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Abstract

Misspecified models and noisy covariate measurements are two common sources of bias
in statistical inferences. While there is considerable literature on the consequences of each
problem in isolation, this article investigates the effect of both problems in tandem. In
the context of linear models, the large-sample error in estimating the regression function is
partitioned into two terms, one resulting from model misspecification and the other from
covariate imprecision. While trivial to establish, this decomposition proves interesting.
Specifically, it reveals tradeoffs between the deleterious effects of model misspecification
and covariate imprecision in a number of scenarios. A finite-sample version of the decom-
position is also presented. This permits study of the relative impacts of model misspecifi-
cation, covariate imprecision, and sampling variability, with reference to the detectability
of the model misspecification via diagnostic plots.

Keywords: bias; errors-in-variables; measurement error; misclassification; model mis-
specification.

1 Introduction

In keeping with adages such as “all models are wrong but some are useful” (Box, 1979), it is

recognized that biases induced by model misspecification are ubiquitous in statistical practice.

The hope is that screening out models which are clearly incorrect will render these biases small

relative to other uncertainties present in a statistical analysis. There is a sizeable literature on

the effects of model misspecification, or “wrong-model analysis” in various scenarios. Some key

references include Kent (1982), Gould and Lawless (1988), Ramsey (1969), and White (1981,

1982).

While less ubiquitous than model misspecification, the noisy or imprecise measurement of

covariates is another common difficulty in statistical analysis. This problem is often referred

to under the rubric of errors-in-variables, or more specifically measurement error in the case
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of continuous covariates and misclassification in the case of categorical covariates. In either

situation, the effect of undetected or ignored imprecision in a covariate is typically a bias towards

zero in the corresponding regression coefficient. Errors-in-variables are particularly common in

biostatistics and epidemiology, where many putative risk factors can only be measured roughly at

the level of the individual. Some general errors-in-variables references include Carroll, Ruppert,

and Stefanski (1995), Thomas, Stram, and Dwyer (1993), and Willett (1989).

While interesting research questions still abound, the effects of model misspecification and

covariate imprecision are reasonably well understood. For the most part, however, the two topics

have been investigated in isolation from one another. The effect of model misspecification is

typically studied in the context of precise covariate measurements, while the effect of errors-

in-variables is typically studied in the context of a correctly specified model. In contrast, this

article examines the simultaneous effects of model misspecification and covariate imprecision.

There are both before-the-fact and after-the-fact rationales for the present investigation. A

priori, the ubiquity of model misspecification suggests it may often be an issue when covariate

imprecision is manifested. Thus it seems sensible to consider the joint effect of the two problems.

A posteriori, our findings point toward an intriguing relationship between model misspecification

and covariate imprecision. In examples we see tradeoffs in the form of an inverse relationship

between the error arising from model misspecification and the error arising from covariate im-

precision. Moreover, we garner some sense of which problem is more damaging in a particular

situation.

The article is organized as follows. The main ideas are developed in the next section, where

the large-sample error in estimating a regression function is partitioned into a component due

to model misspecification and a component due to covariate imprecision. Sections 3 through 5

then detail the application of this decomposition in different scenarios. A finite-sample version

of the decomposition is presented in Section 6, along with simulations designed to illustrate

the practical ramifications of simultaneous model misspecification and covariate imprecision. A

short discussion ensues in Section 7. Some of the details needed in the examples of Sections 3,

4, and 5 are relegated to an Appendix.
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2 Quantifying Errors

Let Y be the response variable, and let V = (V1, . . . , Vk)
′ be the collection of potential pre-

dictor variables. Say that the actual relationship between Y and V is governed by S =

{S1(V ), . . . , Sq(V )}′ via

E(Y |V ) = α1S1 + . . . αqSq, (1)

but model misspecification arises because the analyst regards T = {T1(V ), . . . , Tp(V )}′ as the

relevant predictors. That is, E(Y |V ) is incorrectly assumed to be a linear function of the

components of T . Moreover, say that the measurement of T is error-prone. Thus while the

analyst is focussed on the relationship between Y and T , the available data are measurements

of Y and U , where U = {U1, . . . , Up}′ is a noisy surrogate for T . Note that S, T , and U are

viewed as random rather than fixed, and throughout the article the existence of joint second

moments for (Y, S, T, U) is assumed.

