
Bayesian Analysis (0000) 00, Number 0, pp. 1

Bayesian analysis of continuous time Markov
chains with application to phylogenetic

modelling

Tingting Zhao∗ , Ziyu Wang† , Alexander Cumberworth‡ , Joerg Gsponer‡ , Nando de
Freitas† , and Alexandre Bouchard-Côté∗

1 Bayesian optimization

1.1 Bayesian optimization for Hamiltonian Monte Carlo (HMC)

To provide additional background information, we provide here a detailed description
of the Bayesian optimization method we used to adaptively tune the tuning parameters
of the HMC algorithm.

Following the standard Bayesian optimization methodology, we set Γ to be a box
constraint such that

Γ = {(ε, L) : ε ∈ [bεl , b
ε
u], L ∈ [bLl , b

L
u]}

for some interval boundaries bεl ≤ bεu and bLl ≤ bLu . The parameter L is discrete. The
parameter ε is continuous, but since it is one-dimensional, we can discretize it using a
very fine grid.

Since the true objective function is unknown, we specify a zero-mean Gaussian prior
over it:

f(·) ∼ GP (0, k(·, ·))

where k(·, ·) is the covariance function. Given a vector of noisy evaluations of the
objective function r̄i = {rk}ik=1 evaluated at points {γk}ik=1, we form the dataset
Di =

(
{γk}ik=1, {rk}ik=1

)
. Using Bayes rule, we arrive at the posterior predictive dis-

tribution over the unknown objective function (see Rasmussen and Williams (2006) for
more details):

f |Di, γ ∼ N (µi(γ), σ2
i (γ))

µi(γ) = k̄
T

(K + σ2
ηI)−1r̄i

σ2
i (γ) = k(γ, γ)− k̄T (K + σ2

ηI)−1k̄

where

K =

k(γ1, γ1) . . . k(γ1, γi)
...

. . .
...

k(γi, γ1) . . . k(γi, γi)

 ,
© 0000 International Society for Bayesian Analysis DOI: 0000

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

http://bayesian.org
http://dx.doi.org/0000

2 Bayesian analysis of CTMCs

Algorithm 1 HMC Algorithm

1: Given: L, ε, and w(1).
2: for i = 1, 2, · · · do
3: Sample m(i) ∼ N (0, I) and L(i) ∼ Uni({1, . . . , L})
4: Let w(i,0) := w(i) and m(i,0) :=m(i) − ε

2
∇wU(w(i,0))

5: for j = 1, 2, · · · , L(i) do
6: w(i,j) := w(i,j−1) + εm(i,j−1)

7: if j < L(i): m(i,j) :=m(i,j−1) − ε∇wU(w(i,j))
8: end for
9: m(i,L(i)) :=m(i,L(i)−1) − ε

2
∇wU(w(i,L(i)))

10: Draw u ∼ Uni(0, 1)

11: if u < min[1, exp{U(w(i)) +K(m(i))− U(w(i,L(i)))−K(m(i,L(i)))}] then
12: Let (w(i+1),m(i+1)) := (w(i,L(i)),m(i,L(i)))
13: else
14: Let (w(i+1),m(i+1)) := (w(i,0),m(i,0))
15: end if

16: end for

k̄ = [k(γ, γ1) . . . k(γ, γi)]
T , and r̄i = [r1 . . . ri]

T .

We adopt an automatic relevance determination covariance function with k(γi, γj) =

exp(− 1
2γ

T
i Σ−1γj), where Σ is a positive definite matrix. We set Σ = diag

(
[α(bεu − bεl)]

2
;[

α(bLu − bLl)
]2)

, where α = 0.2.

The Gaussian process simply provides a surrogate model for the true objective. The
surrogate can be used to efficiently search for the maximum of the objective function.
In particular, it enables us to construct an acquisition function u(·) that tells us which
parameters γ to try next. The acquisition function uses the Gaussian process posterior
mean to predict regions of potentially higher objective values (exploitation). It also uses
the posterior variance to detect regions of high uncertainty (exploration). Moreover, it
effectively trades-off exploration and exploitation. Different acquisition functions have
been proposed in the literature, including Mockus (1982); Srinivas et al. (2010); Hoffman
et al. (2011). We adopt a variant of the Upper Confidence Bound (UCB) (Srinivas et al.,
2010), modified to suit our application:

u(γ, s|Di) = µi(γ, s) + piβ
1
2
i+1σi(γ).

As in standard UCB, we set βi+1 = 2 log

(
(i+1)

d
2
+2π2

3δ

)
, where d is the dimension of Γ

and δ is set to 0.1. The parameter pi ensures that the diminishing adaptation condition of
Roberts and Rosenthal (2007) is satisfied. Specifically, we set pi = (max{i−k+1, 1})−0.5

for some k ∈ N+. As pi goes to 0, the probability of Bayesian optimization adapting γ
vanishes. For efficiency, we also impose a hard limit Nadapt to the number of adaptation
steps. A detailed convergence analysis is presented in Wang et al. (2013).

The acquisition function also includes a scalar scale-invariance parameter s, such

that µi(γ, s) = k̄
T

(K + σ2
ηI)−1r̄is. This parameter is estimated automatically so as to

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

3

rescale the rewards to the same range each time we encounter a new maximal reward.

1.2 Computational cost of Adaptive Hamiltonian Monte Carlo
(AHMC)

Gaussian processes require the inversion of the covariance matrix and, hence, have com-

plexity O(i3), where i is the number of iterations. Fortunately, thanks to our annealing

schedule, the number of unique points in our Gaussian process grows sub-linearly with

the number of iterations. This slow growth makes it possible to adopt kernel specifica-

tion techniques, as proposed by Engel (2005), to drastically reduce the computational

cost without suffering any loss in accuracy.

Following Wang et al. (2013), in all our experiments, we set α = 4, k = 100, and

m = B
k , where B is the number of burn-in samples. In our experience, the algorithm is

robust with respect to these settings and we used the same set of parameters throughout

our experiments.

2 Running time of previous CTMC gradient
computation methods

We review here the analysis of the running time of previous methods for computing

the gradient of individual entries of a rate matrix from a partially observed Continuous

Time Markov Chains (CTMC). A good review of the state-of-the-art method can be

found in Kenney and Gu (2012).1 Kenney and Gu (2012) summarize the running time

on page 25 as O(K(P + |E|)|X |2) (translating their notation to ours).2

Close inspection of the analysis on page 40, step 2, reveals that a term of O(P |X |3)

is absorbed in this overall running time. This term arises from the multiplication of the

matrix of derivative of the rate matrix with respect to each parameter with a fixed dense

matrix coming from the eigen-decomposition (see the definition of Nβ in Theorem 1 of

Kenney and Gu (2012)). It takes into account the caching of the eigen-decomposition.

Absorbing the O(P |X |3) term into O((P + |E|)|X |2K) is reasonable given that the

number of sites K is often larger than the number of CTMC states |X | in practice.

However, it highlights the fact that when the number of parameters is of order O(|X |2),

previous methods will scale as O(|X |5). Moreover, the entire algorithm needs to be

started from scratch after each of the L leapfrog step, giving an overall running time of

O(L|X |5).

