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Abstract

When a candidate model for data is nonidentifiable, conventional wisdom dictates that
the model must be simplified somehow, in order to gain identifiability. We explore two
scenarios involving mismeasured variables where in fact model expansion, as opposed to
model contraction, might be used to obtain an identifiable model. We compare the merits
of model contraction and model expansion. We also investigate whether it is necessarily a
good idea to alter the model for the sake of identifiability. In particular, we compare the
properties of estimators obtained from identifiable models to those of estimators obtained
from nonidentifiable models in tandem with crude prior information. Both asymptotic
theory and simulations with MCMC-based estimators are used to draw comparisons. A
technical point which arises is that the asymptotic behaviour of a posterior mean from
a nonidentifiable model can be investigated using standard asymptotic theory, once the
posterior mean is described in terms of the identifiable part of the model only.

Keywords: Bayes analysis; identifiability; measurement error; misclassification; nested
models; prior information.

1 Introduction

Say that a particular statistical model with p unknown parameters seems appropriate for a
modelling problem at hand, but this model is not identifiable. That is, multiple values of the
parameter vector lead to the same distribution for the observable data. Conventional wisdom
dictates that the investigator must select a simpler sub-model with fewer than p parameters that
is identifiable, though of course this process of model contraction may lead to a model involving

1



dubious assumptions, or a model which is less realistic in some other way. A less intuitive
approach to gaining identifiability is to make the initial model larger. As we will see, however,
there are natural situations where the initial model has an identifiable super-model with more
than p unknown parameters.

To be more specific, this article considers two inferential scenarios involving mismeasured
variables. The first scenario involves two imperfect schemes for assessing whether or not a study
subject is ‘exposed’, where the error probabilities describing these schemes and the prevalence
of exposure in the study population are unknown. We consider three plausible models in this
context, with nonidentifiable Model A nested within identifiable Model B nested within non-
identifiable Model C. Thus the identifiable Model B might be arrived at by contraction of the
nonidentifiable Model C, or by expansion of the nonidentifiable Model A.

The second scenario involves regression of a continuous response variable on a continuous
explanatory variable, where the explanatory variable is subject to measurement error. Again
we consider a nested sequence of plausible models, with identifiable Model D nested within
nonidentifiable Model E nested within identifiable Model F. Thus if Model E is considered
initially, then either model contraction or model expansion can be used to gain identifiability.

In addition to considering different models, the role of prior information is also investigated
in both scenarios. Particularly, we focus on how helpful a crude subjective prior distribution
can be when faced with a nonidentifiable model. That is, the infusion of prior information into a
nonidentifiable model is considered as an alternative to model contraction or model expansion.

In both scenarios we compare properties of estimators based on the different models, un-
der a variety of actual data-generating mechanisms. The motivation for doing so is curiosity
about two questions. First, is the uncommon strategy of gaining identifiability via model ex-
pansion appealing, particularly in comparison to the common strategy of gaining identifiability
via model contraction. Second, is the conventional wisdom that something must be done to gain
identifiability always sound.

Our comparisons are based on both asymptotic theory and simulation studies. In the former
case, both ‘right-model’ and ‘wrong-model’ asymptotic theory is employed. In the latter case,
Bayes estimators computed via Markov Chain Monte Carlo (MCMC) methods are compared on
simulated data. On the face of it one might think that standard asymptotic theory can shed
no light on the properties of estimators based on nonidentifiable models, so that simulation is
the only possibility for studying the properties of estimators based on Models A, C, and E. On
the contrary, we show that standard asymptotic theory can describe the behaviour of posterior
means arising from nonidentifiable models. In particular, the requisite trick is to use iterated
expectation to re-express the posterior mean in terms of the identifiable part of the model alone.

2 Scenario I

In many epidemiological studies the classification of subjects as ‘unexposed’ or ‘exposed’ cannot
be done perfectly. To mitigate this problem, it is common to employ several different imperfect
classification schemes. For instance, Hui and Walter (1980) give an example involving two
tests (the Mantoux test and the Tine test) for the detection of tuberculosis. Drews, Flanders
and Kosinski (1993) consider both patient interviews and medical records to measure various
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putative binary risk factors in a case-control study of sudden-infant-death syndrome. And
Joseph, Gyorkos and Coupal (1995) consider a study in which both a serology test and stool
examination are used to test for a particular parasitic infection. In addition to the assessment
schemes being imperfect, often the classification probabilities which characterize the degree of
imperfection are not known precisely, although there may be some reasonable prior knowledge
in this regard.