To quantify the effects of model misspecification and covariate imprecision, let β be the large-

sample limiting coefficients for least-squares regression of Y on T , and let γ be the large-sample

limiting coefficients for least-squares regression of Y on U . If both the model misspecification

and the measurement error are undetected or ignored, then with enough data the analyst is

incorrectly led to believe that

E(Y |V ) = γ1T1 + . . . γpTp. (2)

Thus in estimating the regression function the difference between (2) and (1) is the net large-

sample error that results from both model misspecification and covariate imprecision. This is

formalized by defining the average squared error (ASE) as

ASE = E
{

(α′S − γ′T )
2
}
, (3)

where the expectation is with respect to the underlying distribution of V . That is, we are

averaging the squared error in estimating the regression function with respect to the distribution

of the covariates.

We can also define average squared errors for model misspecification and covariate impreci-

sion separately. The error due to misspecification (hence the subscript M) is captured by

ASEM = E
{

(α′S − β′T )
2
}
, (4)
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the average squared difference between the actual regression function E(Y |V ) = α′S and the

large-sample estimate β′T which results from using the misspecified model and regressing Y on

precise measurements of T . Similarly, the error due to covariate imprecision (hence the subscript

I) is captured by

ASEI = E
{

(β′T − γ′T )
2
}
, (5)

the average squared difference between the estimated regression function based on the misspec-

ified model with precise measurements and that based on the misspecified model with imprecise

measurements. We emphasize that the covariate imprecision is undetected or ignored, so the

analyst believes to be regressing Y on T while actually regressing Y on U . Consequently, the

large-sample estimated regression function is γ′T rather than γ′U .

The definitions (3), (4) and (5) lead quite naturally to the following theorem. Part (i) simply

states that the overall average squared error (3) decomposes as the sum of misspecification term

(4) and the measurement error term (5). While this may seem somewhat predictable, it appears

that such a decomposition has not been developed in the model misspecification literature or

the errors-in-variables literature. Parts (ii) and (iii) of the theorem give expressions for the

component terms (4) and (5) respectively.

Theorem 1 Assume that E(SS ′), E(TT ′) and E(UU ′) are all of full rank. Then

(i) ASE = ASEM + ASEI .

(ii) ASEM = α′AMα, where

AM = E(SS ′)− E(ST ′)E(TT ′)−1E(TS ′).

(iii) ASEI = α′AIα, where AI = B′E(TT ′)B, with

B = E(TT ′)−1E(TS ′)− E(UU ′)−1E(US ′).

Proof. To establish (i) it suffices to show that

E {(α′S − β′T )T ′(β − γ)} = 0. (6)

But note that standard results for misspecified models (see, for instance, White, 1982) give

β = argminξE{(Y − ξ′T )2} and hence

E(TT ′)β = E(TY )

= E{TE(Y |V )}

= E(TS ′)α. (7)
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Therefore the left-hand side of (6) can be expressed as

α′E
[{
S − E(ST ′)E(TT ′)−1T

}
T ′
]

(β − γ) = 0,

giving the desired result. The expression in (ii) follows straightforwardly from (7), while the

analogous definition for γ, namely

E(UU ′)γ = E(US ′)α,

leads immediately to (iii). 2

If some of the regressors are correctly specified (i.e. components of T which appear in S)

then intuitively one expects these components, or more specifically the magnitudes of their

coefficients in (1), will not contribute to the error arising from model misspecification. Fur-

thermore, if such components are measured precisely, then one expects they will not contribute

to the error arising from covariate imprecision. These intuitions are verified in the following

easily-established lemma.

Lemma 1

(i) If Tj = Si for some i and j, then the i-th row and column of AM are zero. That is,

ASEM does not depend on αi.