1Although Kenney and Gu (2012) focuses on Hessian computation, it also includes a detailed running
time analysis of gradient computation, found in Appendix 2.

2We present the algorithm in the context of a phylogenetic tree with K sites. We recover the case
of a time series as a special case by setting K = 1.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

4 Bayesian analysis of CTMCs

3 Cached-Uniformization method

We use uniformization for exact sampling from a CTMC conditional on the initial and
ending states. The key idea of uniformization is to transform a continuous time Markov
process to a discrete one subordinated to a Poisson process. The general procedure of
uniformization is described in Hobolth and Stone (2009).

Uniformization is based on a transition probability constructed from the rate matrix
by adding self-transitions (virtual jumps):

B = I +
1

q̄
Q (3.1)

q̄ = max
x
|qx,x|. (3.2)

Given two states at the two end-points of a single branch the posterior distribu-
tion over the number of jumps (which can be either between distinct states, or self-
transitions) J is given by:

P(J = j|X0 = x1, Xt = x2) = e−q̄t
(q̄t)

j

j!

(
Bj
)
x1,x2

(exp(tQ)x1,x2

. (3.3)

Given the number of transitions J = j and the end-points, the list of states visited
is obtained by simulating a discrete Markov chain of lengths j+ 2, where the first state
conditioned to be x1, the last state, x2, and the transitions probabilities are given by
B.

Finally, the location of the jumps (between distinct states, or self-transitions) are
obtained by simulating J independent uniform numbers and sorting them. The self-
transitions can be discarded as a post-processing step.

The computational bottleneck of this process is the evaluation of
(
Bj
)
x1,x2

for var-

ious powers of j. If one is concerned with a single branch, it may be attractive to do
this computation in the following way:(

Bj
)
x1,x2

= (· · · ((ex1
B)B . . . B)x2

, (3.4)

where ex is the standard basis vector with a one at entry x, and equal to zero otherwise.
This yields a running time of J |X |2.

However, since the matrix B is shared among all sites and all branches, it becomes
attractive to store the powers of B in a phylogenetic context. This requires a more
expensive compute time of |X |3 per power, but this pays off in a phylogenetic context,
since most branches have moderate lengths, which implies that the number of transitions
per branch is also moderate.

We use a cache taking the form of a list, cache, initialized to contain a single element:
cache[1]← B. We retrieve from the cache using the procedure get and cache(j), defined
as follows:

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

5

1. If the length of the list cache is smaller than j, store in cache[j] the product of
the matrices B and get and cache(j − 1).

2. Return cache[j].

We denote by Me the expectation of the number of times Step 1 requires the compu-
tation of a matrix multiplication, over the full process of resampling once the auxiliary
variable Z.

Using this cache, we sample Z as follows (writing in brackets the total running time
of each step over the entire process of resampling once the auxiliary variable Z:3

1. Form the matrix in Equation (3.1). {|X |2}

2. Compute the sum-product algorithm, and use its output to sample reconstructed
states for every end-point of every branch and site (see the Background section

of the main paper for details). {Reversible case: |X |3 + 2K|E| · |X |2 +K|E| · |X |,
non-reversible case: |E| · |X |3 + K|E| · |X |2 + K|E| · |X | (both in the reversible
and non-reversible cases, the first two terms account for the computation of
the sum-product algorithm, and the last term is the cost of sampling internal
reconstructions)}4

3. Initialize transition counts c and total sojourn times h to zero. {|X |2}

4. In the reversible case, perform the eigen-decomposition of Q. In the non-reversible
case, for each branch of length ∆, cache the matrix exponential, exp(∆Q). {Reversible

case: |X |3, non-reversible case: |E| · |X |3}

5. For each branch and each site with end points x1 and x2 (obtained from Step 2
above):

(a) Simulate J = j using the following method:

i. Simulate a uniform random number u ∈ [0, 1]. {K|E|}
ii. Set s← 0 {K|E|}
iii. Loop, for j = 0, 1, . . .

A. s← s+ e−q̄∆ (q̄∆)j

j!

(get and cache(j))x1,x2

(exp(∆Q)x1,x2

{Reversible case: O(KMe|X | ·

|E|+Me|X |3), non-reversible case: O(KMe · |E|+Me|X |3) (using the
cache of the exponentiated transition matrix, and the cached matrix
exponential/diagonalization (step 4))}

B. If s > u, break the inner loop. {K|E|Me}

3As in the previous section, we present the algorithm in the context of a phylogenetic tree with K
sites. We recover the case of a time series as a special case by setting K = 1.

4In the reversible case, the running time assumes that matrix exponentiation is performed via
diagonalization (at the cost of |X |3) (Moler and Van Loan, 1978). In the non-reversible case, the matrix
exponentials can be computed using the Pade method at a cost of |E| · |X |3 (Moler and Van Loan,
1978).

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

6 Bayesian analysis of CTMCs

(b) Simulate J uniform numbers in the interval [0,∆], and sort them to obtain
a list u1 < u2 < · · · < uJ . {This can be done in time K|E|Me by simulating
spacings via exponential random variables and normalizing them (Carpenter
et al., 1999)}

(c) To sample the path, initialize a current state x to the first end point, x1, and
loop over i = 1, 2, . . . , J :

i. Form a vector of posterior transition probabilities p = (p1, . . . , p|X |),
with entry x′ given by:

px′ = Bx,x′ (get and cache(J − i))x′,x2
. (3.5)

{KMe|E| · |X |}
ii. Normalize the entries in p to form a probability distribution, and sample

from it to obtain a new state x̃. {KMe|E| · |X |}
iii. Update the sufficient statistics c and h using the transition (x, x̃) and

corresponding time ui+1 − ui. {KMe|E|}
iv. Update the current state, x← x̃. {KMe|E|}

In the reversible case, the running time is O(K|E| · |X |2 +Me|X |3 +KMe|E| · |X |),
and in the non-reversible case, O(K|E| · |X |2 +Me|X |3 + |E| · |X |3 +KMe|E| · |X |).

We also investigate the relationship between the branch lengths and the cache size
using cached uniformization to sample Z. We generate pairs of DNA sequences of 5000
sites under Gtr with branch lengths from 0.2 to 5 with step size 0.2. See Figure 7. The
figure indicates that the cache size increases linearly as the branch length increases.

4 Running time for the gradient computation via
auxiliary variables

The running time of the precomputation step is analyzed in the previous section. In
general, the dominant term will be |E|K|X |2, namely the cost of a sum-product execu-
tion. Importantly, this factor is not multiplied by the number leapfrog steps, as we are
not required to refresh the auxiliary variable at each leapfrog step.

We now compute the running time of the operations that need to be computed
at each leapfrog step j, which boils down to computing ∇Uz(i)(w(i,j)). Naively, this

would take O(|X |2P). However, we can exploit the fact that ϕ(x, x′) is often sparse.

If s :=
∑

(x,x′)∈Xdistinct

∑P
m=1 1[ϕm(x, x′) 6= 0] denotes the total number of non-zero

entries across all possible features, then ∇Uz(i)(w(i,j)) can be computed in time O(s),
therefore, computation of an HMC iteration has a running time ofO(sL). In all examples

presented in the paper, s ∈ O(|X |2).

