1Þ; k∈ f1; 2; . . .g:

φðz; kÞ= 1
k!
kνkkexpfðz− 1Þkνkg;

kνk= λ

�
kτk+ 1

μ

�
;

where kτk is the normalization of the measure τ (i.e., the sum of
all the branch lengths in the topology). We show in SI Appendix,
Section 2 that this yields the simple formula:

pτðmÞ= φðpðc Þ; jmjÞ ∏
c∈m

pðcÞ:

The next step is to compute the likelihood p(c) of each in-
dividual alignment column c. We do this by partitioning the
computation into subcases depending on the location of the tree
at which the insertion point X is located for column c. More
precisely, we look at the most recent common ancestor V = v∈ V
of the characters in c that are not equal to « (Fig. 3B). If v ≠ Ω,
this corresponds to the most recent end point of the edge e∈ E
where the insertion occurred.
Computing the prior probability of the insertion location is

greatly simplified by the fact that X jjXj∼ ν (ref. 50, chap. 2.4),
where ν= ν=kνk denotes the probability obtained by normalizing
the measure ν. We can therefore write:

PðV = vÞ=
(
νðenfΩgÞ if v≠Ω

νðfΩgÞ o:w:

=
1

kτk+ 1=μ
×

(
bðvÞ if v≠Ω

1=μ o:w:

Finally, the column probabilities are computed as follows:

PðC= cÞ= P
v∈V

PðV= vÞPðC= cjV = vÞ
=

P
v∈V

PðV= vÞfv;

where fv is the output of a slight modification of Felsenstein’s
peeling recursion (30) applied on the subtree rooted at v (the
derivation for fv can be found in SI Appendix, Section 2). Because
computing the peeling recursion for one column takes time
OðjL jÞ, we get a total running time of OðjL j · jmjÞ, where jL j
is the number of observed taxa and jmj is the number of columns
in the alignment.

4. Experiments
We implemented a system based on our model that performs
joint Bayesian inference of phylogenies and alignments. We used
this system to quantify the relative benefits of joint inference
relative to separate inference under the PIP and TKF91 models
(i.e., the benefits of inferring trees on accuracy of the inferred
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MSA and the benefits of inferring MSAs on the accuracy of the
inferred tree).
We used synthetic data to assess the quality of the tree recon-

structions produced by PIP, compared with the reconstructions of
phylogenetic estimation using maximum likelihood (PhyML)
2.4.4, a widely used platform for phylogenetic tree inference (51).
We also compared the inferred MSAs with those produced by
Clustal 2.0.12 (52), a popular MSA inference system.
Although our implementation evaluated in this section is based

on the Bayesian framework, we evaluate it using a frequentist
methodology. More precisely, we use Bayes estimators (described
in SI Appendix, Section 4) to obtain two point estimates from the
posterior: one for the MSA and one for the phylogeny. Each
point estimate is compared with the true alignment and tree. It is
therefore possible to compare the method with the well-known
frequentist methods mentioned above.
In this study, we explored four types of potential improve-

ments: (i) resampling trees and MSAs increasing the quality of
inferred MSAs, compared with resampling only MSAs; (ii)
resampling trees and MSAs increasing the quality of inferred
trees, compared with resampling only trees; (iii) resampling trees
increasing the quality of inferred trees, compared with trees
inferred by PhyML, and fixing the MSA to the one produced by
Clustal; and (iv) resampling MSAs increasing the quality of
inferred MSAs, compared with MSAs inferred by Clustal, and
fixing the tree to the one produced by PhyML. The results are
shown in Table 1. These experiments were based on 100 replicas,
with each having seven taxa at the leaves, a topology sampled
from the uniform distribution, branch lengths sampled from rate
2 exponential distributions, indels generated from the PIP with
parameters η = 100 and ζ = 1, and nucleotides sampled from the
Kimura two-parameter model (53).
We measured the quality of MSA reconstructions using the F1

score, defined as the harmonic mean of the reconstructed align-
ment edge recall [called the sum-of-pairs score or developer’s
score in the MSA literature (54)] and alignment edge precision
[modeler’s score (55)]. We measured the quality of tree recon-
structions using the partition (symmetrical clade difference)
metric (56) and the weighted Robinson–Foulds metric (57).
Relative improvements were obtained by computing the absolute
value of the quality difference (in terms of the F1 for alignments
and Robinson–Foulds distance for trees), divided by the initial
value of the measure. We report relative improvements averaged
over the 100 replicas.
We observed improvements of all four types. Comparing edge

F1 relative improvements with Robinson–Foulds relative im-
provements, the relative additional improvement of type 2 is larger
(13%) than that of type 1 (3%). Overall (i.e., comparing the
baselines with the joint system), the full improvements of both
trees and MSAs are substantial: 43% edge F1 improvement and
27% Robinson–Foulds improvement. A summary of the relative
improvements is provided in Fig. 4.

