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Abstract

This paper concerns situations in which a sample X = z1, -, X,, = z,
of independent observations are drawn from populations with different CDF’s
Fy, ---, F,, respectively. Inference is about a quantile of another population with
CDF Fjy when the data from the other populations are thought to be “relevant”.
Nonparametric smoothing of a quantile function would typify situations to which
our theory applies. We define the relevance weighted quantile (REWQ) estimator
derived from the relevance weighted empirical distribution (REWED) function.
We show that the estimator has desirable asymptotic properties. A simulation
study is also included. It shows that the median estimator is a robust alternative

to the locally weighted averages used in conventional smoothing.
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1 Introduction

This paper concerns situations in which a sample X; = z1, ---, X,, = z,, of independent
observations are drawn from populations with different CDF’s Fy, ---, F,,, respectively.
Inference is about an attribute 6y of another population with CDF Fj; an observation
may be available from the latter population as well. In this paper , will be a quantile of
Fy; elsewhere we address other problems of interest within the same general framework.
The {F;} are unknown, so that we are in the nonparametric case.

The special character of the problems investigated in this problem derives from the
belief that there is relevant information in the X;, ¢ =1 ,---, n about §,. However this
information is deemed to be “inexact”. By this we mean it cannot be translated into
a prior distribution from which a marginal posterior distribution for 6, could be con-
structed. And we mean there are no known structural constraints among the attributes
of the various populations to force the x;, ---, x, into inferences about 6.

The example given below illustrates the problem. That example reflects the situa-
tion underlying nonparametric regression. In fact, our approach may be thought of as
generalized smoothing. In nonparametric smoothing it leads to locally weighted regres-
sion quantile estimators 90 (t), —00 < t < oo for even rough regression quantile functions
0o(t), — oo <t < oo if the relevance of the z(¢;)’s corresponding to t;’s remote from
t can be ascertained. Our method bears on other problems like those of meta analysis
where there is no well defined underlying mathematical structure. In Section 8, we
briefly discuss linkages with standard statistical methods.

We have used “information” above in a sense we believe to be consistent with Basu’s



use of that term (Basu 1975) when he says:

e A problem in statistics begins with a state of nature, a parameter of interest 6 about
which we do not have enough information. In order to generate further information
about 0, we plan and then perform a statistical experiment £. This generates the
sample x. By the term ‘statistical data’ we mean such a pair (€,x) where £ is
well-defined statistical experiment and x the sample generated by a performance of
the experiment. The problem of data analysis is to extract ‘the whole of relevant
information’-an expression made famous by R. A. Fisher—contained in the data

(€,x) about the parameter 6.

However, statistical theory has traditionally been concerned with a narrow interpre-
tation of the word embraced by Basu’s description. | We call it “exact information” and
elaborate on this concept of information in a companion paper currently in preparation
(Hu and Zidek, 1993a)]. Given data, statisticians would typically construct a sampling
model with a parameter 6 to describe a population from which the data were supposedly
drawn. Information in the sample about the population comes out through inference
about 0. Alternatively, given a 6 of interest the classical paradigm sees the statistician
as conducting a statistical experiment to generate a sample from a population defined
by a sampling distribution with parameter #. The sample then provides information
about 6. In either case, statistical inference will be based on these observations and
their directly associated sampling model.

As noted above, there are problems where indirect information about # may be used
to advantage. Yet there does not seem to be a general theory underlying such problems.
How to use inexact information like that encountered in metaanalysis, thus becomes an

important topic which seems to have been addressed largely on a piecemeal basis.

Hu and Zidek (1993b) introduce the “relevance weighted likelihood” (REWL) as a



general device for using inexact information in parameter estimation. However, when
we cannot specify the population CDF’s parametric form the REWL based theory is
of no avail. To cope with such problems we introduce in this paper a nonparametric
but general theory based on an extension of the empirical distribution function which
we call the REWED (“Relevance Weighted Empirical Distribution”). We then tackle
the problem of muantile estimation within that framework which is examplified by the

following example.

Example 1 Distribution Smoothing. Let X (t;) have distribution function F,, 0 <
t; <1,i=1,---,n. Assume that X (t1), ..., X(t,) are independent and that F; changes
smoothly with t, “smooth” meaning sup,, |Fy(z) — Fyynw(z)| = 0 as A(t) — 0. We seek

to estimate Fy for a fized t.