Note that this type of sparsity is distinct from the sparsity in the matrix Q exploited
in previous work (Rao and Teh, 2013). In our examples, Q is not sparse.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

7

5 Gradient computation for the reversible, normalized
parameterization

In this section, we derive the gradient expression for the reversible, normalized model

introduced the main paper. The derivation is lengthy, but note that the auxiliary vari-

able Z makes it possible to generate gradient calculation code directly from the aug-

mented joint distribution, for example using Stan. In contrast, as discussed in the main

manuscript, this is not practical without conditioning on the auxiliary variable Z. We

show the expression of the gradient here for completeness. The partial derivatives have

been verified numerically using numerical differentiation. The log-likelihood with the

normalized rate matrix is:

log f
(norm)
w|z,y (w|z,y) :=

∑
x∈X

nx log πx(w) +
∑
x∈X

∑
x′∈X :x 6=x′

cx,x′ log q
(norm)
x,x′ (w)

−
∑
x∈X

hx
∑

x′∈X :x 6=x′
q

(norm)
x,x′ (w) + constant. (5.1)

Computing the gradient is now reduced to a routine derivation yielding:

∇
[
log f

(norm)
w|z,y (w|z,y)

]
=

∑
x∈X

nx (ψ(x)−∇A(w)) (5.2)

+
∑
x∈X

∑
x′∈X :x6=x′

(
cx,x′ − hxq(norm)

x,x′ (w)

)
×
(
β−1∇β(w) + φ({x, x′}) +ψ(x′)−∇A(w)

)
,

where:

∇A(w) =
∑
x∈X

ψ(x)πx(w), (5.3)

∇β(w) = β
∑
x∈X

πx(w)

2ψ(x)−
(∑
x′∈X :x 6=x′

(
ψ(x) +ψ(x′) + φ({x, x′})

)
q

(norm)
x,x′ (w)

) .

6 Modelling language

Our framework can incorporate as special cases most existing DNA, amino acid and

codon evolution models. For simplicity, we take the HKY85 model (Hasegawa et al.,

1985) as an example to show how to represent a previously constructed rate matrix

using our framework. We start by showing mathematically how the classical HKY85

model is translated into features and weights. We then show concretely how it is input

into our software implementation using a small, JSON-based modelling language.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

8 Bayesian analysis of CTMCs

The classic representation of HKY85 model is

Q =

A C G T

A ∗ πC κπG πT

C πA ∗ πG κπT

G κπA πC ∗ πT

T πA κπC πG ∗

 · β,

where β = 1/ (2(πA + πG)(πC + πT) + 2κ(πAπG + πCπT)) to ensure that the expected

base change per unit time is one, and the diagonal elements, “*”, enforce that each row

sums to zero. The “A” and “G” nucleotides contain bases that belong to a chemical

group known as purines, while the C and T nucleotides contain bases that belong to

a chemical group known as pyrimidines. Importantly, substitutions are more frequent

between members of the same chemical group, motivating the addition of an extra pa-

rameter, κ, to differentiate these intragroup substitutions (transitions) from intergroup

substitutions (transversions).

To encode this under our Bayesian rate matrix GLMs, we set θ
¯
({x, x′}) = 1 and

π
¯
(x) = 1, allowing us to simplify our model into:

θ{x,x′} = θ{x,x′}(w) = exp
{
〈w,φ({x, x′})〉

}
,

πx = πx(w) = exp
{
〈w,ψ(x)〉 −A(w)

}
,

A(w) = log
∑
x∈X

exp
{
〈w,ψ(x)〉

}
,

q
(rev)
x,x′ (w) =

{
θ{x,x′}(w)πx′(w) if x 6= x′,
−
∑
z:z 6=x qx,z(w) otherwise.

β(w) = −

(∑
x∈X

πx(w)q(rev)
x,x (w)

)−1

,

q
(norm)
x,x′ (w) = β(w)q

(rev)
x,x′ (w).

We have w ∈ R5, as there are four univariate feature used to calculate the stationary

distribution for the four states “A”, “C”, “G”, “T” and one bivariate feature to differ-

entiate transitions from transversions. Univariate features are determined by only one

state in the state space X , while bivariate features are characterized by an unordered

pair of states. We represent the weights as a vector w = (wA, wC, wG, wT, wκ)T . The

sufficient statistic of the π-exponential family for x = A is ψ(A) = (1, 0, 0, 0, 0)T , while

for x = C, it is ψ(C) = (0, 1, 0, 0, 0)T . The normalization used to calculate the stationary

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

9

distribution is given by:

exp(A(w)) =
∑

x∈{A,C,G,T}

exp
{
〈w,ψ(x)〉

}
= exp

{
(wA, wC, wG, wT, wκ)T ·ψ(A)

}
+

exp
{

(wA, wC, wG, wT, wκ)T ·ψ(C)
}

+

exp
{

(wA, wC, wG, wT, wκ)T ·ψ(G)
}

+

exp
{

(wA, wC, wG, wT, wκ)T ·ψ(T)
}

= exp(wA) + exp(wC) + exp(wG) + exp(wT)

The stationary distribution πx(w), where x ∈ {A,C,G,T} may be calculated as (we
take the case of x = A without loss of generality)

πA(w) = exp
{
〈w,ψ(A)〉 −A(w)

}
=

exp(wA)

exp(wA) + exp(wC) + exp(wG) + exp(wT)
.

For the sufficient statistics of the φ-exponential family, if the substitution between x, x′

is a transition, φ(x, x′) = (0, 0, 0, 0, 1)T , otherwise φ(x, x′) = (0, 0, 0, 0, 0)T . Using the
above results, we can now calculate the rates, which for a transition between A and G
would be

qA,G(w) = θ{A,G}(w)πG(w)

= exp
{
〈w,φ({A,G})〉

}
πG(w)

= exp
{
〈(wA, wC, wG, wT, wκ)T , (0, 0, 0, 0, 1)〉

}
πG(w)

= exp(wκ)πG(w)

= κπG(w). (6.1)

If the substitution is a transversion between a purine A and a pyrimidine C,

qA,C(w) = θ{A,C}(w)πC(w)

= exp
{
〈(wA, wC, wG, wT, wκ)T , (0, 0, 0, 0, 0)〉

}
πC(w)

= πC(w). (6.2)

Equation (6.1) and Equation (6.2) show the equivalence of classic HKY85 rate matrix
representation and our weights, feature construction.

We now provide here the JSON file for the HKY85 read by software implementation.

