Stat 547N/FISH 506H - Statistics in Ecology and Marine Sciences

Syllabus
Tuesday/Thursday 14:00-15:30 pm, Sep 9th – Oct 21st 2021

Instructor: Marie Auger-Méthé, auger-methe@stat.ubc.ca
Office hours: Thursday 3:30-4:30, starting Sep 16

Class is now online (synchronous)!
All zoom and assignments accessible via Canvas
(Please see COVID info below)

Data in ecology and marine sciences are frequently associated with large challenges. Controlled experiments are often difficult and observational studies are often associated with missing data and measurement error. This class will introduce some of the challenges of using statistics to answer questions in ecology and marine sciences and the statistical tools developed to handle them. Topics covered in this class are: missing data, multiple imputation, censored and truncated data, GLMs, overdispersion, hidden Markov models, and state-space models. This course is a statistics class for graduate students in the Department of Statistics (STAT) and the Ocean and Fisheries Graduate program (OCF), but interested students from other departments are welcomed to enroll via FISH 506H. This class is intended for students with a good statistics background and some familiarity with R.

Tentative schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Paper discussion</th>
<th>R tutorial</th>
<th>Assignment Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 7 -Tu</td>
<td>No class – Imagine UBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 9 –Th</td>
<td>Challenges of ecological data + review of statistical approaches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 14 -Tu</td>
<td>Missing data</td>
<td>p-values</td>
<td></td>
<td>Paper summary & questions - submit by noon</td>
</tr>
<tr>
<td>Sep 16 -Th</td>
<td>--</td>
<td></td>
<td></td>
<td>Missing data</td>
</tr>
<tr>
<td>Sep 21 -Tu</td>
<td>Truncated + censored data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 23 -Th</td>
<td>--</td>
<td></td>
<td></td>
<td>Censored data</td>
</tr>
<tr>
<td>Sep 28 -Tu</td>
<td>GLMs + Overdispersion</td>
<td></td>
<td></td>
<td>Final project outline</td>
</tr>
<tr>
<td>Sep 30 -Th</td>
<td>No class – National Day for Truth and Reconciliation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 5 -Tu</td>
<td>Time devoted to group project</td>
<td>GLMs</td>
<td></td>
<td>Paper summary & questions - submit by noon</td>
</tr>
<tr>
<td>Oct 7 -Th</td>
<td>--</td>
<td></td>
<td>GLMs</td>
<td></td>
</tr>
</tbody>
</table>
Oct 12 -Tu | Mixture models | -- | -- | --
Oct 14 -Th | Hidden Markov models | -- | -- | --
Oct 19 -Tu | State-space models | -- | -- | --
Oct 21 -Th | Project presentations | -- | -- | Project report (due Fr Oct 29)

Assessments:
1. Paper discussions: 30%
2. R tutorials: 30%
3. Final project: 40%

1. Paper discussion guidelines and associated assignments:
The course will have 2 discussion sessions. The class will be assigned scientific papers to read in advance, will be asked to hand in an associated assignment prior to the in-class discussion. Each student will be asked to summarise in their own words the papers assigned that week. The summary of the papers should be only one paragraph and no longer than 300 words. If multiple papers were assigned for a session, make sure to highlight whether they have contrasting views on the topic. In addition, each student will be asked to write down 2 discussion questions that arose from the reading the papers. Find questions that should spark debate and that are specific to the topic in question. The questions should be inspired/informed by the papers. Please, submit at pdf file on Canvas before noon the day of the class discussion.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Paper</th>
<th>Link</th>
</tr>
</thead>
</table>

* Need to either be on campus to access the link or use the EZ-proxy tools from the library if off-campus (https://services.library.ubc.ca/electronic-access/connect/ezproxy-toolkit/)
2. **R tutorials:**
These tutorials will be described in a separate document available as an assignment on *Canvas* on the appropriate day. Make sure you have R and R Studio installed on your laptop before the first tutorial. I am expecting that you are familiar with R. These tutorials are intended to be completed in class. I will be there to answer any questions you may have. They will be available as an assignment on *Canvas*.

3. **Final project:**
The goal of the final project is to explore some of the analyses covered in class in more details, and, in particular, to learn to apply these analyses to real data. You can either use your own data or free data available online. This will be a group project and I am open to various project ideas as long as you explore some of the methods covered in class (e.g. GLMs, Multiple Imputation) and show how different ways to analyse the data affect the results. While it is important that at least one of the analyses of the project is one of the methods covered in class, you are welcome to explore other techniques in the final project.

You will be assigned to a group in the second class. There will be a peer-review process, where your participation will be assessed by the other members. Information will be provided in class.