Let E denote the exposure variable (E = 0 for unexposed, E = 1 for exposed), and let T1

and T2 be two imperfect surrogates (or ‘tests’) for E. We consider the realistic scenario in which
the sensitivity pi = Pr(Ti = 1|E = 1) and specificity qi = Pr(Ti = 0|E = 0) of each test are
not known. If we observe (T1, T2) for subjects sampled from the population of interest having
unknown exposure prevalence r, then Model A postulates that

fA(t1, t2|θ) = PrA(T1 = t1, T2 = t2|θ)
= rpt11 (1− p1)1−t1pt22 (1− p2)1−t2 +

(1− r)q1−t1
1 (1− q1)t1q1−t2

2 (1− q2)t2 , (1)

where θ = (p1, p2, q1, q2, r) is the unknown parameter vector. In particular, Model A invokes
the common assumption that the two tests outcomes are independent given the true exposure
status. Clearly Model A is nonidentifiable, as the data comprise a 2×2 table from which at most
three parameters can be estimated consistently, whereas in fact five parameters are unknown.

Starting with Model A, one way to develop an identifiable model is to pre or post-stratify the
population of interest according to some binary trait X which is thought to be associated with
exposure status E. For instance, say random samples of size n1 and n2 are taken from the X = 0
and X = 1 sub-populations respectively. Model B postulates that (1) holds with prevalence
r = r1 in the first sub-population, and with prevalence r = r2 in the second sub-population. As
well, Model B implicitly assumes the the exposure misclassification is nondifferential, in that
(T1, T2) and X are conditionally independent given E. Less formally, the mechanisms which
yield misclassification are assumed to operate identically in the two sub-populations. Model B,
with six unknown parameters θ = (p1, p2, q1, q2, r1, r2), is clearly an expansion of Model A. But
now the data can be summarized into separate 2× 2 tables for each sub-population, so there is
hope of consistently estimating six parameters. Indeed, Hui and Walter (1980) illustrate that
subject to some minor caveats Model B is a ‘regular’ model leading to estimators with standard
asymptotic properties.

The assumption that T1 and T2 are conditionally independent given E may not be reasonable
in a given application. Indeed, it is easy to imagine that T1 and T2 will be positively correlated
given E in many practical settings. Moreover, in the absence of observations on E, the assump-
tion cannot be checked empirically. All the ‘degrees-of-freedom’ are used up in the estimation
of the six-dimensional parameter vector θ. The plausibility of the conditional independence
assumption and the effects of incorrectly invoking it are discussed by Fryback (1978), Vacek
(1985), Brenner (1996), and Torrance-Rynard and Walter (1997).

As illustrated by Dendukuri and Joseph (2001), Bayesian modelling can be used to relax
the assumption that the tests are conditionally independent given the true exposure. In the
present context we construct Model C, an expansion of Model B, by modelling the distribution
of T1, T2|E as

Pr(T1 = a, T2 = b|E = 0) = (1− q1)aq1−a
1 (1− q2)bq1−b

2 + (−1)|a−b|δ0,
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and similarly,

Pr(T1 = a, T2 = b|E = 1) = pa1(1− p1)1−apb2(1− p2)1−b + (−1)|a−b|δ1.

Under this model pi and qi retain their interpretations as the sensitivity and specificity of the
i-th test, but now δ0 = Cov(T1, T2|E = 0) and δ1 = Cov(T1, T2|E = 1) are additional unknown
parameters. In the special case that δ0 = 0 and δ1 = 0 we recover Model B. As scenarios
under which T1 and T2 are negatively associated given E are hard to imagine, we restrict to
δ0 ∈ [0, δMAX(q1, q2)] and δ1 ∈ [0, δMAX(p1, p2)], where δMAX(a, b) = min{a, b} − ab is the
maximal covariance between two binary random variables with ‘success’ probabilities a and b.

For future reference, note that the dependence in Model C can also be expressed in terms of
correlation, which is more interpretable but complicates the requisite mathematical expressions.
Specifically, let

ρ0 = Cor(T1, T2|E = 0)

=
δ0

{q1(1− q1)q2(1− q2)}1/2
,

and

ρ1 = Cor(T1, T2|E = 1)

=
δ1

{p1(1− p1)p2(1− p2)}1/2
,

with the range of dependence now expressed as ρ0 ∈ [0, ρMAX(q1, q2)] and ρ1 ∈ [0, ρMAX(p1, p2)].

Model C, with eight unknown parameters θC = (p1, p2, q1, q2, δ0, δ1, r1, r2), is clearly not
identifiable from the data which are still summarized by two 2× 2 tables. Thus while Model C
may be appealing on the grounds of realism, it is tempting to contract to Model B for the sake
of identifiability.