We also tested our system on data generated from the TKF91
model instead of the PIP model. We used the same tree distri-
bution and number of replicas as in the previous experiments
and the same generating TKF91 parameters as Holmes and
Bruno (2). We again observed improvements over the baseline,
both in terms of MSA and tree quality. For MSAs, the relative
improvement over the baseline was actually larger on the TKF91-
generated data than on the PIP-generated data (47% vs. 43%, as
measured by edge F1 improvement over Clustal), and it was lower
but still substantial for phylogenetic trees (13% vs. 27%, as
measured by Robinson–Foulds improvement over PhyML).
It should be noted that the MCMC kernels used in these

experiments (described in the SI Appendix, Section 3) are based
on simple Metropolis–Hastings proposals, and can therefore
suffer from high rejection rates in large datasets. Fortunately,
previous work in the statistical alignment literature has de-
veloped sophisticated MCMC kernels, some of which could be
applied to inference in our model (e.g., ref. 28). Another po-
tential direction would be to replace the MCMC by a sequential
Monte Carlo posterior approximation (58).
It should also be emphasized that point indels are certainly not

the exclusive driving force behind sequence evolution. In partic-
ular, “long indels” (atomic insertions and deletions of long seg-
ments, with a probability higher than the product of their point
indels) are also prominent. As a consequence, any system purely
based on point indels will have significant biases on biological
data. In practice, these biases will introduce three undesirable
artifacts: overestimation of the branch lengths; “gappy align-
ments,” where the reconstructed MSA has many scattered gaps
instead of a few long ones; and the related “ragged end” problem,
where the prefix and suffix of sequences are poorly aligned be-
cause observed sequences are often truncated in practice. In the
next section, we propose ways to address these limitations.

5. Discussion
We have presented a string-valued evolutionary model that can
be used for joint inference of phylogenies and MSAs. As with its
predecessor, the TKF91 model, our model can be used to capture
the homology of characters evolving on a phylogenetic tree under
insertion, deletion, and substitution events. Its advantage over
TKF91 is that it permits a representation as a Poisson process on
the tree. This representation has the consequence that the mar-
ginal likelihood of a tree and an alignment (marginalizing over
ancestral states) can be computed in time linear in the number of
taxa rather than exponentially, as in the case of TKF91. Poisson
representations have played an important role in pure sub-
stitution processes (42, 43, 59), but in this work, we use Poisson
representations for indel inference.
Although the insertion process in TKF91 might be argued to be

more realistic biologically than that of the PIP model in that it
allows the insertion rate to vary as the sequence length varies, in
the common setting, in which all the sequences being aligned are
of roughly similar lengths, this extra degree of freedom may be of

Table 1. PIP results on simulated data

Reconstruction accuracy

Tree resampled? No Yes No Yes
MSA resampled? No No Yes Yes

Edge recall (SP) 0.25 — 0.22 0.24
Edge Precision 0.22 — 0.56 0.58
Edge F1 0.23 — 0.31 0.32
Partition Metric 0.24 0.22 — 0.19
Robinson-Foulds 0.45 0.38 — 0.33

Reconstruction accuracy using five different metrics. The bold font high-
lights the best-performing combination of resampling for each row.

Baselines

Sampling tree+alignment

Sampling treeSampling alignment

35%

3%

16%

13%

Fig. 4. Relative improvements for enabling each component of the sam-
pler. Arrows on the left are relative alignment improvements, and arrows on
the right are relative tree improvements.
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limited value for inference. Indeed, in our experiments, we saw
that the PIPmodel can perform well even when data are generated
from the TKF91 model. We might also note that there are bi-
ological processes in which insertions originate from a source that
is extrinsic to the sequence (e.g., viruses, other genomic regions);
in such case, the constant-rate assumption of PIP may actually
be preferred.
It is also important to acknowledge, however, that neither