In general, let F be an unknown distribution function describing the population of
interest. The classical paradigm would assume independent and identically distributed
(hereafter iid) observations from Fy. Here instead, only observations from other pop-
ulations described by CDF’s F;, i = 1,2,...,n are available. If we believe the {F;},
1=1,2,...,n are related to Fy, x1,xs, ... , T, may be used for inference about attributes
of Fy. The muestion is how.

In this paper, our answer to this muestion uses the REWED, defined in Section 2.
From the REWED we can construct moment estimators for parameters defined in terms
of the moments of Fy [this idea will be discussed elsewhere]. But here we consider only
the estimation the muantiles of Fyj.

In Section 2, the REW wuantile estimator will be defined in addition to REWED for
the problem identified by the last example. And we will offer generalizations along with
some examples.

Strong consistency of the REWED and the suantile estimators are stated in Section
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3 and proved in Section 9 under mild conditions. These results generalize the results for
iid sampling. some other asymptotic properties are given in Section 3.

R.R. Bahadur(1966) gives a useful asymptotic representation of the sample quantile
as a simple sum of random variables by using the empirical distribution function. We
give a generalization of Bahadur’s results for general weights {p,;} in the non-iid case.
This is the subject of Section 4.

We discuss the asymptotic normality of the REW quantile estimator in Section 5. In
Section 6, we apply the theory of this paper. We get reasonable estimators for location
parameters for several distributions. By comparing them with the weighted sample
mean, we find their asymptotic relative efficiency (ARE) in the iid case to be fairly
high. Section 7 presents the results of a simulation study, using the REW quantile
estimator for the nonparametric smoothing model. The proofs of our Theorems appear

in Section 9.

2 The REWED and REW Quantile Estimation

Let us reconsider Example 1. Because t — F; changes smoothly, we could hypothetically
use Y7, p;Fy, (z) to approximate Fi(z). The choice of the weights p; would depend
on the perceived relationship between F; and Fi(x). [The {p;} might plausibly be
generated from a kernel.| But the {F},}}7 are unknown. So instead we must use the
data, X(t;), = 1, ---, n to estimate Fi(z), say by >0 p,I(X(t;) < z), I(-) being
an indicator function. This empirical distribution we will call the relevance weighted
empirical distribution (REWED).

Estimating F;(x) by the REWED results in two errors from: (i) using Y7 p; F}, ()
to approximate Fy(z); (i) using >0, pil (X (t;) < x) to estimate Y ; p; F}, (). Much of

this paper will be concerned with (ii).



To generalize the ideas in the above example, let
Xn = [ana Ty Xnn]7 n>1

be a triangular array of row-independent random variables with associated array of
distribution functions, F,, def [Fn1, -+, Funl; m > 1 and nonnegative constants
def
Pn é [pnla Ty pnn]; TLZ 1

satisfying > pn; = 1. Define:

e the relevance weighted empirical distribution function (REWED) by
i=1

e the relevance weighted average distribution function (REWADF) for —oco < x < 00
by

Fu(@) = 3. puule);
e the pth quantile of F,, by
&) = inf{x: F.(z)>p} 0<p<1,;
e the pth relevance weighted quantile (REWQ) estimator by

{;:np =inf{z : F,(z) > p}
for a sample { X1, ..., Xpn }-

To illustrate the use of these REW quantile estimators, we offer the following exam-

ple.



Example 2 Nonparametric Regression. Let
Yi=flx;)+e6 wz€[ab] i=1, 2, ..., n;

here €1, €, ..., €, are iid, symmetric, E(¢;) = 0 for all i, and f(zx) is a smooth function.
To estimate f(x) we may use the median of the REWED. This kind of estimator is

usually robust and it often quite efficient.

3 Strong Consistency of REW Quantile Estimators

In this section, we describe strong and uniform consistency properties of the REWED.
Then we describe the strong consistency of the quantile estimators derived from the
REWED. In the following discussion, we assume that F(z) is the CDF of interest and

&p its pth quantile.
Theorem 1 (Strong Consistency of Fy,(x)). a) Suppose o2, exp(—e*K,,) < oo for all

€ > 0, where K, = (X1, p2;,)~". Then |F,(z) — F,(z)| = 0 a.s. for all x.

b) Further, if |F(x) — F,(x)| — 0 for all z, then |F,(x) — F(z)| = 0 a.s. for all x.
Corollary 1. If log(n)/K, = o(1), then
|Fo(z) — Fy(x)| = 0 a.s. for every z. O

The hypothesis of the theorem is easily satisfied. If, for example, max;{p,;} =
o[log(n)~!], then the hypothesis is satisfied. The assumption |F(x) — F,(z)| — 0 for
all = is essential; without this, we cannot get a consistent estimator of the CDF F(z).
Qualitatively this condition is the one which gives operational meaning to the notion of

“relevance weights”.