2.1 Performance of Model B Estimators

The behaviour of estimates generated by fitting Model B to data can be studied via regular
asymptotic theory. It is convenient to restrict the parameter space θ ∈ Θ according to p1+q1 > 1
and p2 + q2 > 1, to avoid the trivial nonidentifiability arising because fA(t1, t2|θ) is unchanged
upon replacing pi with 1− qi, qi with 1−pi, and ri with 1− ri. In practice the restriction is very
mild, as an assessment scheme that is worse than chance, i.e. pi + qi < 1, can usually be ruled
out a priori. While it is cumbersome to write down explicit expressions, there is no difficulty in
evaluating the Fisher information matrix I(θ) exactly (see, for instance, Hui and Walter 1980).
In situations where Model B is correctly specified, a maximum likelihood or Bayes estimate ψ̂
of ψ = ψ(θ) is consistent, with a readily computed asymptotic variance.

Say that data are actually generated under Model B, with the parameter values p1 = 0.8,
p2 = 0.8, q1 = 0.75, q2 = 0.9, r1 = 0.3 − ∆/2 and r2 = 0.3 + ∆/2. For later reference we
refer to these specific values as DGM (i), where DGM stands for data generating mechanism.
For simplicity, and without any real loss of generality, assume that Pr(X = 1) = 0.5 is known,
so that the population exposure prevalence is r = (r0 + r1)/2 = 0.3, which is estimated by
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Figure 1: ARMSE for p̂1, p̂2, q̂1, q̂2 (left panel) and r̂ (right panel) under Model B and DGM (i),
with a sample size of n = 2000. The left side of each panel corresponds to the true parameter
values in DGM (i), with varying values of ∆ = r2− r1. The right side of each panel corresponds
to to data generated under Model C, with ∆ = 0.2 and varying values of ρ = Cor(T1, T2|E =
0) = Corr(T1, T2|E = 1).

r̂ = (r̂1 + r̂2)/2. The left halves of the panels in Figure 1 give the asymptotic root-mean-squared
error (ARMSE) for maximum likelihood or Bayes estimators of the classification probabilities
(p1, p2, q1, q2) and the prevalence r, assuming a large sample size of n = 2000 (arising say from
samples of size n1 = n2 = 1000 from each sub-population). Specifically, the ARMSE is displayed
as a function of ∆, the difference between the prevalences in the two sub-populations.

As ∆ approaches zero each ARMSE diverges to infinity. This is not surprising, as the ‘no free
lunch’ principle dictates that the nonidentifiability in Model A cannot be overcome by simply
dichotomizing the population at random and then using Model B. Mathematically it is clear
that when r1 = r2 the corresponding rows (columns) of the Fisher information matrix I(θ) are
identical, and hence the information matrix is singular in the r1 = r2 limit. What is surprising,
however, is that ∆ need not be very close to zero before each ARMSE is quite large. When
∆ = 0.1 for instance, ARMSE[r̂] is about 0.12, perhaps large enough to render a study of the
population prevalence futile despite the large sample size. Moreover, this is about double the
ARMSE attained when ∆ = 0.2. In general, it appears that designing studies to be analyzed
via Model B is fraught with peril. Unless there is good prior knowledge to suggest that the
sub-populations will have markedly different prevalences, there is a risk of obtaining very poor
estimates even with considerable sample sizes.

The right halves of the panels in Figure 1 gives the ARMSE of estimators based on Model
B when the data are generated under Model C. Thus they describe the impact of incorrectly
assuming conditional independence of T1 and T2 given E. Standard ‘wrong model’ asymptotic
theory (e.g. White 1982) is used to compute the ARMSE in this scenario. In particular, Model B
can be parameterized in terms of ν instead of θ, where ν is comprised of three probabilities which
characterize the distribution of T1, T2|X = 0, along with three probabilities which characterize
the distribution of T1, T2|X = 1. We write ν = h(θ), where the function h() is easily evaluated.
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It is also possible to evaluate h−1(), although the expressions are are extremely cumbersome (Hui
and Walter, 1980). For true parameter values (θ, δ0, δ1) under Model C, we compute ν∗, the
probabilities characterizing T1, T2|X under Model C. Then θ∗ = h−1(ν∗) will be the large-sample
limit of θ̂ obtained when fitting the incorrect Model B to the data. Thus in estimating ψ =
g(θ) the asymptotic bias incurred because of model misspecification is g(θ∗)− g(θ). Moreover,
following White (1982), the asymptotic variance of θ̂ is given as A(θ∗)−1B(θ∗)A(θ∗)−1, where

Aij(θ) = EC
{
∂2 log fB(T1, T2; θ)/∂θi∂θj

}
,

Bij(θ) = EC {∂ log fB(T1, T2; θ)/∂θi · ∂ log fB(T1, T2; θ)/∂θj} ,

with the notation chosen to emphasize that the ‘f ’ inside the expectations is from the incorrect
Model B, while the expectations themselves are with respect to the actual distribution of (T1, T2)
given by Model C. Armed with the asymptotic bias and asymptotic variance of θ̂, we can compute
the ARMSE for ψ̂ = g(θ̂) at a particular sample size.