{
"nCategories" : 1,

"orderedLatents" : ["A","C","G","T"],

"fullSupport" : true,

"unaryFeatures" :

[

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

10 Bayesian analysis of CTMCs

{
"state" : { "categoryIndex" : 0, "latent" : "A" },
"features" : { "statio(A)" : 1.0 }

},
{

"state" : { "categoryIndex" : 0, "latent" : "C" },
"features" : { "statio(C)" : 1.0 }

},
{

"state" : { "categoryIndex" : 0, "latent" : "G" },
"features" : { "statio(G)" : 1.0 }

},
{

"state" : { "categoryIndex" : 0, "latent" : "T" },
"features" : { "statio(T)" : 1.0 }

}
],

"binaryFeatures" :

[

{
"state0" : { "categoryIndex" : 0, "latent" : "A" },
"state1" : { "categoryIndex" : 0, "latent" : "G" },
"features" : { "isTransition" : 1.0 }

},
{

"state0" : { "categoryIndex" : 0, "latent" : "C" },
"state1" : { "categoryIndex" : 0, "latent" : "T" },
"features" : { "isTransition" : 1.0 }

}
]

}

Here, “unaryFeatures” represents the univariate features and “binaryFeatures” rep-
resents the bivariate features. For example,

"unaryFeatures" :

{
"state" : { "categoryIndex" : 0, "latent" : "A" },
"features" : { "statio(A)" : 1.0 }
}

indicates that when the “latent” state is A (the terminology “latent” is used since it
is possible to have the emissions different than the states in the CTMC, a feature not
needed here—by default, latents and emissions are assumed to match), the elements
in ψ(A) should be zero everywhere, except for the coordinate corresponding to uni-
variate feature A, equivalently, ψ(A) = (1, 0, 0, 0, 0)T . Here, “statio(A)” is an arbitrary
string used to index the coordinates of the weights and sufficient statistics. The only
assumption is that this string should be distinct to the other feature labels.

Next, let us look at a “binaryFeatures”:

"binaryFeatures" :

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

11

{
"state0" : { "categoryIndex" : 0, "latent" : "A" },
"state1" : { "categoryIndex" : 0, "latent" : "G" },
"features" : { "isTransition" : 1.0 }

}

which means that if the substitution is between “A” and “G”, the value of the “isTran-
sition” feature coordinate should be one, indicating φ({A,G}) = (0, 0, 0, 0, 1)T .

Finally, the header gives general information on the state space:

{
"nCategories" : 1,

"orderedLatents" : ["A","C","G","T"],

"fullSupport" : true,

}

“nCategories : 1” refers to the fact that no rate variations or other latent structure is
assumed. In general, the number of categories can be any positive integer. The different
latent states can each have their own combination of features. Finally, “orderedLatents
: [“A”, “C”, “G”, “T”]” simply represents the state in the CTMC. In this example,
our state space consists of four nucleotides [“A”,“C”,“G”,“T”]. “fullSupport : true”
indicates that the base measure is uniform, i.e. all transitions between states are allowed
(otherwise, an adjacency graph can be provided).

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

12 Bayesian analysis of CTMCs

7 Full weights in the synthetic data experiments

Weights

$state
[1] "A" "R" "N" "D" "C" "Q" "E" "G" "H" "L" "I" "K" "M" "F" "P" "S" "T" "

W" "Y"

[20] "V"

$univariateWeight
[1] 0.098 0.113 -0.192 0.110 -0.173 0.058 0.172 0.087 0.171 -0.086

[11] 0.022 0.019 0.033 0.033 -0.200 -0.024 -0.075 0.096 -0.145 0.149

$bivariateFeature
[1] "AR" "AN" "AD" "AC" "AQ" "AE" "AG" "AH" "AL" "AI" "AK" "AM" "AF" "AP

" "AS"

[16] "AT" "AW" "AY" "AV" "RN" "RD" "RC" "RQ" "RE" "RG" "RH" "RL" "RI" "RK

" "RM"

[31] "RF" "RP" "RS" "RT" "RW" "RY" "RV" "ND" "NC" "NQ" "NE" "NG" "NH" "NL

" "NI"

[46] "NK" "NM" "NF" "NP" "NS" "NT" "NW" "NY" "NV" "DC" "DQ" "DE" "DG" "DH

" "DL"

[61] "DI" "DK" "DM" "DF" "DP" "DS" "DT" "DW" "DY" "DV" "CQ" "CE" "CG" "CH

" "CL"

[76] "CI" "CK" "CM" "CF" "CP" "CS" "CT" "CW" "CY" "CV" "QE" "QG" "QH" "QL

" "QI"

[91] "QK" "QM" "QF" "QP" "QS" "QT" "QW" "QY" "QV" "EG" "EH" "EL" "EI" "EK

" "EM"

[106] "EF" "EP" "ES" "ET" "EW" "EY" "EV" "GH" "GL" "GI" "GK" "GM" "GF" "GP

" "GS"

[121] "GT" "GW" "GY" "GV" "HL" "HI" "HK" "HM" "HF" "HP" "HS" "HT" "HW" "HY

" "HV"

[136] "LI" "LK" "LM" "LF" "LP" "LS" "LT" "LW" "LY" "LV" "IK" "IM" "IF" "IP

" "IS"

[151] "IT" "IW" "IY" "IV" "KM" "KF" "KP" "KS" "KT" "KW" "KY" "KV" "MF" "MP

" "MS"

[166] "MT" "MW" "MY" "MV" "FP" "FS" "FT" "FW" "FY" "FV" "PS" "PT" "PW" "PY

" "PV"

[181] "ST" "SW" "SY" "SV" "TW" "TY" "TV" "WY" "WV" "YV"

$bivariateWeight
[1] 0.491 0.563 -0.960 0.552 -0.866 0.290 0.859 0.435 0.855 -0.43

2

[11] 0.111 0.095 0.166 0.166 -0.998 -0.118 -0.374 0.480 -0.723 0.74

4

[21] 0.046 0.158 0.730 0.235 -0.020 -0.250 0.393 -0.617 0.678 0.76

5

[31] 0.238 -0.495 -0.648 0.410 0.067 0.376 0.402 -0.693 0.013 -0.29

1

[41] 0.163 0.815 0.691 -0.535 0.317 0.554 -0.519 0.257 0.186 -0.74

7

[51] 0.270 -0.240 -0.692 0.615 -0.842 -0.711 -0.827 -0.077 0.617 0.36

5

[61] -0.264 -0.021 -0.490 0.729 -0.080 -0.212 0.519 0.008 0.339 0.20

4

[71] 0.866 -0.307 0.171 -0.375 -0.865 -0.240 0.099 -0.221 -0.701 -0.75

6

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

13

[81] 0.174 0.072 -0.339 0.690 0.861 0.290 -0.422 0.912 -0.337 0.64

7

[91] 0.707 0.710 -0.696 -0.707 0.032 0.987 -0.257 -0.255 0.378 0.02

5

[101] 0.562 0.497 -0.476 -0.112 -0.342 0.800 -0.732 -0.465 -0.684 0.12

7

[111] 0.458 -0.610 0.237 0.250 -0.532 -0.933 -0.662 -0.738 0.470 0.00

2

[121] 0.492 -0.228 0.183 0.191 0.321 -0.736 0.373 0.395 -0.651 -0.69

8

[131] 0.063 -0.278 0.438 0.877 -0.074 0.812 0.324 -0.748 0.285 -0.41

1

[141] 0.698 0.836 0.159 0.298 0.836 0.914 -0.290 -0.297 -0.676 -0.16

6

[151] 0.193 -0.381 0.965 0.181 -0.848 -0.563 -0.726 0.158 0.186 0.16

3

[161] 0.267 -0.605 -0.905 -0.477 0.532 -0.774 0.512 0.762 -0.908 -0.55

1

[171] 0.018 -0.270 0.874 0.507 -0.733 -0.662 -0.162 -0.238 -0.315 -0.35

6

[181] -0.345 -0.447 -0.652 0.595 0.829 0.599 0.285 -0.830 0.692 0.78

7

$polarityFeature
[1] "AcidicAcidic" "AcidicBasic" "AcidicNon" "AcidicPolar" "