Theorem 2 (Uniformly Strong Consistency of F,(x)) a) Under the hypothesis of The-

orem 1 a), and the further assumptions that (i) supy.f.(x) is bounded and, (ii)
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limsup,, ., sup,{(1—F,(M)), E,(—M)} — 0, where f,(x) is the derivative of F,(x),

then

sup |F,(z) — F(z)] — 0, a.s..

When the distributions underlying our investigation derive from the same family,

the conditions of the last theorem are usually satisfied.

Theorem 3 (Strong Consistency ofénp) Under the conditions of Theorem 2 a), suppose

T = &ppy solves uniquely the inequalities F(z—) < p < F,(z). Then
énp —&ptn) = 0 a.s. for n — oo.
b) Further, if sup, |F(x) — F,(x)| — 0, then
énp —& — 0 as. for n— oo.

The uniqueness condition on &p,) imposed in the last theorem cannot be dropped.
We finish this section with following theorem giving a probabilistic inequality for

quantile estimators. This theorem will be used in next section.

Theorem 4 Suppose x = &) solves uniquely, the inequalities F(z—) < p < Fy,(z)

for any given p € (0,1). Then
P(‘éﬂp — &p)| > €) < 2exp(—267 (n) Ky)
for every € > 0 and n, where 6.(n) = min{F,(&um) + €) — p.p — Fn(pmn) — €)}-

The last theorem shows P(|¢,, — Eptny| > €) converges to 0 exponentially fast. The
value of € (> 0) may depend upon K, if desired. These bounds hold for eachn =1, 2, ...

and so may be applied for any fixed n as well as for asymptotic analysis.
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4 Asymptotic Representation Theory.

For the case of iid data and p,; = 1/n, i = 1,---, n, R.R.Bahadur (1966) expresses
sample quantiles asymptotically as sums of independent random variables by represent-
ing them as a linear transform of the sample distribution function evaluated at the
relevant quantile. From these representations, a number of important properties ensue.
(see Bahadur 1966 and Serfling 1980 for details). We now generalize this asymptotic

representation to the cases of non-iid observations and general p,;.

Theorem 5 Let 0 < p < 0 and m, = maxi<;<n{pni}. Suppose:

1. F, has bounded second derivative in the neighbourhood of Ep(n) with F,’L(fp(n)) =

fn (§p(n) ) ;

2. there exists ¢ > 0, such that inf, f, (&pn)) > ¢

3. there exists ¢* > 0 , such that 20, K, ¢ < oo;

4. Fyi has a uniformly bounded first derivative in the neighbourhood of §y(n);
5. my = o( K34 (logK,)~1/*).

Then

; P Ful&m) | p
brp = oo * Tllom)

where

R, = O(K;?’/‘l(logKn)?’/‘l), n — oo, with probability 1.

The Bahadur representation is a special case of this theorem suggesting the result of
our theorem may be fairly accurate, that is hard to improve upon.
The REW sample quantile is usually hard to find, but the REW sample distribution

relatively easy. By this theorem, we can use the REW sample distribution function
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evaluated at the relevant quantile to study the REW sample quantile asymptotically. A
simple example is that we can use this representation to prove quite easily the asymptotic

normality of the REW sample quantile.

5 Asymptotic Normality of énp

Except for the case of iid random variables, we cannot always find the exact distribution
of {-Cnp. The asymptotic distribution of {;Cnp given in the following theorem may therefore

be useful.

Theorem 6 Let 0 < p <1 and Vi, = X7 p2; Fri(ptn)) (1 — Fri(&m))). Assume F, is
differentiable at &ppyy, inf, F;L(fp!n)) > ¢ > 0 and maxi<;<p(pniV,7 %) — 0 as n — oo.

Then

lim P(fn(fp!n))(énp - Spgn))Vn_l/Q < t) = (I)(t)

n—oo

where ®(t) is the distribution function of N(0,1).