As an aside, this route to determining the asymptotic behaviour of Model B estimators when
Model C is correct is not fully general. For some Model C parameter values, especially with
larger values of δ0 and δ1, the T1, T2|X probabilities ν∗ can fall outside the Model B parameter
space. That is, ν∗ can lie outside the image under h() of the Model B parameter space for θ. In
such a situation θ∗, the large-sample limit of the Model B based estimator, cannot be determined
as h−1(ν∗). We have not pursued this here, but in such instances numerical methods are required
to determine θ∗ as the value of θ which minimizes the Kullback-Leibler divergence between the
actual distribution of (T1, T2) and the distribution postulated under Model B. A finite-sample
version of this problem can arise from model misspecification and/or sampling variability. For
this reason Drews, Flanders and Kosinski (1993) propose EM algorithm fitting of Model B rather
than the ‘closed-form’ approach of Hui and Walter (1980).

Returning to Figure 1, the right halves of the panels are again based on the DGM (i)
values for (p1, p2, q1, q2, r) with ∆ = 0.2. A common value ρ for both ρ0 and ρ1 is varied, from
ρ = 0 to ρ = 0.5. We note in passing that ρ = 0.5 is quite close to the upper bound of
ρ0 ≤ ρMAX(q1, q2) = 0.577 for the specified values of q1 and q2. Conversely, values up to one are
possible for ρ1, since p1 = p2.

The format of Figure 1 is chosen to contrast the two potential pitfalls of using Model B for
inference. The centre of each panel corresponds to a good situation, in that the sup-population
prevalences are quite disparate (∆ = 0.2), and the assumption of conditional independence is
met (ρ = 0). Moving to the left, the DGM approaches the nonidentifiable Sub-Model A as
∆ decreases to zero. Moving to the right, Model B becomes increasingly misspecified as the
conditional dependence between the two tests increases. Perhaps surprisingly, the increase in
ARMSE to the left tends to be more dramatic than the increase to the right. That is, Model
B being correct but only moderately identified is more damaging than Model B being incorrect
due to conditional dependence between the two tests.

Of course Figure 1 pertains to specific underlying values of (p1, q1, p2, q2, r). To suggest that
the qualitative behaviour is similar for other values, Figure 2 gives ARMSE values for DGM
(ii), defined by p1 = 0.95, p2 = 0.9, q1 = 0.65, q2 = 0.85, r = 0.15. The overall impression is
again that Model B being correct but only moderately identified is more damaging than Model
B being incorrect because of dependence between tests.

The concern about the performance of Model B under moderately small values of ∆ =
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Figure 2: ARMSE for p̂1, p̂2, q̂1, q̂2 (left panel) and r̂ (right panel) under Model B and DGM
(ii). The format is the same as Figure 1.

r2− r1 suggests that dichotomizing the population to gain identifiability is not a panacea. Thus
we consider using Model A for inference, its nonidentifiability notwithstanding. Of course we
cannot hope to obtain reasonable inferences from a nonidentifiable model with a diffuse prior
distribution. We speculate, however, that a crude subjective prior might go some distance
towards producing reasonable inferences. Before looking specifically at Model A, however, we
develop an asymptotic approach to studying the performance of posterior means arising from
nonidentifiable models.

2.2 Asymptotic Behaviour of Posterior Means in Nonidentifiable
Models

The asymptotic behaviour of Bayes estimates arising from nonidentifiable models has received
very little attention in the literature. Neath and Samaniego (1997), Gustafson, Le and Saskin
(2001) study the issue in the context of specific models. Here we describe a more general
approach.

To gain insight into a nonidentified model we seek to reparameterize from the original pa-
rameter vector θ to φ = (φI , φN) in such a way that f(data|φ) = f(data|φI). That is, the
distribution of the data depends only on the identifiable part of the parameter vector φI , and
not on the nonidentifiable part φN . We call such a parameterization transparent, as it is intended
to make apparent the impact of nonidentifiability. Of course we can commensurately transform
the prior distribution f(θ) as specified in the original parameterization to f(φ) in the trans-
parent parameterization. Indeed, following Dawid (1979), it is useful to think of the prior in
terms of the marginal density f(φI) and the conditional density f(φN |φI), so that immediately
we have

f(φI |data) ∝ f(data|φI)f(φI), (2)

f(φN |φI , data) = f(φN |φI). (3)
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Thus (2), the posterior marginal distribution for φI , is typically governed by the usual asymptotic
theory which applies in the identifiable case. On the other hand, (3), the posterior conditional
distribution for φN |φI , is identical to the prior conditional distribution. That is, there is no
Bayesian learning whatsoever about the conditional distribution of φN |φI . We emphasize, how-
ever, that a natural or obvious prior for θ will often lead to prior dependence between φI and
φN , and consequently

f(φN |data) =
∫
f(φN |φI)f(φI |data)dφI

6= f(φN).