BasicBasic"

[6] "BasicNon" "BasicPolar" "NonNon" "NonPolar" "

PolarPolar"

$polarityWeight
[1] 0.35 0.20 -0.35 0.20 0.35 -0.35 0.20 0.35 -0.35 0.35

$size
[1] "BigBig" "BigMicro" "MicroMicro"

$sizeWeight
[1] 0.25 -0.40 0.40

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

14 Bayesian analysis of CTMCs

8 Connection Between Bayesian Generalized Linear
Models (GLMs) and General Time Reversible model
(GTR)

In this section, we build the connection between our Bayesian GLMs framework and
the GTR model. GTR is a special case within our framework under a particular con-
figuration. Our main conclusion is that a Normal prior fnor(w) on weights w under
GTR is equivalent to a log-Normal prior on exchangeable coefficients θ{x,x′}, for any

{x, x′} ∈ X unordered,dist., the set of unordered distinct pairs of states and a logistic-
Normal prior on the stationary distribution πx if the GTR rate matrix Q is parameter-
ized by θ{x,x′} and πx.

8.1 Configuration of GTR using Bayesian GLMs

For any x, x′ ∈ X , x 6= x′, Q is defined as

q
(rev)
x,x′ = θ{x,x′}πx′ ,

where θ{x,x′} = θ{x′,x} under the reversible assumption.

The dimension of w denoted as P is equal to the total number of univariate features
Mstatio and bivariate features Mbi for any unordered pair of states under GTR. The total
number of states is |X |. The univariate features for the π-exponential family are used
to define the stationary distribution, where we have the constraint that

∑
x∈X πx = 1.

Thus,

Mstatio = |X | − 1, Mbi = |X unordered,dist.| = |X |(|X | − 1)

2
, P = Mstatio +Mbi.

Under our Bayesian reversible matrix GLMs configuration,

θ{x,x′}(w) := exp
{
〈w,φ({x, x′})〉

}
. (8.1)

We pick an arbitrary state x∗ as a reference such that

πx∗(w) =
1

1 +
∑
x′ 6=x∗:x′∈X exp

{
〈w,ψ(x′)〉

} , (8.2)

hence, for any other state x′,

πx′(w) = exp
{
〈w,ψ(x′)〉

}
πx∗ . (8.3)

To simplify notations, we order the first Mstatio elements of w to be the weights for
univariate features. Thus, we have

πx∗(w) =
1

1 +
∑|X |−1
i=1 exp(wi)

. (8.4)

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

15

For any x′ 6= x, define

kx′ = arg16j6Mstatio
[1
{
ψ(x′) = ej

}
= 1],

πx′(w) = πx∗(w) exp(wkx′), (8.5)

where (e1, e2, . . . , ep) forms a basis of RP . Given any state x′ ∈ X , kx′ is the index such
that the kx′th element of w represents the weight for univariate feature x′.

We use the (Mstatio + 1)th to the (Mstatio + Mbi)th elements of w to calculate the
exchangeable coefficients with

kx,x′ = argMstatio+16j6Mstatio+Mbi
[1
{
φ(x, x′) = ej

}
= 1],

θ{x,x′}(w) = exp(wkx,x′). (8.6)

Similarly, kx,x′ is the index such that the kx,x′th element of w corresponds to the
bivariate feature {x, x′} used to define θ{x,x′}(w), where x 6= x′.

8.2 Proof of equivalence under GTR configuration

Our goal is to show a Normal prior fnor(w) on w under GTR configuration within
our framework is equivalent to a log-Normal on the exchangeable coefficients θ{x,x′}
and a logistic-Normal prior on the stationary distribution πx if Q is parameterized by
θ{x,x′} and πx instead of w. To achieve this, we only need to show after a variable
transformation from w under a Normal prior to θ{x,x′} and πx parameterization under
GTR, the prior for θ{x,x′} and πx is log-Normal and logistic-Normal, respectively. We
first present the definition of multivariate log-Normal and logistic-Normal distribution.
Then we summarize our result in Theorem 8.1.

Definition 8.1 (Section 2, Tarmast (2001)). Let X = (X1, X2, . . . , Xp) be a p-component
random vector having a multivariate Normal distribution with mean v and covariance
matrix B = (bij), denoted as mlnN(v, B). We use the transformation Yi = exp(Xi)
and define Y = (Y1, Y2, . . . , Yp), y = (y1, y2, . . . , yp) is a realization of Y . The density
of Y is multivariate log-Normal distribution and has the following form:

fY (y) = (2π)−
p
2 |B|− 1

2y−1 · exp
(
−(log y − v)TB−1(log y − v)/2

)
,

where 0 < yi <∞, log y = (log y1, log y2, . . . , log yp) and yi = exp(xi).

Definition 8.2 (Definition, Atchison and Shen (1980)). Let Rd denote d-dimensional
real space, Pd be the positive orthant of Rd and Gd be the d-dimensional positive simplex
defined by

Gd = {µ ∈ Pd : u1 + . . .+ µd < 1}
The logistic transformation from Rd to Gd or its inverse log ratio transformation:

u = er/

1 +

d∑
j=1

erj

 and r = log(u/ud+1),

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

16 Bayesian analysis of CTMCs

where ud+1 = 1 −
∑d
j=1 uj, can be used to define a logistic-Normal distribution over

Gd and we can say that u is Ld(µ,Σ), assuming r follows the multivariate Normal
distribution Nd(µ,Σ). The density function of Ld(µ,Σ) is

|2πΣ|− 1
2

d+1∏
j=1

uj

−1

exp

(
−1

2
[log(u/ud+1)− µ]TΣ−1[log(u/ud+1)− µ]

)
.

Theorem 8.1. Following the configuration of Section 8.1, if we assign fnor(w) =
N(0,Σ) on w = (w1, . . . , wP), via the transformation defined in Equation (8.4), (8.5)
and (8.6), the prior of θ{x,x′} and πx is a multivariate log-Normal distribution and a
logistic-Normal distribution, where Σi,i = σ2

i , Σi,j = 0 for j 6= i, for any {x, x′} ∈
X unordered,dist., x ∈ X , i = 1, 2, . . . , P , and P = Mstatio +Mbi. We assume elements in
w are ordered such that the first Mstatio elements correspond to univariate features and
the rest correspond to bivariate features.

Proof. Denote the likelihood function given the observations y and the weights w as
fy|Q(y|Q(rev)(w)), the posterior distribution of w given y as fw|y(w|y). The value of
the likelihood function does not change with different parameterizations, hence,

fy|Q(y|Q(rev)(w)) = fy|Q(y|Q(rev)(θ{x,x′}, πx))

via the transformation defined in Equation (8.4), (8.5) and (8.6), whereQ(rev)(θ{x,x′}, πx)
represents Q is parameterized by θ{x,x′} and π instead of w.