(ii) If Uj = Si for some i and j, then the i-th row and column of AM and AI are zero. That

is, ASEM and ASEI (and hence ASE) do not depend on αi.

Proof. Assume the condition in (i) holds, and without loss of generality say i = j = 1.

Thus T1 = S1. Since AM is symmetric and non-negative definite, it suffices to show that its

(1, 1) entry is zero to establish (i). Evaluating ASEM when α = (1, 0, . . . , 0)′ gives (AM)11 =

minξ E{(S1 − ξ′T )2} = 0 as desired. Similarly, say U1 = S1. Then evaluating ASE when

α = (1, 0, . . . , 0)′ gives A11 = argminξE{(S1− ξ′U)2} = 0. Since AM and AI are symmetric and

non-negative definite, (ii) follows immediately.2

3 Example: Missed Curvature or Interaction

Say an analyst is interested in the relationship between a response variable Y and predic-

tors X and W . Without loss of generality assume the predictors have been scaled so that
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E(X) = E(W ) = 0 and V ar(X) = V ar(W ) = 1, and let ρ = Corr(X,W ). The analyst views

T = (1, X,W )′ as the predictors of interest. However, X is subject to nondifferential addi-

tive measurement error, so that the actual regressors used are U = (1, X∗,W )′, where X∗ and

(W,Y ) are conditionally independent, with E(X∗|X) = X and V ar(X∗|X) = τ 2. Note that

since X is standardized, τ 2 can be regarded as the measurement error variance as a fraction of

the predictor’s variance.

Now say the real relationship between Y and (X,W ) is governed by

E(Y |X) = α′S

= α1 + α2X + α3W + α4X
2, (8)

so that the analyst is ‘missing’ the curved effect of X. Lemma 1 indicates that ASEM can depend

only on α4, while ASEI can depend only on α2 and α4. Indeed, straightforward calculation using

part (ii) of Theorem 1 yields expressions for AM and AI which are given in the Appendix. It

is particularly instructive to consider the situation where W depends on X in a linear manner;

that is, E(W |X) = ρX. The expressions then simplify to

ASEM = (m4 − 1−m2
3)α2

4, (9)

ASEI = c(τ, ρ)(α2 +m3α4)2, (10)

where mi = E(X i), and

c(τ, ρ) =
(1− ρ2)τ 4

(1 + τ 2 − ρ2)2
. (11)

To put (9) and (10) in context, let λ = Var(α2X + α4X
2) = α2

2 + (m4 − 1)α2
4 + 2m3α2α4

represent the total “signal” due to X, and let ω = Var(α4X
2)/λ = (m4−1)α2

4/λ be the fraction

of the total signal which is due to the quadratic term. Then we have

ASEM = λγω, (12)

ASEI = c(τ, ρ)λ(1− γω), (13)

where γ = 1 − {m2
3/(m4 − 1)}. Note that γ ∈ (0, 1] by the Cauchy-Schwartz inequality, and

that γ = 1 when X has a symmetric distribution. Clearly (12) and (13) reveal a tradeoff.

As the real relationship becomes more curved (ω increases while λ is fixed), the error due to

misspecification increases, but the error due to covariate imprecision decreases. Straightforward

analysis shows that c(τ, ρ) < 1, thus the misspecification term always dominates in the sense
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that ASE increases with ω for fixed λ. However c(τ, ρ) can be appreciable when τ is relatively

large. Therefore as the underlying relationship becomes more curved, increased error due to

misspecification is partially offset by decreased error due to covariate imprecision.

We also consider what happens when the analyst misses an interaction between the two

predictors. That is, the true relationship (8) is replaced with

E(Y |X) = α′S

= α1 + α2X + α3W + α4XW.

Again, resultant expressions for AM and AI are given in the Appendix. In this scenario in-

structive expressions result when the dependence of W on X is assumed to be both linear and

homoscedastic; that is, E(W |X) = ρX and V ar(W |X) = 1− ρ2. Under these conditions it can

be shown that (12) and (13) hold again, with λ = V ar(α2X + α4XW ), ω = V ar(α4XW )/λ,

c(τ, ρ) defined previously as per (11), and γ now given by

γ = 1− ρ2m2
3

1− ρ2 + ρ2(m4 − 1)
.