6 Applications

In this section, we use REW sample quantiles to estimate location parameters, and

compare these estimators with the weighted sample mean estimators.

Example 3 Let {X;} be an independent sample with X; ~ N(u,0?) i =1, ..., n, the

a? being known and p unknown. An estimate of p is required.

Analysis of Example 3 Using the weighted sample mean to estimate u seems natural:

n n
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We easily deduce that ¢; = [1/07]/[3}_, 1/07] minimizes the mean squared error. Then
n
i~ AN, [ /077,
i=1
Now let us try using the median to estimate u. Let F),; be the distribution of X; and

F, = Y7, pniFpni. The median of F), is 1 and we use the sample median &n.q to estimate

1. By the results of Section 5, we get

2
E?:l Pri

gmed ~ AN(/JH 4( ?:1 pmfm(,u))2),

here fn;(1) = (vV2mo;) ™"
We want to minimize the variance of the asymptotic distribution subject to >;* ; pn; =
1/0'7;

1. We easily obtain p,; = S 170
j=117%1

The asymptotic relative efficiency of these two estimators is

o2 2
ARE(N, gmed) = ;

Remarks 1 1. For the iid normal case, the ARE of the sample mean estimator
relative to the sample median estimator is % Here we have proved that when
the samples are from normal distributions with the same mean, but different
variances, the ARE of the weighted sample mean estimator relative to the

weighted sample median estimator yields the same value %

2. The weights used in the sample mean are different from the weights used in
the sample median. We only compare the two best estimators here. If we use

the same weights, the ARE can be larger or smaller than %
3. The weighted sample median should be more robust than the weighted sample

mean.

Example 4 Consider the double exponential family. Assume the density of X; to be
1/2r;exp(—|x — p|/ri); the r; are known while p is unknown i =1,--- . n. We again use

the weighted sample mean and weighted sample median of Example 1 to estimate p.

11



Analysis of Example 4. Choose ¢; = [1/77/[37_; 1/r3] to minimize the mean squared

error. Then

i~ AN (1, 2/[3°1/72)).

i=1

By choosing p,; = %, we get the weighted sample median émed. From the
=

results of Section 5,
1

éme ~ AN by =73/
! ( i=1 1/Ti2)

The asymptotic relative efficiency of these two estimators is

ARE(fi, Emea) = 2-

Remarks 2 1. The ARFE of the best sample mean estimator relative to the best
sample median estimator does not depend on the {r;}’s. The median is a

more efficient estimator.

2. As in the normal case, the weights used in the sample mean do not equal the

weights used in the sample median.

3. The weighted sample median should be more robust.

7 Simulation Study

We have shown via asymptotics that the REW quantile estimator possesses a number
of desirable asymptotic properties. In this section we use two simulated examples to
obtain insight into its performance with finite sample.

The model in Example 2 is used in this simulation where we compare the REW
quantile estimator with the Nadaraya-Watson estimate. The Gaussian kernel function

is used to generate the relevance weights.
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Figure 1: A comparison of the Nadaraya- Watson estimate with REW quantile estimator.
The model is Y = X % (1 — X) + €, where X is uniform (0,1) and € is N(0,0.5). The
sample size n = 1000 and the bandwidth, h = 0.1. The true curve is a, the REW quantile

estimator b, and the Nadaraya-Watson c.

Simulation Study 1. A random sample of size n is simulated from the model
Y=X(1-X)+e,

with € ~ N(0,0.5) independent of X ~ U(0,1). A typical realization when n = 1000 is
shown in Figure 1. The bandwidth used here and in all subsequances is A = 0.1. Let us
next add 50 outliers from N(2,0.5) to the simulation experiment just described. The
result is shown in Figure 2.

Simulation Study 2. In the model of Simulation 1, instead of the using the normal
error, we get the e from a double exponential distribution with » = 0.1. Figure 3 shows
the results of a curve fit based on 100 simulated observations. The simulation results
with 10 outliers from N(—.5,0.25) are shown in Figure 4.

For the data of Simulation 1 without outliers, the quantile curve estimate obtained

by using the REW quantile estimator is shown in Figure 5.
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Figure 2: A comparison of the Nadaraya- Watson estimate with REW quantile estimator
with outliers. To the data depicted in Figure 1, we add 50 e-outliers from N(2,0.5). The

true curve is a, the REW quantile estimator b, and the Nadaraya- Watson c.