That is, marginally there can be some learning about φN . We refer to this as indirect learning,
as it is learning about φN that results only because of learning about φI . We also note that
asymptotically (2) will concentrate to a point mass at the true value of φI , so that the posterior
marginal distribution of φN will tend to the (non-degenerate) prior conditional distribution (3)
evaluated at this value of φI .

Now say that with respect to the transparent parameterization the parameter of interest can
be expressed as ψ = g(φ) = g(φI , φN). Then

E(ψ|data) =
∫ ∫

g(φI , φN)f(φI , φN |data) dφN dφI

=
∫ ∫

g(φ, λ)f(φN |φI) dφN f(φI |data) dφI

= E(g̃(φI)|data),

where

g̃(φI) =
∫
g(φI , φN)f(φN |φI)dφN .

In particular, the posterior mean of interest is now expressed as a posterior mean in the identi-
fiable model parameterized by φI alone. Thus under weak regularity conditions its asymptotic
behaviour will be described by the the usual asymptotic theory applied to this model. That is,
if the model is correct and if an iid sample of size n yields ψ̂n = E(ψ|data), then

n1/2{ψ̂n − g̃(φI)} ⇒ N
[
0, {g̃′(φI)}T I(φI)

−1{g̃′(φI)}
]
.

Moreover, the RMSE incurred by estimating ψ with E(ψ|data) at a given sample size n can be
approximated as

ARMSE =
[
{g̃(φI)− g(φI , φN)}2 + n−1{g̃′(φI)}T I(φI)

−1{g̃′(φI)}
]1/2

, (4)

where the first term describes the asymptotic bias and the second term describes the asymptotic
variance. Although it is trivial to establish, this approach to quantifying the frequentist perfor-
mance of a posterior mean in a nonidentified model does not seem to have been used previously
in the literature.
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Figure 3: Prior distributions for the probability of correct classification. The solid curve is the
Beta(18,4) density function, and the dotted curve is the Beta(10,1) density function

2.3 Performance of Model A Estimators

Investigators often have a rough idea about the extent of the mismeasurement in a mismeasured
variable scenario. Say, for instance, that in Scenario I the investigators are comfortable with an
assessment that the two tests are ‘pretty good, but not perfect’. This might be encapsulated
by assigning the same prior distribution to each of (p1, p2, q1, q2). As an illustration, consider
assigning a Beta(18, 4) prior distribution to each of these parameters independently, along with
the prior r ∼ Unif(0, 1) for the population prevalence. For later reference we refer to this
prior as prior (i). Also for reference, the Beta(18, 4) density function appears in Figure 3.
The crudeness in this prior specification derives in part from the inherent uncertainty in the
Beta(18, 4) distribution, but more from the lack of any discrimination between the two tests, or
any discrimination between the sensitivity and specificity of a single test. In the absence of any
very substantive prior knowledge, the four probabilities of correct classification which govern
the two tests are treated interchangeably.

For Model A we obtain a transparent parameterization φ = (φI , φN) by taking

φI,1 = rp1p2 + (1− r)(1− q1)(1− q2),

φI,2 = rp1(1− p2) + (1− r)(1− q1)q2,

φI,3 = r(1− p1)p2 + (1− r)q1(1− q2),

which directly determine the distribution of (T1, T2). It is then convenient to complete the
parameterization by taking φN = (r, p1). The prior density f(φ) is determined by transformation
of prior (i) in the original parameterization. In doing so it is quite messy to determine the
requisite Jacobian of the φ → θ mapping directly. Thus we work with the simply determined
Jacobian of the θ → φ mapping instead, and use implicit differentiation. The net result is that
we can easily evaluate the prior density f(φ) at any given point, but it is not simple to give an
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expression for this density.

As in Section 3.1 we focus on r as the parameter of interest. The posterior mean of r = φN,1
is identically the posterior mean of

g̃(φI) =
∫ ∫

φN,1f(φN |φI) dφN,1 dφN,2

=

∫ ∫
φN,1f(φI , φN)dφN,1dφN,2∫ ∫
f(φI , φN)dφN,1dφN,2

(5)

with respect to the identifiable sub-model parameterized by φI alone. Unfortunately, g̃ cannot
be evaluated in closed-form. We can, however, using two-dimensional numerical integration to
evaluate both the numerator and denominator integrals. Thus we can compute g̃(φI)−g(φI , φN),
the asymptotic bias incurred by E(r|data) under Model A as an estimator of r.

Of course we also need to evaluate the first derivatives of g̃(φ) in order to determine the
asymptotic variance of E(r|data), as in (4). Analytic differentiation of (5) is problematic because
of the lack of a closed-form expression for f(φ) alluded to above. Hence we content ourselves
with numerical differentiation, for instance evaluating both g̃(φ) and g̃(φ + ε(1 0 0)) using the
same quadrature points, in order to approximate ∂g̃(φ)/∂φ1. In doing so we take care to check
that ε is small enough and the number of quadrature points is large enough to obtain stable
approximations to the derivatives. We also note that we are interested in large sample sizes at
which the asymptotic variance is small relative to the asymptotic bias, hence exacting precision
in computing the derivatives is not required. Thus we can evaluate the ARMSE (4) in the
present context, albeit with some numerical effort.