As previously, the Cauchy-Schwartz inequality implies that γ ∈ (0, 1], while γ = 1 if X has

a symmetric distribution. Thus the effect of simultaneous model misspecification and covari-

ate imprecision in the missed interaction scenario is very similar to that arising in the missed

curvature scenario.

4 Example: Covariate Dichotomization

The next example expands upon qualitative findings in Gustafson and Le (2001). For the

sake of tractability we assume the two predictors (X,W ) have a bivariate normal distribution,

an assumption not required in the previous section. As previously we assume without loss of

generality that both X and W have been scaled to have mean zero and variance one, and let

ρ = Corr(X,W ). Imagine the analyst is contemplating two choices of regressors, namely T (C) =

(1, X,W )′ and T (D) = (1, I{X > 0},W )′. In particular, he is considering dichotomization of

X by comparison to its mean of zero. The practice of creating categorical covariates from

continuous covariates is relatively common, especially in biostatistics and epidemiology. Also,

say that X is subject to nondifferential normal measurement error. Thus the actual regressors

are either U (C) = (1, X∗,W ) or U (D) = (1, I{X∗ > 0},W ), where X∗|X,W, Y ∼ N(X, τ 2).
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In this scenario it proves fruitful to consider what happens when the true relationship be-

tween the response and predictors falls in between the possibilities considered by the analyst.

Specifically, say that

E(Y |X,W ) = αTS

= α1 + α2

{
(1− ω)X + ω

√
2π
(
I{X > 0} − 1

2

)}
+ α2W, (14)

for some ω ∈ [0, 1]. Thus as ω increases T (D) becomes a more appropriate choice of regressors

while T (C) becomes a less appropriate choice. As an aside, the centering and scaling by
√

2π of

the indicator function in (14) appears for a technical reason. In particular, for any value of ω it

leads to β = α when considering T (C) as the predictors. Thus ω is more readily interpreted as

the weight given to the dichotomous component in (14).

Entries for the matrices needed to compute AM and AI via Theorem 1 are given in the

Appendix, for both T (C) and T (D). In light of Lemma 1, ASEM and ASEI can depend only on

α2 in either case. Figure 1 gives plots of ASEM , ASEI and ASE as a function of w, where the

vertical scale is based on fixing α2 = 1. Both choices of T and different values of τ and ρ are

considered.

The behaviour of the model misspecification term ASEM in Figure 1 is entirely predictable.

If T (C) is used, ASEM increases with ω as the true relationship moves away from the postulated

model. If T (D) is used, ASEM decreases with w as the true relationship moves toward the pos-

tulated form. However, the behaviour of the covariate imprecision term ASEI is more curious.

If T (C) is used, ASEI does not depend on ω. That is, the deleterious effect of measurement

error is the same regardless of the form of the underlying relationship, amplifying findings in

Gustafson and Le (2001). On the other hand, if T (D) is used then ASEI increases with w. Thus

the decomposition of ASE into ASEM and ASEI quantifies a tradeoff noted by Gustafson and

Le concerning the dichotomization of a continuous predictor. As the model fit improves, the

damaging effect of measurement error worsens. This phenomenon is particularly acute in the

τ = 0.75 scenarios shown in Figure 1. Here ASE actually increases with ω for larger values

of ω, so that the overall error decreases as the true relationship moves further away from the

postulated model!
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Figure 1: ASE (solid curve), ASEM (dashed curve) and ASEI (dotted curve) as a function of
ω which indexes the true relationship (14). The four pairs of plots correspond to combinations
of τ = 0.25 or τ = 0.75 and ρ = 0.2 or ρ = 0.8. For each pair, the left plot corresponds
to T (C) = (1, X,W )′ as the postulated predictors, while the right plot corresponds to T (D) =
(1, I{X > 0},W )′ as the postulated predictors. The vertical scaling of the plots is based on
α1 = 1.
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5 Example: How Many Categories?