0.0 0.2 0.4 } 0.6 0.8 1.0
Figure 3: A comparison of the Nadaraya- Watson estimate with REW quantile estimator.
The model is Y = X x (1 — X) + €, where X is from uniform (0,1) and € from a double
exponential distribution with r = 0.1. The sample size is n = 100 and the bandwidth,

h = 0.1. The true curve is a, the REW quantile estimator b, and the Nadaraya- Watson

C.
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0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 4: A comparison of the Nadaraya- Watson estimate with REW quantile estimator
with outliers. To the data depicted in Figure 8, we add 10 e-outliers from N(—.5,.25).

The true curve is a, the REW quantile estimator b, and the Nadaraya-Watson c.

0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 5: A REW quantile estimator of a quantile curve. The .25 quantile curve is
estimated for the data depicted in Figure 1. The true quantile curve is a, and the REW

quantile estimator is b.

15



The results of the simulation can be summarized as follows:

1. In the model of Example 2, when the error has the double exponential distri-
bution, the REW quantile estimator performs a little better than Nadaraya-
Watson estimate, see Figure 3. Even when the error is normal, the REW
quantile estimator performs about as well as the Nadaraya-Watson estimate

(see Figure 1).

2. When the data have a small fraction of outliers, say about 5 or 10 percent,
the REW quantile is robust (see Figures 2 and 4). By contrast, the Nadaraya-
Watson estimator fails. This observation suggests we use the REW quantile
estimator and Nadaraya-Watson estimate together to diagnosis the model and
determine if there are outliers in the data set. If the REW quantile estimator
and Nadaraya-Watson estimate disagree, then we should reconsider the model

and the outliers.

3. The REW quantile estimator seems promising judging from these simulation

studies.

4. Computing the REW quantile curve estimator took about one minute in

Simulation Study 1 using Splus in a Sun workstation.

8 Discussion

We have presented a general method for estimating a population quantile based on inde-
pendent observations drawn from other related but not identical populations. We have
shown the estimator to be strongly consistent and asymptotically normal under mild as-
sumptions. Our method derives from a generalization of the empirical distribution (the

REWED), and we have shown that the latter is also strongly consistent under certain
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conditions.

The context of our method includes that of nonparametric regression and smoothing.
Thus our estimator may be viewed as a generalized smoothing quantile estimator. In the
special case of Example 2, we obtain a nonparametric - nonparametric quantile estimator
in as much as nothing is assumed about the form of the population distributions involved.
In particular, as the Examples of Section 6 show, heteroscedascity is allowed in the
smoothing context.

Our theory depends on the relevance weights, {p,;} used to construct the REWED.
These weights express the statistician’s perceived relationships among the populations
and would usually be chosen on intuitive grounds. Making F}, approximate F; well is
a primary objective in this choice. Additional restrictions on the {p,;} stem from the
large sample theory developed in this paper. Theorems 1, 2, and 3 on consistency,
for example, require that Y exp(—eK,) < oo for all € > 0 where K, = (3;p%,) "
This imposes a requirement that the {p,;} — 0 fairly rapidly as n — oo, say faster
than 1/In(n). And for asymptotic normality, we see in Theorem 6 the requirement
that maxi<;<n(pniV,, /%) — 0 as n — oo where V,, = 3, p2,Fi(&pn)) (1 — Fri(&pim))-
We believe these conditions offer some guidance on the choice of the relevance weights
without unduly restricting it. In the smoothing model, we can usually use the kernel
weights as the relevance weights like we did in the simulation study. The kernel weights
usually satisfy the above conditions. F,(z) also arises as a population distribution
estimator in finite population sampling theory (see Sarndal, Swenson and Wretman 1992,
p199) where F},; may be regarded as the distribution function of the subpopulation from
which z; is drawn; here p; = 7; !/ ij’l, 7; being z;’s selection probability, s =1, -+ n..

We would note a Bayesian connection with our theory. If the {p,;} are thought of

as prior weights, then F), is just the marginal CDF of the independent observations
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obtained by mixing the conditional models {F},}. Viewed from this perspective, the
weights should be chosen to make the CDF for the population of interest, F}, that
marginal CDF. We would note that incidentally this paper does provide a large sample
theory for the Bayesian marginal mixture distribution, in particular for the quantiles of

that mixture distribution.