We re-consider the DGM (i) parameter values given in Section 3.1. With prior (i) and a
sample size of n = 2000 we compute ARMSE = 0.015 for estimating the prevalence r. This
compares very favourably to the corresponding ARMSE values for Model B appearing in Figure
1, being considerably smaller when ∆ = r2−r1 is large, and very much smaller when ∆ is small.
Even at this large sample size, infusing crude prior information into Model A may be preferable
to dichotomizing the population and using Model B for the sake of identifiability.

Of course this comparison may reflect some luck in choosing a crude prior that happens to
yield a small asymptotic bias for the DGM (i) parameter values. Thus we consider a second prior
under which all four classification probabilities are assigned Beta(10,1) prior distributions. This
prior, henceforth referred to as prior (ii), has a much different shape as indicated in Figure 3,
though it still reflects a crude notion of the two tests being good but perhaps not perfect. It does
turn out that the posterior mean of r performs less well under prior (ii), with ARMSE = 0.037.
However, this is still quite favourable relative to the Model B performance displayed in Figure
1, especially when ∆ = r2 − r1 is not very large.

We also consider DGM (ii) given in Section 3.1. With this DGM we obtain ARMSE = 0.079
with prior (i), and ARMSE = 0.050 with prior (ii). In the former case this is better than the
Model B performance given in Figure 2 if ∆ is less than about 0.1, and in the latter case it is
better if ∆ is less than about 0.15. Again, crude prior information infused into Model A can
guard against the small ∆ pitfall associated with the Model B estimator.
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DGM MODEL PRIOR BIAS RMSE (SIM SE) COV ALEN
(i) A (i) -0.012 0.0186 (0.0009) 100% 0.13

A (ii) -0.032 0.0366 (0.0012) 100% 0.19
B unif. 0.047 0.0638 (0.0028) 93% 0.22
B (i) -0.005 0.0208 (0.0010) 98% 0.12

(ii) A (i) 0.074 0.0755 (0.0011) 4% 0.11
A (ii) 0.050 0.0536 (0.0013) 91% 0.15
B unif. 0.122 0.1332 (0.0038) 23% 0.22
B (i) 0.069 0.0717 (0.0015) 6% 0.11

Table 1: Performance of four posterior means for r in a simulation study. Performance is
summarized by bias and RMSE, along with the coverage (COV) and average length (ALEN) of
the nominal 80% equal-tailed credible interval. These quantities are estimated via 200 simulated
data sets. In the case of RMSE, a simulation standard error is also given. The upper-half of the
table concerns data generated under DGM (i), the lower-half concerns DGM (ii). In both cases
∆ = r2 − r1 = 0.7, and n = 2000.

2.4 Simulation Comparisons in Scenario I

2.4.1 Performance of Model A and B estimators

We carry out a small simulation study to augment the asymptotic comparisons made thus far.
We consider both DGM (i) and DGM (ii) introduced in Section 3.1, with the difference between
sub-population prevalences taken to be ∆ = 0.07. This corresponds to a setting where there is a
practical difference between the sub-population prevalences but the asymptotic analysis suggests
that the difference may not be large enough to yield good estimates. We simulate 200 datasets
under each DGM, and for each dataset we estimate the prevalence r using Model A with prior
(i), Model A with prior (ii), Model B with uniform priors on all six parameters, and Model B
with prior (i) suitably extended [i.e. assigns a uniform distribution to (r1, r2)]. Each estimate is
obtained from 25000 Gibbs sampler iterations after 1000 burn-in iterations. Under both Models
A and B the Gibbs sampler is simple to implement once the parameter space is expanded to
include the unobserved true exposure status of the subjects, along the lines of Joseph, Gyorkos,
and Coupal (1995) or Johnson, Gastwirth and Pearson (2001), for instance. The simulation
results are summarized in Table 1.