TKF91 nor PIP is an accurate representation of biology. Their use
in phylogenetic modeling reflects the hope that the statistical
inferences they permit, most notably taking into account the ef-
fect of indels on the tree topology, will nonetheless be useful as
data accrue. This hope is more likely to be realized in larger
datasets, motivating our goal of obtaining a method that scales to
larger sets of species. However, both models should also be
viewed as jumping-off points for further modeling that is more
faithful to the biology while retaining the inferential power of the
basic models. For example, there has been significant work on
extending TKF91 to models that capture the long indels that arise
biologically but are not captured by the basic model (7, 60, 61).
In this regard, we wish to note that the Poisson representation

of the PIP model provides avenues for extension that are not
available within the TKF91 framework. In particular, the su-
perposition property of Poisson processes makes it possible to
combine the PIP model with other models that follow a Poisson
law. For example, if the location X 0 of long indels, slipped-strand
mispairing (62), or other nonlocal changes follows a Poisson
point process, the union U=X ∪X 0 of the nonlocal changes with
the point indels X provided by a PIP will also be distributed
according to a Poisson process. Moreover, the thinning property
of Poisson processes provides a principled approach to inference

for such superpositions. Indeed, an MCMC sampler for the su-
perposition model can be constructed as follows. First, we can
exploit the decomposition to analytically marginalize X (using
the algorithm presented in this paper). Second, the other terms
of the superposition and the sequences at these points in time
can be represented explicitly as auxiliary variables. Because we
have an efficient algorithm for computing the marginal likeli-
hood, the auxiliary variables can be resampled easily. Note that
designing an irreducible sampler without marginalizing X would
be difficult: Integrating out X creates a bridge of positive prob-
ability between any pair of patterns of nonlocal changes.
Under the parameterization of the process used in this paper,

the model assumes both an equal deletion rate for all characters
and a uniform probability over inserted characters. It is worth
noting that our inference algorithm can be modified to handle
models relaxing both assumptions by replacing the calculation of
β(v) in SI Appendix, Section 2 by a quasi-stationary distribution
calculation (47). It would be interesting to use this idea to in-
vestigate what nonuniformities are present in biological indel data.
Finally, another avenue to improve PIP models is to make the

insertion rate mean measure more realistic: Instead of being
uniform across the tree, it could be modeled using a prior dis-
tribution, hence forming a Cox process (63). This would be most
useful when the sequences under study have large length or indel
intensity variations across sites and branches (64).
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1 Proofs for the Main PIP Properties

In this section, we prove Theorem 1 and Proposition 2. We begin by stating
and proving two lemmas.

Lemma 1 Let U ∼ Unif(0, t) and W ∼ Exp(µ) be independent for fixed t, µ >
0. Then

P(W + U > t) =
1− exp(−tµ)

tµ
.

Proof: By conditioning:

P(W + U > t) = E
[
P(W + U > t|U)

]
=

∫ t

0

exp(−xµ)

t
dx

=
1− exp(−tµ)

tµ
.

Lemma 2 Let τ0 denote a degenerate topology consisting of a root Ω connected
to a single leaf v0 by an edge of length t. Let Hi be a homology path as defined
in the main paper, with τ = τ0. For all x ∈ τ , define I(x) = {i : Hi(x) 6= ε, 1 ≤
i ≤ I} and:

N = |I(Ω)|
N ′ = |I(v0)|.

Then N ∼ Poi(λ/µ) implies N ′ ∼ Poi(λ/µ).

1



Proof: To prove the result, we decompose N and N ′ as follows (see Fig-
ure S.1):

N1 = |I(Ω)\I(v0)|
N2 = |I(Ω) ∩ I(v0)|
N3 = |I(v0)\I(Ω)|
N4 = |I\I(Ω)\I(v0)|
N = N1 +N2

N ′ = N2 +N3.

By the Coloring Theorem [1],

N2 ∼ Poi (ν({Ω})P(W > t)) ,

where W is a rate µ exponential random variable, and ν is as in the condition
of Theorem 1. Therefore N2 ∼ Poi(λ exp(−tµ)/µ). Similarly,

N3 ∼ Poi (ν(τ\{Ω})P(W + U > t)) ,

where U ∼ Unif(0, t), and therefore from Lemma 1, N3 ∼ Poi(λ(1−exp(−tµ))/µ).
It follows that:

N ′ = N2 +N3

∼ Poi

(
λ

µ
e−µ +

λ

µ

(
1− e−µ

))
= Poi

(
λ

µ

)
,

which concludes the proof of the lemma.
We can now prove Theorem 1:

Proof: In order to establish the equivalence, it is enough to show that for all
edges e = (v → v′) in the tree, the following two properties hold:

1. The distribution of the string length at the ancestral endpoint, |Y (v)|, is
identical in the local and global descriptions: a Poisson distribution with
rate λ/µ.