9 Proofs of the Theorems

Lemma 1 ( Marcus and Zinn, 1984). Let {c,},n = 1,...,00, be a sequence of real

numbers and {X,},n = 1,...,00, a sequence of independent random variables. Define

Un(t) by
Un(t) = ici[I(Xi <t)— P(X; <t)
Then )

n

PULBI(X )77 > A) < exp(=X2/8)(1 + 2/2m)

i=1
for all A > 0. O
Proof of Theorem 1.
IFu(e) = Fula)] = | 3l (X < 2) = )] Vo)l
say. So on applying Lemma 1 with A\ = eK!/?,
P(|Fu(z) — Fa(@)| > €)
= POV ) 2 > (k) )

< (1+2V2reKY)exp(—e* K, /8)

for every € > 0. The assumption, 3°° | exp(—€*K,) < oo, implies that K,, — oo when

n — oo. It follows that for every e > 0, there exists N, such that for every n > N

’K,
(1+ 2V 27reK7}/2) < ea:p(E ).

16
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Consequently

°K °K,
(1 + 2v/2meki eap(— ") < eap(—2").

But Y0 exp(—€’K,) < oo for all € > 0. So Y02, exp(—%) < oo for every € > 0.

Hence
o0

Y P(|F.(z) — Fo(z)] > €) <oo forall e > 0.

n=1

The Borel-Cantelli Lemma then implies
|Fo(z) — Fp(x)| = 0 a.s. for every . O
Proof of Theorem 2. Let M be a large positive integer and
— . _ - . M .
un = _ max . [Fu(i/M) = Fo(i/M)]

By Theorem 1, u, — 0 a.s.. Also monotonicity implies that for (: —1)/M <t <i/M

Fo(t) = Fa(t) < Fuli/M] = Fy[(i — 1)/M]

= [Fali/M] = Fu[i/ M]] + [Fali/M] — Fo[(i — 1)/M]].
By similar reasoning,
Fo(t) = Fu(t) > [Fal(i — 1)/M] = Fy[(i — 1)/M]] — [F,[i/M] — F[(i — 1)/M]].
So

limsup | Fy,(z) — F, (7))

n—oo
_ 1 _ 1—1 _ _
< I : AN B B
= h;ri)sogpun+11£H_>S(>1.3P_MIZHS%§M2{F7L(M) Fn( M )71 Fn(M)aFn( M)}
< limsupu, + limsup M ~'sup, , fn(z) + limsup{(1 — F,,(M)), F,,(—M)}
n—>00 n—00 n—0o0

under the assumptions. Since M is arbitrary, the result follows. O
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Proof of Theorem 3. Let ¢ > 0. By the uniqueness condition and the definition
of gp(n),

Fo(&pmy — €) < p < Fo(&pm) +€)-

By Theorem 2, F, (&) — €) — Fn(&pmy —€) = 0 a.s. and F, (Eyn) +€) — Fu(Epny +€) —
0 a.s.. Hence P[Fy,(&m) —€) < p < Fn(&m) +€), for all m > n] — 1 as n — oo.
That is, P(Sup,,sn \épm — &p(m)| > €) = 0 as n — oo. This completes the proof. O

To prove the Theorem 4, we need the following useful result of Hoeffding (1963).

Lemma 2 Let Yy, ..., Y, be independent random variables satisfying P(a; < Y; < b;) =1

for each i, where a; < b;. Then fort >0,

P(ém CE(Y)] 2 1) < exp(—aﬁ/il(bz- ). O

Proof of Theorem 4. Fix € > (0. Then

P{|&p — &om)| > €} < P{Eup > &pimy + €} + Pléup < &) — €}

But with Y; = ppil (Xni > &pn) + €),

P{énp Z gp(") + 6}
= P{p> Ful&m + )}

= P{meI(Xm > gp(n) + 6) >1- p}

i=1

= P{é(Yi —E(Y)>1-p-— ipni(l — Fri(&m) +€))}

= P = B > Pl + ) — o}

Because P(0 <Y; < pp;) =1 for each i, by Lemma 2, we have

P(énp > Epn) T €) < 69610(—25?/21720 = exp(—Q(ﬁKn);

=1
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here 6; = Fn(gp(n) + €) — p. Similarly,
P(énp <&m —€) < 69010(—255/21720 = exp(—?égKn)
i=1
where 6, = p — F,(§pn) — €)}-
Putting 0.(n) = min{d;, do}, completes the proof. O
To prove Theorem 5, we need the following results (see Shorack and Wellner, 1986,

page 855)

Lemma 3 (Bernstein) Let Y1, Y5, ..., Y, be independent random variables satisfying P(|Y;—

E(Y;)| <m) =1, for each i, where m < co. Then, for e > 0,

62

2% Var(Y;) + 2me

P é(m ~ BV > d < 2eap]- ]

foralln =1, 2, ... .