Often continuous predictors are categorized to avoid specifying a grossly incorrect form for the

regression function. In fact with plentiful data it may be reasonable to use many categories, in

order to better approximate the actual regression function. Here we examine the joint effects of

model misspecification and covariate imprecision as the number of categories increases.

Let X, W and X∗ have the same jointly normal distribution as in the previous section. Say

that the investigator chooses to categorize the predictor X into r equi-probable categories. That

is, the postulated regressors are taken to be

T (r) =
(

1, I
{

1

r
≤ Φ(X) <

2

r

}
, . . . , I

{
r − 1

r
≤ Φ(X) < 1

}
,W

)
,

where Φ(·) is the standard normal distribution function. The measurement error, however,

implies that the actual regressors are

U (r) =
(

1, I
{

1

r
≤ Φ(X∗) <

2

r

}
, . . . , I

{
r − 1

r
≤ Φ(X∗) < 1

}
,W

)
.

In this context we investigate what happens when the real relationship between Y and (X,W )

is simply linear. That is,

E(Y |X) = α′S

= α1 + α2X + α3W.

Setting aside concerns about measurement error, it is clear that a better-fitting model will

result as the number of categories r increases. To investigate further, note from Lemma 1 that

ASEM and ASEI can depend only on α2. The various quantities required to compute these

terms via parts (ii) and (iii) of Theorem 1 are given in the Appendix. Figure 2 plots ASE,

ASEM , and ASEI as functions of r, for combinations of τ = 0.25 or τ = 0.75, and ρ = 0.2 or

ρ = 0.8. Note that the vertical scaling of the plots is based on fixing α2 = 1.

In each case illustrated in Figure 2, ASEM decreases with r, to reflect the improved fit that

results from using more categories. This improvement, however, is partly mitigated by ASEI

which increases with r in all cases. The net effect is that while the overall error ASE decreases

with the number of categories, the rate of decrease is less when τ is larger. For instance, in the

τ = 0.75 and ρ = 0.8 scenario there appears to be little benefit in increasing r beyond about

four. Thus another tradeoff is identified: creating more categories improves the fit of the model

but this is partially offset by an increase in the error due to covariate imprecision.
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Figure 2: ASE, ASEM and ASEI as functions of r, the number of categories used for cate-
gorization. The four plots correspond to combinations of τ = 0.25 or τ = 0.75 and ρ = 0.2
or ρ = 0.8. The underlying relationship is such that E(Y |X,W ) is linear in X and W . The
vertical scaling of the plots is based on α2 = 1.

Note also that in comparing the ρ = 0.2 and ρ = 0.8 scenarios when τ = 0.75, ASE is smaller

when ρ is larger, at least when the number of categories is small. Moreover, this difference is

primarily attributable to ASEM rather than ASEI . That is, a larger correlation between X and

W is helpful in obtaining a better fit, as the actual linear effect of X can be better reflected by

the postulated linear effect of W in tandem with the postulated categorized effect of X.

6 A Finite-Sample Decomposition

It is possible to construct a decomposition analogous to Theorem 1 that describes finite samples

and incorporates variability as well as bias. First we establish notation for the finite-sample

case. Let the n× q matrix Ds and the n× p matrices Dt and Du be design matrices such that

the i-th rows of these matrices constitute a random draw from the joint distribution of (S, T, U),

with independence across rows. Let D denote the three matrices collectively, and say the vector
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of responses is distributed as Y |D ∼ N(Dsα, σ
2In).

The decomposition operates on fitted values and their expectations. Let

ν1(Y ;D) = Ds(D
′
sDs)

−1D′sY (15)

be the fitted values arising from a correct regression of Y on S, while

ν2(Y ;D) = Dt(D
′
tDt)

−1D′tY (16)

are the fitted values from an incorrect regression of Y on T . Furthermore, if the actual measured

regressors are U but the resulting coefficients are regarded as describing the relationship between

Y and T , then the envisioned fitted values are

ν3(Y ;D) = Dt(D
′
uDu)

−1D′uY. (17)

For each of (15) through (17), let νi(D) = E{νi(Y ;D)|D} be the expectation of the fitted

values given the design matrices. That is, ν1(D) = Dsα, ν2(D) = Dt(D
′
tDt)

−1D′tDsα, and

ν3(D) = Dt(D
′
uDu)

−1Du
′Dsα.