2. The distribution of the number and locations of mutations that fall on
e\{v, v′} are also identical in the local and global descriptions.

We will enumerate the edges in the tree in preorder, using induction to establish
these two hypotheses on this list of edges.

In the base case, hypothesis 1 is satisfied by construction: the local descrip-
tion is initialized with a Poi(λ/µ)-distributed number of characters, and in the
global description, the intensity measure ν of the Poisson process X assigns a
point mass λ/µ to v = Ω.
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N1

N2

N4

N3

Time

Figure S.1: Notation used in the appendix. The horizontal lines denote the
times where each character is present in the sequence. The vertical line on the
left denotes the sequence at Ω, and the vertical line on the right, the sequence
at v0. The sites are decomposed depending on whether they are present at each
of two points Ω, v0 in τ0.

To establish hypothesis 1 in the inductive case, let e′ = (v′′ → v) denote the
parent edge. By hypothesis 1 on e′, |Y (v′′)| ∼ Poi(λ/µ), therefore by Lemma 2
and hypothesis 2 on e′, hypothesis 1 is satisfied on e as well.

To establish hypothesis 2, it is enough to show that for all x ∈ e\{v, v′} the
waiting time for each type of mutation given Y (x) is exponential, with rates:

(a) λ for insertion,

(b) µ · |Y (x)| for deletion, and

(c)
∑
σ 6=ε θσ,σ′ |Y (x)|σ for substitutions to σ′ 6= ε, where |s|σ denotes the num-

ber of characters of type σ ∈ Σ in the string s ∈ Σ∗.

Item (a) follows from the Poisson Interval Theorem [1]. Items (b) and (c)
follow from the standard Doob-Gillespie characterization of CTMCs: if Xt is
a CTMC with rate matrix Q = (qi,j) and Zi,j are independent exponential
random variables with rate qi,j , then

(∆, J)|(X0 = i)
d
= (min

j 6=i
Zi,j , argmin

j 6=i
Zi,j),

where ∆ = inf{t : Xt 6= i}, J = X∆.
We now turn to Proposition 2 and establish reversibility.

Proof: Let h(n1, n2, n3, n4) = P(Ni = ni, i ∈ {1, 2, 3, 4}). Using reversibility
of θ, it is enough to show that h is invariant under the permutation (1 3); i.e.,
h(n1, n2, n3, n4) = h(n3, n2, n1, n4).
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We have that h(n1, n2, n3, n4) is equal to:

P
(
Ni = ni,

∑
i

Ni =
∑
i

ni, N1 +N2 = n1 + n2, N3 +N4 = n3 + n4

)
= P

(∑
i

Ni =
∑
i

ni

)
×

P
(
N1 +N2 = n1 + n2, N3 +N4 = n3 + n4

∣∣∣∑
i

Ni =
∑
i

ni

)
×

P(N1 = n1, N2 = n2|N1 +N2 = n1 + n2)×
P(N3 = n3, N4 = n4|N3 +N4 = n3 + n4)

= f1(n1 + n2 + n3 + n4)×(
1/µ

1/µ+ t

)n1+n2
(

t

1/µ+ t

)n3+n4

×(
1− e−µt

)n1 f2(n2)×(
1− e−µt

tµ

)n3

f3(n4),

where only the dependencies of the functions f1, f2 and f3 is important in this
argument, not their exact form. By inspection, it is clear that h is invariant
under the permutation (1 3).

2 Proofs for the Likelihood Computation

First, we show how the function ϕ, defined in the main paper, simplifies the
computation of pτ (m):

pτ (m) = E
[
P(M = m||X|)

]
=

∞∑
n=|m|

P(|X| = n) ·
(
n

|m|

)
· (p(c∅))n−|m|

∏
c∈m

p(c)

=
e‖ν‖

∏
c∈m p(c)

|m|!(p(c∅))|m|
∞∑

n=|m|

(‖ν‖p(c∅))
n

(n− |m|)!

=
e‖ν‖ (‖ν‖p(c∅))

|m|∏
c∈m p(c)

|m|!(p(c∅))|m|
∞∑
k=0

(‖ν‖p(c∅))
k

k!

=
e‖ν‖ (‖ν‖p(c∅))

|m|∏
c∈m p(c)

|m|!(p(c∅))|m|
exp (‖ν‖p(c∅))

= ϕ(p(c∅), |m|)
∏
c∈m

p(c).