As an aside, our informal monitoring of the simulation runs indicates that the mixing per-
formance of the Gibbs sampler in Models A and B is tolerable but not ideal. Gelfand and Sahu
(1999) note that the Gibbs sampler can mix poorly in posterior distributions based on noniden-
tifiable likelihoods, and this appears to be an issue of some concern in the present situation, both
for nonidentifiable Model A, and moderately identified Model B. While the MCMC sample size
of 25000 seems to yield tolerable mixing for the purposes of this simulation study, there is some
possibility of slightly improving the reported performance in Table 1 by either further increasing
the MCMC sample size or by choosing a different MCMC algorithm in light of the identifiability
issue. For an example of designing an MCMC algorithm to work well in a nonidentified problem
similar to Model A, see Gustafson, Le and Saskin (2001).
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In examining Table 1, note first that the empirical RMSE observed for EA(r|data) agrees
quite closely with the asymptotic RMSE, for both choices of prior and both choices of DGM.
Thus the asymptotic analysis of the posterior mean under a nonidentified model is reflecting
actual estimator performance. On the other hand, it is clear that even at n = 2000 the Model
B asymptotics have not fully ‘kicked in’ yet. For DGM (i) the empirical RMSE for EB(r|data)
under the flat prior is far smaller than the asymptotic value given in Figure 1. Moreover, the
empirical RMSE is clearly very sensitive to the choice of a flat prior versus prior (i), though
asymptotically the prior does not matter. Thus another aspect of the ‘moderate ∆’ problem has
emerged. Even though Model B is governed by regular asymptotics, if r1 and r2 are moderately
close together the asymptotics may not yield a good approximation to the actual estimator
performance unless the sample size is ridiculously large.

In comparing the RMSE values in Table 1 we see that Model A with either crude prior yields
a lower RMSE than Model B with a flat prior. On the other hand, Model B with prior (i) yields
very similar performance to Model A with prior (i). Put succinctly, in this scenario the key to
successful inference is a reasonable prior. Whether or not identifiability obtains seems to be of
little import.

With regard to the credible intervals described in Table 1, we simply note that extreme
under-coverage and over-coverage arises. Of course with a nonidentifiable model there is no rea-
son to expect Bayesian credible intervals to have approximately matching frequentist coverage.
Theory dictates that the credible intervals from identifiable Model B have asymptotic matching
frequentist coverage, yet with DGM (ii) we see extreme under-coverage. Again this speaks to
the asymptotics not yet being accurate for Model B, even with n = 2000.

2.4.2 Bayes Performance

Our asymptotic and simulation comparisons thus far have considered average performance of
estimators in repeated sampling with fixed underling parameter values in the true model. For
several reasons we now turn attention to average performance across different underlying pa-
rameter values. One reason for so doing is to verify that our findings are not overly sensitive to
the parameter values which have been arbitrarily chosen for the sake of illustration. Second, we
wish to contrast the frequentist coverage of credible intervals with their Bayesian coverage.

We take the decision-theoretic point of view that nature generates parameter values (and
consequently datasets) from a prior distribution, while the investigator uses a possibly different
prior distribution to construct a posterior distribution. For each choice of nature’s prior we
simulate 200 datasets, in each instance first drawing a parameter vector and then simulating a
dataset of size n = 2000 under Model B. Bearing in mind that nature’s prior assigns a uniform
distribution to (r1, r2), ∆ = r2− r1 has a symmetric triangular-shaped prior density on (−1, 1).
For each dataset we compute the posterior mean and the 80% equal-tailed credible interval for
the prevalence r using three different model-prior combinations: Model A with prior (i), Model
A with prior (ii), and Model B with a flat prior. The results appear in Table 2.

Since we are now considering average performance across small and large underlying values
of ∆, we no longer expect to see Model A with a crude prior substantially outperform Model B
with a flat prior. Indeed, when Nature uses prior (i), all three Model-Prior combinations results
in a similar RMSE for estimating r. And when nature uses prior (ii), Model B with a flat prior
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Nature’s Investigator’s
Prior Model Prior RMSE COV ALEN

(i) A (i) 0.057 77% 0.14
A (ii) 0.063 90% 0.21
B unif. 0.065 82% 0.12

(ii) A (i) 0.043 62% 0.07
A (ii) 0.047 82% 0.11
B unif. 0.025 80% 0.06

Table 2: Bayes performance of r estimators under various settings. Nature employs either prior
(i) or prior (ii) to generate 200 datasets under Model B. The investigator uses either Model A
with prior (i), Model A with prior (ii), or Model B with a uniform prior to obtain a posterior
distribution for r. The RMSE of the posterior mean and the coverage and average length of the
80% equal-tailed credible interval are reported.

has a lower RMSE than Model A with either crude prior. Thus in aggregate the advantage of
identifiability which arises when ∆ is quite large slightly outweighs the benefit of crude prior
information. Of course this does not mitigate the fact that estimates generated from Model B
with a flat prior can be quite poor for datasets generated under small values of ∆. Figure 4
plots |r̂− r| versus |∆| in the various scenarios considered in Table 2. Clearly the absolute error
varies much less with ∆ under Model A and a crude prior than under Model B with a flat prior,
especially when nature employs prior (i).

Of course if nature and the investigator use the same prior then credible intervals will have
exactly their nominal coverage, irrespective of whether the model is identifiable or not. The
results in Table 2 are in accord with this fact. When the wrong crude prior is used, the coverage
varies, though the deviations from nominal coverage are much less extreme than was exhibited
for frequentist coverage in Table 1.