Example 1: use data from the thesis of one of the group members or ecological data online (e.g. on dryad: https://datadryad.org) and show how different approaches affect the results (e.g. using transformation vs glms, and exploring methods to account for overdispersion).

Example 2: you could find an ecological paper that has an associated online dataset that you can use to try to reproduce the analyses used in the paper and show how analysing the data in a different way would affect the results (e.g. compare imputation to doing list-wise deletion of missing data).

The project will be divided into 3 parts.

1. **Outline (10%)**
 Due: Sept 28 at beginning of class submit via Canvas. One outline per group.

 One page summary of your project where you present the goal of your final projects and the analyses you will perform. Make sure to describe:
 - data
 - if the data is taken online, make sure to provide a full citation of the data set and paper
 - main questions to be answered
 - analyses to be performed

2. **Presentation (40%)**
 Due: Oct 21

 Group presentation in class
15 minute presentation (12 min talk, 3 min for questions), where you will discuss:

- goal of the project
- dataset
- analyses performed
- comparisons of the analyses in terms of impact on results and conclusions
- recommendation

Note that 10% of the grade will be assessed by your peers. Make sure all group members participate.

3. Written report (50%)
Due: Oct 29 5pm submit via Canvas. One report per group.

Similar to the presentation, the main goals of this 10-15 pages (double spaced, including figures) written report is to explain the goal of the project and discuss the pros and cons of the methods explored. You should conclude with a recommendation with regards to the best analysis and the interpretation of the results. The format should include: Introduction, Methods, Results, and Discussion.

- Introduction should explain the main goals of paper
- Methods should explain the methods explored
- Results should present the results from all the methods explored and focus on the differences between the different methods.
- Discussion should focus on discussing the pros and cons the different methods, and should make a recommendation on which of the method explored is the most appropriate for the data and question. Make sure to give a clear interpretation of the results.

You will be graded on your understanding of the statistical analyses performed and the quality of report. For me to be able to assess whether you understand the analyses, you need to clearly describe all of the methods you used, including those covered in class. You need to emphasize why you are exploring specific analyses. Because the quality of the report is also assessed, pay attention to grammar, typos, and paragraph structure (e.g. include topic sentences). Verify that you are clear and concise and that your figures and tables are easy to read (e.g. make sure the axes are written with large enough font to be readable and that the axis titles are easily interpretable). You should write this report like if it was a scientific publication. Thus, describe your methods with words and equations, not with R code. Similarly, describe your results with words, tables, and figures, not with R outputs. **I will expect the students to make changes according to the written comments I have made after the presentation.**

Missed classes, late assignments, and grade changes:
I do not provide extension for discussion documents and tutorials, as these are associated with in-class activities. If you do not hand-in your assignment on time or miss a class due to valid
reasons (e.g. COVID statement below), the grade will be weighted into your final project (i.e., you won’t lose marks, but your final project will count for more). If you have a health-related reason to be late for your final project, I will provide an extension. Otherwise, I will remove 10% for each day past the deadline. Many of the activities are group based. Please be respectful of others and participate equally.

Further reading:
You are not required to read the associated chapters, but if you find the material challenging, I highly recommend that you do.

Statement about UBC’s values and policies:
UBC provides resources to support student learning and to maintain healthy lifestyles but recognizes that sometimes crises arise and so there are additional resources to access including those for survivors of sexual violence. UBC values respect for the person and ideas of all members of the academic community. Harassment and discrimination are not tolerated nor is suppression of academic freedom. UBC provides appropriate accommodation for students with disabilities and for religious, spiritual and cultural observances. UBC values academic honesty and students are expected to acknowledge the ideas generated by others and to uphold the highest academic standards in all of their actions. Details of the policies and how to access support are available senate.ubc.ca/policies-resources-support-student-success.

Covid statement
Due to a combination of reasons, including student health concerns, my own personal health concerns (I have a child too young to be vaccinated), international students having reached out to say that they would not be able to attend in person early in the term (e.g. need to quarantine), and the fact that this is a half-term class, I have decided that the class will be held online. I understand that it may be disappointing to have an online class, rather than in-person. Please contact me if you have concerns! I was also really looking forward to interact with students in person! However, I hope that you will understand the reasons behind the decision, and I promise that I made the online version very interactive and fun.

The class is synchronous, and I expect students to attend class live via zoom and engage in the activities. However, if you are too sick to attend class at the given time slot, just contact me. I will make sure to provide recordings and slides on Canvas, and to provide accommodation for missed assignments for health reasons (see above).

If I am too sick to teach online, I will write an email discussing the arrangements (e.g. provide a recording from last year). You can anticipate that this would very likely be a last minute, but detailed, email.