Working conditionally given the design matrices, the overall average squared error in esti-

mating E(Y |D) = ν1(D) = Dsα by the fitted values ν3(Y ;D) can be defined as

ASE∗ = n−1E
{
‖ν1(D)− ν3(Y ;D)‖2

∣∣∣D} .
The error due to model misspecification alone is defined as

ASE∗M = n−1‖ν1(D)− ν2(D)‖2

= n−1‖{In −Dt(D
′
tDt)

−1D′t}Dsα‖2

= n−1 α′D′s{In −Dt(D
′
tDt)

−1D′t}Dsα,

while similarly the error due to covariate imprecision is

ASE∗I = n−1‖ν2(D)− ν3(D)‖2

= n−1‖Dt{(D′tDt)
−1D′t − (D′uDu)

−1D′u}Dsα‖2.

Finally, the error due to sampling variation is naturally defined as

ASE∗V = n−1E
{
‖ν3(D)− ν3(Y ;D)‖2

∣∣∣M}
= n−1σ2 tr{Dt(D

′
uDu)

−1D′t}.
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In light of Theorem 1, the analogous result for the finite-sample case comes as no surprise.

In particular,

ASE∗ = ASE∗M + ASE∗I + ASE∗V . (18)

It is straightforward to establish (18). The two cross-terms involving v3(D)−v3(Y ;D) are clearly

zero, while {v1(D)− v2(D)}′{v2(D)− v3(D)} = 0 follows from the fact that the second term is

in the column space of Dt while the first term is in the orthocomplement of the column space

of Dt. We also note that taking expectations of all terms in (18) with respect to M yields an

unconditional version of the decomposition.

We apply the decomposition in the missed curvature scenario of Section 3, taking (X,W ) to

have a bivariate normal distribution with standardized marginals and ρ = Corr(X,W ) = 0.75.

Also we set σ2 = V ar(Y |X) = (0.2)2, and n = 100. The coefficients α1 = 0, α2 = 0.5 and

α3 = 0.25 are fixed in (8), while various values of α4 and τ , representing various degrees of

missed curvature and measurement error, are considered. Note that α4 = 0 and τ = 0 yield a

‘strong-signal’ scenario, as the ratio of V arE(Y |X,W ) to V arY is 0.93. Using simulated data,

Table 1 presents the decomposition (18) for each combination of τ = 0, τ = 0.1, τ = 0.25,

τ = 0.5 and α4 = 0, α4 = 0.005, α4 = 0.029, α4 = 0.085. Given that X is standardized, the

values of τ = SD(X∗|X) range from no measurement error in X to 50% measurement error in

X. The four values of α4 are chosen to match the four values of τ by setting ASEI = ASEM via

the expressions given in Section 3. Note that to minimize simulation variability the samples of

(Y,Ds, Dt, Du) for the sixteen scenarios in Table 1 are all constructed by suitable transformation

of the same underlying Monte Carlo samples.

To provide some context for Table 1, residual plots based on the data from each scenario

are also given. In particular, a curved effect for a predictor is commonly detected from a plot of

residuals versus that predictor. Since we are studying the effect of using a noisy surrogate X∗

as a regressor in lieu of X, we plot residuals from the fit of Y to U = (1, X∗,W )′ against X∗.

These appear in Figure 3.