Next, we show how to compute fv = P(C = c|V = v) for all v ∈ V . The
recursions for fv are similar to those found in stochastic Dollo models [2]. Note
first that fv can be zero for some vertices. To see where and why, consider the
subset of leaves S that that have an extant nucleotide in the current column
c, S = {v ∈ L : H(v) 6= ε}. Then fv will be non-zero only for the vertices
ancestral to all the leaves in S. Let us call this set of vertices A (see Figure S.2).
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A

S

Figure S.2: Given a set S of leaves v with H(v) 6= ε, we define the set A of
vertices with nonzero modified Felsenstein peeling weight to be those ancestral
to the leaves in S. In this example, A contains three vertices.

To compute fv on the remaining vertices, we introduce an intermediate
variable, f̃v = P(C = c|V = v,H(v) 6= ε). This variable can be computed using
the standard Felsenstein peeling recursion (dynamic programming) as follows:

f̃v(σ) =

{
1(c(v) = σ) if v ∈ L∑
σ′∈Σε

exp(b(v)Q)σ,σ′
∏
w∈child(v) f̃w(σ

′) o.w.
(1)

f̃v =
∑
σ∈Σ

πσ f̃v(σ). (2)

From Lemma 1, we have an expression for the survival probability at v given
an insertion on the edge (pa(v)→ v):

β(v) = P(H(v) 6= ε|V = v)

=
1

b(v)

1

µ

(
1− e−µb(v)

)
. (3)

Finally, for c 6= c∅, we have:

fv = P(C = c|V = v)

= E[P(C = c|V = v,H(v))]

=

{
f̃v if v = Ω

1[v ∈ A]β(v)f̃v o.w.,
(4)

and for c = c∅:

fv =

{
f̃v if v = Ω

1 + β(v)(f̃v − 1) o.w.
(5)
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3 Proposal distributions

To perform full joint inference over trees and alignments using Markov chain
Monte Carlo, several objects need to be resampled: the tree topology, the branch
lengths, the MSA, and the parameters.

For trees and branch lengths, we use standard proposal mechanisms [3]. Our
MSA proposal is inspired by the proposal of [4], avoiding the mixing problems
of auxiliary variables [5, 6, 7]. Our proposal distribution consists of two steps.
First, we partition the leaves into two sets A,B. Given a current MSA m0,
the support of the proposal is the set S of MSAs m satisfying the following
constraints:

1. If e has both endpoints in A (or both in B), then e ∈ m⇐⇒ e ∈ m0.

2. If e, e′ have both endpoints in A (or both in B), then e ≺m e′ ⇐⇒ e ≺m0

e′.

The notation ≺m is based on the concept of posets over the columns (and edges)
of an MSA [8].

We propose an element m∗ ∈ S with probability proportional to
∏
c∈m∗ p(c).

The set S has exponential size, but can be sampled efficiently using standard
pairwise alignment dynamic programming. A Metropolis-Hastings ratio is then
computed to correct for ϕ. Note that the proposal induces an irreducible chain:
one possible outcome of the move is to remove all links between two groups of
sequences. The chain can therefore move to the empty MSA and then construct
any MSA incrementally.

For the parameters, we used multiplicative proposals in the (λ, µ) parame-
terization [3].

4 Computational Aspects

In this section, we provide a brief discussion of the role that the marginal like-
lihood plays in both frequentist and Bayesian inference methods.

4.1 Maximum likelihood

In the case of maximum likelihood, the overall inference problem involves opti-
mizing over the marginal likelihood:

sup
τ∈T (L ),m∈M(y)

log pτ (m),

where τ ranges over phylogenies on the leaves L , and m ranges over the align-
ments consistent with the observed sequences y. This optimization problem
can be approached using simulated annealing, where a candidate phylogeny
and MSA pair (τ ′,m′) is proposed at each step i, and is accepted (mean-
ing that it replaces the previous candidate (τ,m)) according to a sequence of
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acceptance functions f (i)(p, p′) depending only on the marginal probabilities
p = pτ (m), p′ = pτ ′(m

′). Provided limi→∞ f (i)(p, p′) = 1[p′ > p] sufficiently
slowly, this algorithm converges to the maximum likelihood phylogeny and MSA
[9].