Based on the independence of wi and wj , for any i 6= j, denote fy|Q(y|Q(rev)(wj))
as the marginal likelihood which has integrated over all other elements of w except the
jth element.

Consider the bivariate features, that is for any j, if Mstatio + 1 6 j 6Mstatio +Mbi,

fwj|y(wj |y) =

1√
2π

exp
(
− w2

j

2σ2
j

)
fy|Q(y|Q(rev)(wj))∫

∞

−∞
1√
2π

exp
(
− w2

j

2σ2
j

)
fy|Q(y|Q(rev)(wj))dwj

(8.7)

According to Equation (8.6), without loss of generality, assuming kx,x′ = j, we have

θ{x,x′}(w) = exp(wkx,x′) = exp(wj). (8.8)

Note that θ{x,x′} = exp(wj) is a variable transformation of wj . Hence,

fθ{x,x′}|y(θ{x,x′}|y) =

1√
2πσjθ{x,x′}

exp

(
− log(θ{x,x′})

2

2σ2
j

)
fy|Q(y|Q(rev)(θ{x,x′}))∫

∞

0

1√
2πσjθ{x,x′}

exp

(
− log(θ{x,x′})

2

2σ2
j

)
fy|Q(y|Q(rev)(θ{x,x′}))dθ{x,x′}

.

(8.9)

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

17

Equation (8.7) and (8.9) show that if the prior on wj is N(0, σ2
j), the prior of θ{x,x′} =

exp(wj) follows lnN(0, σ2
j) according to Definition 8.1 of log-normal distribution in one

dimension.

Regarding the bivariate features, we conclude that θ{x,x′}, for any x, x′ ∈ X unordered,dist.,
is independent with each other and they follow a multivariate log-Normal distribution
mlnN(0, B) based on Definition 8.1, where B is a diagonal matrix with Bi,i = (σ2

i), σ2
i s

are the (Mstatio + 1)th to the (Mstatio +Mbi)th diagonal elements from Σ of fnor(w).

If wstatio follows a Normal distribution, where wstatio = (w1, w2, . . . , w|X |−1) corre-
sponds to the univariate features defining the stationary distribution, Σ∗ is a diagonal
matrix with Σ∗ii = σ2

i , where σ2
i s are the first Mstatio diagonal elements from Σ of

fnor(w), following Equation (8.4), (8.5), and Definition 8.2, the prior of πx is Ld(0,Σ
∗)

since the transformation from wi to πx is a logistic transformation and the original
weights w are normally distributed.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

18 Bayesian analysis of CTMCs

9 Supplementary figures

0.0

0.1

0.2

0.3

0.4

A C D E F G H I K L M N P Q R S T V W Y
States

S
ta

tio
na

ry
 D

is
tr

ib
ut

io
n

E
st

im
at

es

Category
Estimates
True

Figure 1: Actual stationary distributions are compared with estimates from a 415 sites
and 641 sequences synthetic dataset generated using the PolaritySizeGtr model. We
generate unbalanced stationary distributions to increase the difficulty of reconstruction.

0.0

0.1

0.2

0.3

−0.5 0.0 0.5 1.0
RelaBias

P
ro

po
rt

io
n

Figure 2: Histogram of the relative biases (described in Section 7.3) of the 400 transition
probability matrix (excluding the redundant diagonal elements) under t = 2. The two
dotted lines label -0.2 and 0.2.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

19

0.0

0.1

0.2

0.3

−0.25 0.00 0.25 0.50
RelaBias

P
ro

po
rt

io
n

Figure 3: Histogram of the relative biases (described in Section 7.3) of the 400 transition
probability matrix (excluding the redundant diagonal elements) under t = 3. The two
dotted lines label -0.2 and 0.2.

0.0

0.1

0.2

0.3

0.4

−0.2 0.0 0.2 0.4
RelaBias

P
ro

po
rt

io
n

Figure 4: Histogram of the relative biases (described in Section 7.3) of the 400 transition
probability matrix (excluding the redundant diagonal elements) under t = 5. The two
dotted lines label -0.2 and 0.2.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

20 Bayesian analysis of CTMCs

0.00

0.02

0.04

0.06

A C D E F G H I K L M N P Q R S T V W Y
States

S
ta

tio
n

a
ry

 D
is

tr
ib

u
tio

n
 E

st
im

a
te

s
Category

MrBayes
conifer

Figure 5: Estimates of the stationary distributions from MrBayes and our model, both
set to their respective GTR settings.

0

10

20

30

40

50

0.0 0.1 0.2 0.3
RelaBias

C
o

u
n

t

0.00
0.05
0.10
0.15
0.20
0.25

Proportion

Figure 6: Histogram of the relative differences of the estimates of the 190 exchangeable
coefficients between MrBayes and our model, both set to their respective GTR settings.
The differences are generally within 0.05; the two outliers greater than 0.1 are between
A to R and Q to P.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

21

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

● ●

● ●

●

● ●

● ●

● ●

●

● ● ●

● ●

●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●

● ● ●
●

●

●

●

10

20

30

40

50

0 1 2 3 4 5
Branch Length

C
ac

he
 S

iz
e

Labels
●

●

●

Average
Max
Min

Figure 7: The relationship between cache sizes and branch lengths using pairs of DNA
sequences with 5000 sites under Gtr with branch lengths from 0.2 to 5 with step size
0.2. “Average” represents the averaged cache size for each dataset across 100,000 MCMC
iterations. “Min” and “Max” represent the minimum and maximum of the cache size.

Figure 8: Trace plots for NMH with bandwidth 0.01 and our AHMC sampler, both
ran within the same wall-clock time limit of 2267 minutes. After discarding the burn-in
period of the first 50,000 iterations, there are 450,000 iterations for the NMH method
and 229,520 iterations for our AHMC sampler. The ordinate axis represents the sampled
values for the feature “AD.” Other features exhibit the same qualitative behaviour.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