Lemma 4 Let 0 < p < 1. Suppose conditions 1-8 of Theorem & hold. Then with

probability 1 (hereafter wpl)

(yer/2+ 1)K 2 (logK,)'?
fn(gp(n))

|'§np - fp(n)| <
for all sufficiently large n.

Proof. Since F,, is continuous at &p(n) With F’;(fp(n)) > 0, &y(n) solves uniquely F.(z—) <
p < F,(z) and p = F,(§y(n))- Put
en = (Ve /24 1K (10gK0) ' falEpn)-

We then have

Fn(&p(n) + En) —pb= Fn(ip(n) + en) - Fn(gp(n))
= fn(&p(n))en + O(Gn)
> et /2(logK,) P K,
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for all sufficiently large n.
Likewise we may show that p — Fn(gp(n) — €,) satisfies a similar inequality. Thus,

with d.(n) as defined in Theorem 4, we have
2K, 6.(n)* > c*logK,

for all n sufficiently large. Hence by Theorem 4,

P(|€TLP - 6p(n)| > en) < Kﬁ*

for all sufficiently large n.
This last result, hypothesis 3 of this theorem and the Borel-Cantelli Lemma imply

that wpl |fnp — &n)| > € holds for only finitely many n. This completes the proof. O

Lemma 5 Let 0 < p <1 and T, be any estimator of §yny for which Ty, — &y — 0 wpl.

Suppose F,, has a bounded second derivative in the neighbourhood of Ep(n)- Then wpl

Fn(Tn) - Fn(gp(n)) = Fr'z(gp(n))(Tn - gp(n)) + O((Tn - fp(n))Q)

as n — oQ.

Proof. The proof is an immediate consequence of the Taylor expansion. O

For convenience in presenting the next result, we set
Dy(z) = [Fn(&m) + 7) = Fu(&pm)] — [Fa(&pm) +2) = Fal&pm))].
Lemma 6 Let {a,} be a sequence of positive constants such that
an ~ oK, 2 (logK,)
as n — 0o, for some constants co > 0 and ¢ > 1/2. Let m, = maxi<ij<n{pni} and

Hpn: sup |Dn(x)|

|z|<an
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If m, = o(K;3/*(logK,)=Y/2), then under the hypothesis of Theorem 5, wpl
_ —3/4 Lg+1)
H,, = O(K, °*(logK,)> ).

Proof. Let {b,} be any sequence of positive integers such that b, ~ coK}/*(logK,)?
as n — o0o. For successive integers r = —by,...,b,, put 7., = a,b;'r and ., =
Fo(&m) + Mr+1,0) — Fu(&pn) + Mrn). The monotonicity of F, and F,, implies that for

77T,n S x S 77r+1,n7

Dy (z) < [Fn(fp(n) + 777“+1,n) - Fn(fp(n))] - [Fn(gp(n) + nr,n) - Fn(fp(n))]
< D, (777+1,n) + [Fn(fp(n) + 777“+1,n) - Fn(gp(n) + nr,n)]-

Similarly,
Dy (x) > Dy(0rn) — [Fn(fp(n) + Nrg1m) — Fn(gp(n) + M)

So

Hpn < An + ﬁm

where A, = max{|Dp(n)| : —b, < r < b,} and B, = max{a,, : —b, <7 < b, — 1}
Since Ny11n — Mrm = @byt ~ K;73/* —b, <1 < b, — 1, we have by the Mean Value

Theorem that

Q. < [ sup Fv;(fp(n) + )| (M 11,0 = Mrm) ~ [ SUP Fv;(fp(n) + x)]Kn_g/4a

|z|<an |z|<an

—b, <r<b, —1. Thus

671 = O(K71_3/4), n — oQ.
We now establish that wpl
A, = O(K¥*(logK,)?“™) as n — oo.