Examining Table 1 and Figure 3 in tandem gives some insight to the potential damage

induced by simultaneous model misspecification and covariate imprecision in practice. For in-

stance, consider the α4 = 0.029, τ = 0.25 scenario. Even though there is considerable measure-

ment error, the misspecification, while not detectable from the residual plot, makes the largest

contribution to the overall error ASE∗. As a more extreme example, consider the α4 = 0.085

scenarios. In the absence of measurement error (τ = 0), such a substantial model misspec-
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α4 τ = 0 τ = 0.1 τ = 0.25 τ = 0.5

0.000 0.0012 0.0013 0.0028 0.0138
(0.00 0.00 1.00) (0.00 0.06 0.94) (0.00 0.59 0.51) (0.00 0.92 0.08)

0.005 0.0013 0.0013 0.0028 0.0138
(0.06 0.00 0.94) (0.06 0.05 0.89) (0.03 0.56 0.41) (0.01 0.92 0.07)

0.029 0.0036 0.0037 0.0050 0.0158
(0.67 0.00 0.33) (0.66 0.02 0.32) (0.47 0.30 0.23) (0.15 0.78 0.07)

0.085 0.0215 0.0216 0.0227 0.0328
(0.94 0.00 0.06) (0.94 0.00 0.06) (0.89 0.06 0.05) (0.62 0.35 0.03)

Table 1: The decomposition (18) for simulated data. For each combination of τ = SD(X∗|X)
and the missed curvature coefficient α4, the upper entry is the overall error ASE∗. The lower
entry comprises the constituent terms (ASE∗M ASE∗I ASE

∗
V ), expressed as proportions of ASE∗.
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Figure 3: Residual plots in the scenarios described by Table 1. In each case the residuals from
the fit of Y to (1, X∗,W )′ are plotted against X∗. The row and column layout matches that of
Table 1.
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ification is clearly indicated by the residual plot. As one might expect, however, the curved

pattern in the residuals becomes less pronounced as τ increases. When there is very substantial

measurement error (τ = 0.5), the residual plot would likely be viewed as ‘passable’ by most.

However, the model misspecification still contributes about twice as much to the overall error

ASE∗ as does this sizeable measurement error. Thus measurement error can deliver a deleteri-

ous ‘double-whammy’. As well as inducing bias in estimated coefficients, it can mask a poorly

specified model which might easily be screened-out by diagnostic procedures in the absence of

measurement error. Indeed, the present results indicate that the latter problem can be a larger

source of error than the former in some situations.

7 Discussion

Consider the two choices of S in Section 3, the two choices of T in Section 4, and Section 5.

An inverse relationship between ASEM and ASEI arises in four of these five scenarios. For

Section 3 and the dichotomized choice of T in Section 4, ASEM and ASEI are inversely related

as the true underlying relationship between the response and possible covariates is varied. In

section 5 the inverse relationship obtains when the analyst’s choice of predictors is varied. The

exceptional case is the continuous choice of T in Section 4, where in fact ASEI does not change

as the underlying relationship is varied. We do not have an overarching explanation for why

an inverse relationship might be typical. The findings sound a cautionary note nonetheless, as

they suggest a “no-free-lunch” principle regarding bias due to model misspecification and bias

due to covariate imprecision.

The findings in Section 6 speak to the practical ramifications of simultaneous model misspec-

ification and covariate imprecision. They show that the bias induced by a substantial amount

of measurement error can be relatively small compared to the bias induced by model misspec-

ification, without that misspecification being readily detected! In fact, the very presence of the

measurement error can make the detection of misspecification more difficult. Thus methods to

correct for measurement error may not be very helpful without evidence that the model linking

the response variable to the unobserved precise predictor is appropriate, and such evidence may

be hard to obtain. On the one hand this speaks to the desirability of nonparametric regression

methods which account for measurement error. On the other hand, this is known to be a difficult

problem related to deconvolution (Fan and Truong 1993, Carroll, Maca and Ruppert 1999).
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Although it is not illuminating in the present context, a more refined decomposition of ASE

than that of Theorem 1 is possible in some situations. In particular, if the chosen predictors T

are all functions of the actual predictors S, then the error arising in estimating the regression

function E(Y |S) by β′T can be viewed as arising from two sources. The first is the differ-

ence between the ‘full’ regression function E(Y |S) = α′S and the ‘reduced’ regression function