4.2 Bayes estimators

In order to define a Bayes estimator, one typically specifies a decision space D
(for example the space of MSAs, or the space of multifurcating tree topologies,
or both), a projection into this space, (τ,m) 7→ ρ(τ,m) ∈ D, and a loss function
l : D → [0,∞) on D (for example, for tree topologies, the symmetric clade
difference, or partition metric [10]; and for alignments, 1− the edge recall or
Sum-of-Pairs (SP) score [11]).

Given these objects, the optimal decision in the Bayesian framework (also
known as the consensus tree or alignment), is obtained by minimizing over
d ∈ D the risk E[l(d, ρ(T,M))|Y]. This expectation is intractable, so it is usually
approximated with the empirical distribution of the output (τ (i),m(i)) of an
Markov chain Monte Carlo (MCMC) algorithm. Producing MCMC samples
boils down to computing acceptance ratios of the form:

p(τ ′)pτ ′(m
′)

p(τ)pτ (m)
·
q(τ ′,m′)(τ,m)

q(τ,m)(τ ′,m′)
,

for some proposal having density q with respect to a shared reference measure on
T (L )×M(y). We thus see that for both maximum likelihood and joint Bayesian
inference of the MSA and phylogeny the key problem is that of computing the
marginal likelihood pτ (m).

5 Pseudocode and Example

In this section, we summarize the likelihood computation. We also give a con-
crete numerical example to illustrate the calculation.

1. Inputs:

(a) PIP parameter values (λ, µ), substitution matrix θ over Σ.
Example: (λ, µ) = (2.0, 1.0),Σ = {a}

(b) Rooted phylogenetic tree τ
Example: τ = ((v2 : 1.0, v3 : 1.0)v0 : 1.0, v4 : 2.0)v1;

(c) Multiple sequence alignment m
Example: m =

v_2|-a

v_3|aa

v_4|a-

2. Computing modified Felsenstein recursion:
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(a) For each site, compute f̃v(σ) in post-order using Equation (1), and
from each f̃v(σ), compute f̃v using Equation (2)
Example:
for site 1, (f̃v2 , f̃v3 , f̃v0 , f̃v4 , f̃v1) = (0.0, 1.0, 0.23, 1.0, 0.012);
for site 2, (f̃v2 , f̃v3 , f̃v0 , f̃v4 , f̃v1) = (1.0, 1.0, 0.14, 0.0, 0.043);

(b) Do the same for an artificial site or column c∅ where all leaves have
a gap
Example:
for site 3, (f̃v2 , f̃v3 , f̃v0 , f̃v4 , f̃v1) = (0.0, 0.0, 0.40, 0.0, 0.67);

3. For each node v in the tree, compute the survival probability β(v) using
Equation (3) (setting it to 1 at the root for convenience)
Example:
(β(v2), β(v3), β(v0), β(v4), β(v1)) = (0.63, 0.63, 0.63, 0.43, 1.0)

4. For each site, compute the set of nodes A ancestral to all extant characters,
as described in the caption of Figure S.2
Example:
for site 1, A = {v1}
for site 2, A = {v0, v1}

5. Computing fv:

(a) For each site, compute fv using Equation (4)
Example:
for site 1, (fv2 , fv3 , fv0 , fv4 , fv1) = (0.0, 0.0, 0.0, 0.0, 0.012);
for site 2, (fv2 , fv3 , fv0 , fv4 , fv1) = (0.0, 0.0, 0.086, 0.0, 0.043);

(b) For c∅, use Equation (5)
Example:
for site 3, (fv2 , fv3 , fv0 , fv4 , fv1) = (0.37, 0.37, 0.62, 0.57, 0.67);

6. For each node v in the tree, compute ιv = P(V = v) as shown in Section 3
of the main paper
Example:
(ι(v2), ι(v3), ι(v0), ι(v4), ι(v1)) = (0.17, 0.17, 0.17, 0.33, 0.17)

7. Compute pτ (m) from the ιv’s, fv’s as shown in Section 3 of the main paper
Example: log pτ (m) = −11
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[7] Bouchard-Côté A, Jordan MI, Klein D (2009) Efficient inference in phy-
logenetic InDel trees. In Proceedings of Advances in Neural Information
Processing Systems 21:177–184.

[8] Schwartz A, Pachter L (2006) Multiple alignment by sequence annealing.
Bioinformatics 23:e24–e29.

[9] Delyon B (1988) Convergence of the simulated annealing algorithm., (Mas-
sachusetts Institute of Technology), Technical report.

[10] Bourque M (1978) Ph.D. thesis (Université de Montréal).
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