By the Borel-Cantelli Lemma it suffices to show that

P(A, > 7,) <

n=1
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where 7, = ¢, K7%/4(logK,)?(@™ for some constant ¢; > 0. Now
bn
P(Ap > 7) < Z (|1 Dn(Mrn)| = n)-

r=—bn

And

nrn | - |me Xm € gp(n fp(n) + Mr, n)) - E(I(Xm € (é‘p(n)aé‘p(n) + nr,n))))‘

by definition. With Y; = ppil (Xpni € (&p(n)s Ep(n) + 1)), Bernstein’s Lemma (see Lemma
3) implies
P(|Dn(nrn)| > ) < 2exp(—75/Dn)

where D,, =23, Var(Y;) + 2/3muvn.

Choose ¢y > sup,, ; fni(§pn))- Then there exists an integer N such that

Fri (gp(n) + an) — Iy (gp(n)) < Colyp

and
Fri (gp(n)) — Iy (gp(n) - an) < Coly

both of the above inequalities being for alln > N and ¢+ =1,---,n. Then

n

ZV(M’( Z oty = K 'coay,.

Hence

fyZ/Dn > 7,%/{2Kn_102an +2/3myvn} > cflogKn/(llcho)

for all sufficiently large n. The last result obtains because of the condition m, =
o( K (log K, )7~ 1/2).
Given ¢y and ¢, we may choose c¢; large enough that ¢?(4caco)™" > ¢* + 1. It then

follows that there exists N* such that

P(‘Dn(nr,n” > /Yn) < 2Kr:(c*+1)
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for all |r| < b, and n > N*. Consequently, for n > N*
P(An > ) < 8b, K (€FD),
In turn this implies
P(A, >, <8K;°.

Hence 2%, P(A, > 7,) < 00, and the proof is complete. O
Proof of Theorem 5. Under the conditions of Theorem, we may apply Lemma 4.

This means Lemma 5 becomes applicable with 7;, = énp and we have wpl,

Fn(éﬂp) - Fn(fp(n)) = fn(fp(n))(gnp - gp(n)) + O(KgllogKn), as n — Q.

Now using Lemma 6 with ¢ = 1/2, and appealing to Lemma 4 again, we may pass

from the last conclusion to: wpl
Fou(énp) = Fal&om) = Fal&om) (Gp — Goim)) + OB (log 6,)*M"), - as n — oo,
Finally, since wpl: Fn(énp) =p+ O(my,), as n — 0o, we have wpl
P = Falom) = Fal&om) Eup — &) + O(K > (logK,)¥*), as n — co.

This completes the proof. O

Proof of Theorem 6. Fix t, and put
Gn(t) = P[fn(gp(n))(énp - {.:;v(n))vnil/2 < t] = P[gnp < an],
where a, = &) + tV,1/?/ fa(&(m)) Then by the definition of Enp

Gn(t) = P(Fy(ay) > p)-
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here

Zn = VS poi(H(Xi < 1) — E(I(Xos < )

=1

and
ca =V 200 = 3 puiB (I (Xni < an))]
i=1
We first prove Z, — N(0,1) in distribution and then that ¢, — —t as n — oo to

complete the proof . To this end
Zn =3 PV U (X < 00) = Fralan)) = 3
i=1 i=1
where 7,; = PV, 2 (1(Xps < an) — Fri(ay)).
;From the condition max; <<, (Pni V7 /%) — 0, we get max;<j<p, pni — 0 and V;, — 0.
We then easily obtain for every ¢ > 0 and 7 > 0:
L. X" P(|nwl > €) — 0. (since || < 2maxicicn(pniV, /%) — 0);

2. S EM (il < 7)) — (sinceE(mui (|nns] < 7)))*] — 1. (For n large

enough, I(|n.:| < 7)) =1);

3. 2y Bl (nnil < 7)) = 0.

So Z, — N(0,1) in distribution by the CLT (see Chung, 1968, page 191) for triangular
independent random variables.

Next we prove ¢, — —t.
en =V lp = 3 pui E(I(Xi < )]
i=1
= Vn_1/2 me(Fm (fp(n)) - Fm(an))
i=1

= _‘/'7”;1/2 me(fm(gp(n))(an - gp(n)) + O(G'n - gp(n)))
i=1

— —1 as n — oo.

The proof is now complete. O
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