22 Bayesian analysis of CTMCs

●

●●●

●●●

●●●●●

●

●
●●

●
●
●

●●

●

●

●●

●●

●

●●

●●●

●●●●●●●●●

●
●

●●●

●

●

●●●●

●

●

●●●●

●
●

●●

●●●

●●

●

●●●

●●●

●●●●●

●

●●

●●●●●

●

●●●●

●●

●●

●●●

●●

●

●

●●●

●●●
●

●
●●

●●●

●●●

●●

●
●●●
●●●●●●

●

●●

●

●●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●●●

●●

●

●●●●●

●●●●●●●●

●

●●

●●

●

●●●●

●

●●●●

●

●

●

●●●

●●●●●●●

●●
●
●●●

●

●●

●●●●
●
●●●●●●

●●

●

●

●

●●●●

●

●

●

●●

●●
●
●●

●●●●●●●●●●
●●●

●●●●●

●●

●

●●●

●●●
●●
●●

●●

●●●

●

●●●●

●●●●

●

●●

●●

●●

●●●●●●●

●●●●

●●

●●●●

●●●●●●

●●

●

●●
●

●●●●●

●●

●●●●●●●●

●●

●

●

●

●●

●●

●●

●●
●●●

●●●●●●●

●

●●

●●

●●

●

●●●

●●

●●●

●●●

●●●●●●

●

●

●●

●●●

●

●
●

●
●●●●

●●●

●●

●●●●●●●●●●●

●●

●●

●

●●●

●●

●●

●

●●

●

●

●

●
●

●●●

●●

●●●

●●●

●

●●●●●●

●●●●

●

●●
●

●●●●●●●●

●

●●●●

●●

●●

●●

●●●●●

●
●●●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●

●●

●

●●
●●

●●●●●●●●●

●●●●

●
●●

●

●●●●

●

●●●

●●

●●●

●●●

●●●

●

●

●

●●

●●●

●
●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●●●●●

●●●

●●●●

●

●●●

●

●●

●

●
●

●●

●●

●●●●

●●

●

●●●

●●●●

●●●

●●●●●●●●

●

●●

●

●

●●●●●●●

●

●●●●●

●●●●

●● ●

●●●●

●●

●●●

●

●

●●●

●●

●●

●

●●

●

●●

●

●●
●●
●

●●●

●●

●

●●

●●●●

●●

●●●●●●●
●●●

●
●●●

●

●●●

●●●●

●

●●●●●●●

●

●●●●

●●

●●

●
●

●●
●

●
●

●

●●
●

●●

●●●

●●●●●●●●

●●●●●●●●

●

●●

●

●

●●

●

●●●●

●

●●●●

●●●●●

●

●●

●●●●●

●●●●

●●●●

●

●●●●●●●

●●●
●

●●●●

●●●●

●

●●
●●●●●
●●●

●●●

●●

●●●●●

●
●●

●●●

●
●●●●●●●●●●●●●

●●●●●●

●●

●●●●

●●●

●●

●●●

●

●●●●●
●

●

●●●●●●

●●●

●●●●

●
●

●●

●

●●●
●

●●●

●●

●●

●●●●●

●

●●

●●●

●●●

●●●●●●●

●

●●●

●●●●●●●

●

●●●●●

●●

●●

●

●

●

●

●

●●

●●●●●●

●●

●

●●
●●●
●●●●●●●

●●●

●●●●●

●

●●●●

●●●●●●●●●●●
●

●●●●●

●

●
●●●●●

●●

●●●

●●●●●

●●

●

●●●●●●●●

●
●●●

●●●
●
●●

●●●

●
●●

●●
●

●●●●●●●●

●●
●
●

●●

●●●●

●

●
●

●

●●●●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●
●

●●●●

●●●●

●

●●

●

●

●●●

●●●●

●

●●●●●

●●●●●

●

●

●●●●

●

●●●●●

●

●
●●●●

●

●

●●

●

●

●

●●●●●

●●

●

●●●●●●

●
●●●

●●●●
●●●

●●●

●●

●●

●●●●●●●●

●●●
●
●

●●

●●●●

●

●
●

●

●●●●

●●●●●●

●

●●

●●

●

●●●
●●

●

●●

●●

●

●●●
●●●●

●●●

●

●●

●●●●●●●●

●●●●
●●

●●

●

●
●●●

●●●●

●

●●

●●●●●

●●

●

●
●●●●●●

●●●●

●

●●●●●

●

●
●●●●●●●

●●●●

●●

●

●●●●

●●●●

●●
●
●●

●●●

●●
●

●●

●●●●●●●●

●●
●
●

●●

●●●
●
●

●●

●●

●

●

●

●●

●●

●

●

●●●●

●●

●

●

●●●
●●

●●●

●●●

●
●●●

●

●

●●●●

●●●●

●●

●●●●●

●
●

●●●

●●●●

●●●●

●●●

●●

●●●●●●●

●●●

●●●

●●●

●●●

●

●●

●

●

●

●

●●●
●●

●●

●●●●●

●●●

●●●

●●●●●

●●●●●●●●

●

●●●

●●●●●●●

●

●●●●

●●●●●●●

●●●●

●●●●●●

●●

●

●●●

●●●●

●●●●
●
●

●●●●●●●●●

●●

●●●●

●●●

●●●

●●

●

●●

●●

●●

●●

●
●●

●●●●●●

●●●

●●

●●●●●
●●

●●●

●●●

●●●●

●●●●

●

●●●

●

●

●

●

●●
●

●●

●●●

●●

●

●●●

●●

●●●●●

●●●●●●●●

●

●●
●

●●●●●●●

●

●●●●●

●●●●●

●●

●

●●●●

●●

●●●

●●●

●

●●●

●●

●●●●●

●

●●●●●●
●●●●

●●

●●●●

●

●●

●●●●

●●
●

●

●●●

●●

●●●

●●

●●●●●●●

●●

●●

●●

●●

●

●●

●
●

●

●●●

●●

●●●

●

●

●●●

●●

●●●●●●

●●●

●

●●
●

●●●●●●

●

●●●●

●●

●●
●●

●●●●
●

●

●

●

●●●

●●●●●●

●●●●●
●

●●

●●●●●●●●

●

●●

●●

●
●●

●

●●●●●●

●●

AcidicAcidic AcidicBasic AcidicNon AcidicPolar

BasicBasic BasicNon BasicPolar BigBig

BigMicro MicroMicro NonNon NonPolar

PolarPolar

−2

0

2

−2

0

2

−2

0

2

−2

0

2

W
ei

gh
ts

Model
POLARITYSIZE
POLARITYSIZEGTR

Figure 9: Estimates of the weights for polarity/charge, and size features. The legend
specifies the underlying model following the naming convention defined in Section 7 of
the main text.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

23

0.000

0.025

0.050

0.075

0.100

0.125

A C D E F G H I K L M N P Q R S T V W Y
States

Va
lu

es Category
Empirical
Estimated

Figure 10: Stationary distributions on the protein kinase domain family data. “Esti-
mated” refers to the stationary distribution based on the posterior mean of the uni-
variate weights in our Bayesian model. “Empirical” refers to the empirical frequency
counts, which is sometimes used in lieu of estimates derived from CTMC models (e.g.,
Cao et al. (1994)). Note that even though the two estimates are broadly similar, they
also quantitatively differ in important aspects.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

24 Bayesian analysis of CTMCs

10 Supplementary tables

AcidicAcidic AcidicBasic AcidicPolar BasicBasic BasicPolar PolarPolar
0.226 -0.711 0.440 -0.246 0.496 1.332
NonNon AcidicNon BasicNon NonPolar BigBig BigMicro
-2.366 0.065 -0.010 -1.388 -1.215 -0.677

MicroMicro statio(A) statio(C) statio(D) statio(E) statio(F)
-0.902 -0.685 -0.577 -0.863 -0.048 0.012
statio(G) statio(H) statio(I) statio(K) statio(L) statio(M)
-0.455 -1.305 -0.269 -0.199 -0.136 -0.932
statio(N) statio(P) statio(Q) statio(R) statio(S) statio(T)
-1.431 0.194 -0.629 -0.901 -0.526 -0.645
statio(V) statio(W) statio(Y)
0.360 0.049 0.137

Table 1: Geweke diagnostic test statistic values under the PolaritySizeGtr model for
datasets where each sequence has 100 sites. Under the 5% significance level, an absolute
value larger than 2 supports a lack of convergence for that parameter.