E(Y |T ) = α′E(S|T ), while the second is the error in estimating the reduced regression function

by β′T . This leads easily to ASEM = ASEM1 + ASEM2, where

ASEM1 = E([α′{S − E(S|T )}]2)

reflects the loss of information that results from viewing T rather than S as predictors, and

ASEM2 = E[{α′E(S|T )− β′T}2]

reflects the large-sample error in estimating E(Y |T ) = α′E(S|T ) by a linear function of T . Of

course if each component of E(S|T ) happens to be linear in T , then ASEM2 = 0, and ASEM is

entirely due to the loss of information in reducing to T from S.

Appendix

In the missed curvature scenario of Section 3, the only non-zero entry of AM is

(AM)44 = m4 − 1−
m2

3 +m2
2,1 + 2ρm3m2,1

1− ρ2

where mi = E(X i) and mi,j = E(X iW j). On the other hand, AI is given as

AI =
τ 4

(1− ρ2)(1 + τ 2 − ρ2)2


0 0 0 0

(1− ρ2)2 0 (1− ρ2)(m3 − ρm2,1)
0 0

(m3 − ρm2,1)2

 .

In the missed interaction scenario,

(AM)44 = m2,2 −
ρ2(1− ρ2) +m2,1(m2,1 − ρm1,2) +m1,2(m1,2 − ρm2,1)

1− ρ2
,

and

AI =
τ 4

(1− ρ2)(1 + τ 2 − ρ2)2


0 0 0 0

(1− ρ2)2 0 (1− ρ2)(m2,1 − ρm1,2)
0 0

(m2,1 − ρm1,2)2

 .
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In Section 4,

E(SS ′) =

 1 0 0
1 + (π

2
− 1)ω2 ρ

1

 .
For the continuous choice of predictors T = T (C) and U = U (C),

E(TT ′) =

 1 0 0
1 ρ

1

 , (19)

with E(TS ′) = E(TT ′) and E(US ′) = E(TS ′) as well. Finally,

E(UU ′) =

 1 0 0
1 + τ 2 ρ

1

 .

For the dichotomized choice of predictors T = T (D) and U = U (D),

E(TT ′) =


1 1

2
0

1
2

√
1

2π
ρ

1

 ,

E(TS ′) =


1 0 0
1
2

(1− ω)
√

1
2π

+ ω
√

π
8

√
1

2π
ρ

0 ρ 1

 ,

E(UU ′) =


1 1

2
0

1
2

√
1

2π
ρ√

1+τ2

1

 ,
and

E(US ′) =


1 0 0
1
2

(1− ω)
√

1
2π

1√
1+τ2 + ω

√
2π k(τ, ρ)

√
1

2π
ρ√

1+τ2

0 ρ 1

 ,
where

k(τ, ρ) = Pr(X∗ > 0, X > 0)− Pr(X∗ > 0)Pr(X > 0)

= E{Φ(X)I(−∞,0)(X)}

must be evaluated numerically.
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In Section 5, E(SS ′) has the form (19), while calculation of E(TT ′) and E(TS ′) proceeds

easily upon noting that

E
(
X I

{
i

r
< Φ(X) ≤ i+ 1

r

})
= φ(ci)− φ(ci+1)

and

E
(
W I

{
i

r
< Φ(X) ≤ i+ 1

r

})
= ρ{φ(ci)− φ(ci+1)},

where ci = Φ−1(i/r) and φ(·) is the standard normal density function. Similarly, calculation of

E(UU ′) and E(US ′) follows from

E
(
X I

{
i

r
< Φ(X∗) ≤ i+ 1

r

})
=

1√
1 + τ 2

{
φ

(
ci√

1 + τ 2

)
− φ

(
ci+1√
1 + τ 2

)}

and

E
(
W I

{
i

r
< Φ(X∗) ≤ i+ 1

r

})
=

ρ√
1 + τ 2

{
φ

(
ci√

1 + τ 2

)
− φ

(
ci+1√
1 + τ 2

)}
.
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