AcidicAcidic AcidicBasic AcidicPolar BasicBasic BasicPolar PolarPolar
-0.365 -0.400 1.414 1.565 -0.438 1.049
NonNon AcidicNon BasicNon NonPolar BigBig BigMicro
1.613 0.041 0.783 0.868 -0.559 -0.751
MicroMicro statio(A) statio(C) statio(D) statio(E) statio(F)
-1.270 -0.644 -0.321 -0.090 -0.219 -0.204
statio(G) statio(H) statio(I) statio(K) statio(L) statio(M)
-0.270 -0.300 -0.450 -0.161 -0.207 -0.525
statio(N) statio(P) statio(Q) statio(R) statio(S) statio(T)
-0.473 -0.413 -0.008 -0.406 -0.315 -0.274
statio(V) statio(W) statio(Y)
-0.587 -0.067 -0.377

Table 2: Geweke diagnostic test statistic values under the PolaritySizeGtr model
for datasets where each sequence has 1500 sites. Under the 5% significance level, an
absolute value larger than 2 supports a lack of convergence for that parameter.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

25

Method Min. 1st Qu. Median Mean 3rd Qu. Max.
AHMC 24.56 41.42 50.32 86.01 67.90 432.20
Adaptive NMH 6.32 30.91 40.07 41.84 52.45 93.34
NMH 0.002 0.17 0.53 0.97 1.54 1.53 17.77
NMH 0.005 0.51 1.70 2.47 4.89 3.99 74.39
NMH 0.01 1.44 6.97 10.88 20.25 18.62 244.20
NMH 0.0125 0.71 3.53 5.65 9.86 9.25 117.70
NMH 0.015 0.80 4.01 6.49 11.24 10.78 128.10
NMH 0.018 1.23 6.77 11.05 19.03 18.29 226.30
NMH 0.02 1.60 7.54 11.82 20.98 20.80 245.50
NMH 0.03 1.32 3.97 6.16 11.69 10.28 162.90
NMH 0.04 0.40 1.44 2.18 3.61 3.73 38.49
NMH 0.05 0.20 0.54 0.78 0.97 1.07 6.02
NMH 0.06 0.36 0.81 1.08 1.25 1.44 6.56
NMH 0.07 0.28 0.65 0.83 0.89 1.06 2.47
NMH 0.08 0.31 0.73 0.95 1.04 1.25 3.39
NMH 0.09 0.25 0.53 0.67 0.77 0.93 2.78
NMH 0.10 0.55 0.79 0.90 0.97 1.08 3.03
NMH 0.15 0.20 0.26 0.30 0.36 0.41 0.81
NMH 0.20 0.27 0.31 0.35 0.38 0.43 0.63

Table 3: ESS per 104 seconds. NMH x stands for a Normal proposal Metropolis Hastings
algorithms with proposal bandwidth x.

Method Min 1st Quantile Median Mean 3rd Quantile Max
Aux 20 165 295 551 484 8698
No Aux 3.27 8.62 12.1 56.5 18.2 681

Table 4: Summary of the ESS per 106 seconds for the stationary distribution and ex-
changeable coefficients with auxiliary variable and without, denoted as “Aux” and “No
Aux” respectively, with estimates inferred under a PolaritySizeGtr model with fixed
ε = 5× 10−7 and L = 30, while fixing the topology and branch lengths to the true one
with a simulated amino acid dataset of 10 leaves and 5000 sites generated under a
PolaritySizeGtr model.

References
Atchison, J. and Shen, S. M. (1980). “Logistic-normal distributions: Some properties

and uses.” Biometrika, 67(2): 261–272.

Cao, Y., Adachi, J., Janke, A., Pääbo, S., and Hasegawa, M. (1994). “Phylogenetic rela-
tionships among eutherian orders estimated from inferred sequences of mitochondrial
proteins: instability of a tree based on a single gene.” Journal of Molecular Evolution,
39(5): 519–527.

Carpenter, J., Clifford, P., and Fearnhead, P. (1999). “An Improved Particle Filter for
Non-linear Problems.” In IEEE Proceedings: Radar, Sonar and Navigation, volume
146, 2–7.

Engel, Y. (2005). “Algorithms and representations for reinforcement learning.” Dok-
torarbeit, The Hebrew University of Jerusalem.

Hasegawa, M., Kishino, H., and Yano, T. (1985). “Dating of the human-ape splitting

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

26 Bayesian analysis of CTMCs

by a molecular clock of mitochondrial DNA.” Journal of Molecular Evolution, 22(2):
160–174.

Hobolth, A. and Stone, E. A. (2009). “Simulation from endpoint-conditioned,
continuous-time Markov chains on a finite state space, with applications to molecular
evolution.” The Annals of Applied Statistics, 3(3): 1204.

Hoffman, M., Brochu, E., and de Freitas, N. (2011). “Portfolio Allocation for Bayesian
Optimization.” In Uncertainty in Artificial Intelligence, 327–336.

Kenney, T. and Gu, H. (2012). “Hessian Calculation for Phylogenetic Likelihood based
on the Pruning Algorithm and its Applications.” Statistical Applications in Genetics
and Molecular Biology , 11: 1544–6115.

Mockus, J. (1982). “The Bayesian Approach to Global Optimization.” In System
Modeling and Optimization, volume 38, 473–481. Springer.

Moler, C. and Van Loan, C. (1978). “Nineteen dubious ways to compute the exponential
of a matrix.” SIAM review , 20(4): 801–836.

Rao, V. and Teh, Y. W. (2013). “Fast MCMC sampling for Markov jump processes and
extensions.” The Journal of Machine Learning Research, 14(1): 3295–3320.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning . Cambridge, Massachusetts: MIT Press.

Roberts, G. O. and Rosenthal, J. S. (2007). “Coupling and ergodicity of adaptive Markov
chain Monte Carlo algorithms.” Journal of applied probability , 44(2): 458–475.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2010). “Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design.” In Inter-
national Conference on Machine Learning .

Tarmast, G. (2001). “Multivariate Log–Normal Distribution.” ISI Proceedings: Seoul
53rd Session.

Wang, Z., Mohamed, S., and de Freitas, N. (2013). “Adaptive Hamiltonian and Riemann
Manifold Monte Carlo Samplers.” In International Conference on Machine Learning
(ICML), 1462–1470. JMLR W&CP 28 (3): 14621470, 2013.

imsart-ba ver. 2014/10/16 file: Supplement.tex date: October 28, 2015

	Bayesian optimization
	Bayesian optimization for HMCblackHMC
	Computational cost of AHMCblackAHMC

	Running time of previous CTMC gradient computation methods
	Cached-Uniformization method
	Running time for the gradient computation via auxiliary variables
	Gradient computation for the reversible, normalized parameterization
	Modelling language
	Full weights in the synthetic data experiments
	Connection Between Bayesian GLMblackGLMs and GTRblackGTR
	Configuration of GTRblackGTR using Bayesian GLMblackGLMs
	Proof of equivalence under GTR configuration

	Supplementary figures
	Supplementary tables
	References