2.4.3 Performance of Model C Estimators

We briefly consider fitting Model C to data, using a uniform prior on (p1, p2, q1, q2, r1, r2) along
with a crude prior on (δ0, δ1|p1, p2, q1, q2, r1, r2) that reflects a belief of ‘not too much’ dependence
between the two tests given the true exposure status. Specifically, δ0 is assigned an exponential
distribution with rate k(q1, q2), truncated to the interval [0, δMAX(q1, q2)]. Similarly, δ0 is as-
signed an exponential distribution with rate k(p1, p2), truncated to the interval [0, δMAX(p1, p2)].
To give this prior an interpretation in terms of downweighting higher correlation between T1

and T2 given E, we take k(a, b) = c/[{a(1−a)b(1− b)}1/2]. Then, for instance, a value of δ0 cor-
responding to conditional correlation ρ0 has a prior density which is exp(−cρ0) times the prior
density of δ0 = 0 which corresponds to ρ0 = 0. For the sake of illustration we take c = 4 log 4,
so that ρi = 0.25 is four times less likely a priori than ρi = 0 in this sense.

The investigation in Section 2.1 suggests that estimation of prevalence using Model B is
adversely affected by between test correlation under DGM (ii), but not under DGM (i). Thus we
simulate data under DGM (ii) to see if fitting Model C can ameliorate this problem. Specifically,
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Figure 4: Absolute error |r̂− r| versus absolute difference in sub-population prevalences |∆| for
the simulated datasets in Section 2.4.2.

we assign a common value ρ to both ρ0 and ρ1, and simulate data under ρ = 0, ρ = 0.125, and
ρ = 0.25. The results appear in Table 3. We see that in the absence of correlation the Model C
estimator is worse than the Model B estimator by about a factor of two in terms of RMSE, and
by about a factor of three in terms of the length of credible interval. As the correlation increases
the RMSE discrepancy decreases, but does not disappear, while the difference in credible interval
length persists. The advantage of using Model C when correlation is in fact present is a better
coverage rate, as one might expect from a procedure which admits the possibility of positive
correlation.

While brevity precludes a full description of the MCMC algorithm used to fit Model C,
we note that the algorithm was designed to limit the impact of nonidentifiability on MCMC
performance. Specifically, (q1, q2, δ0) is updated simultaneously given the other parameters and

Model B Model C
ρ RMSE COV ALEN RMSE COV ALEN
0 0.033 72% 0.070 0.074 93% 0.230
0.125 0.064 4% 0.070 0.093 74% 0.230
0.25 0.093 0% 0.070 0.101 23% 0.200

Table 3: Comparison of prevalence estimators based on Models B and C, with the prior distri-
butions described in Section 2.4.3. The three rows correspond to DGM (i) with three different
underlying values of ρ, the conditional correlation of T1, T2|E for both values of E. For the
posterior mean of r under both models, the RMSE, and the coverage (COV) and average length
(ALEN) of the nominal 80% equal-tailed are reported, based on 200 simulated data sets of sam-
ple size n = 2000. Each posterior distribution is based on 25000 MCMC iterations after 1000
burn-in iterations.
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the true exposure status, as is (p1, p2, δ1). Thus our approach to fitting Model C differs from
that of Dendukuri and Joseph (2001), both in the prior downweighting of higher correlations
and in the approach to MCMC fitting. We still find that for some datasets, particularly those
generated under high correlations, that our MCMC algorithm can mix somewhat poorly. Again,
more research on good MCMC algorithms for nonidentified problems is required.

3 Scenario II

Our second scenario involves a continuous response variable and a continuous predictor variable
subject to measurement error. Let Y be the response variable, let X be the unobservable
predictor variable of interest, and let X∗ be the observable surrogate variable for X. A typical
normal measurement error model might postulate that the joint distribution of (X∗, Y,X) follows

X∗|X, Y ∼ N(X, rλ2),

Y |X ∼ N(β0 + β1X, σ
2),

X ∼ N(µ, λ2).

We refer to this model as Model E. Note that this model invokes the common assumption of
nondifferential measurement error, as X∗ and Y are conditionally independent given X. Note
as well that the given parameterization makes r = V ar(X∗|X)/V ar(X) interpretable as the
measurement error variance expressed as a fraction of the variance in the predictor itself.

Of course Model E implies a joint distribution for the observable quantities (Y,X∗), and
thus yields a likelihood function. However, it is well known that if all six parameters θ =
(β0, β1, σ

2, µ, λ2, r) are unknown then the model is nonidentifiable. Intuitively, one can consis-
tently estimate only five parameters: an intercept, slope and residual variance describing the
distribution of Y |X∗, along with a mean and variance describing the distribution of X∗. There-
fore, contracting the model by taking the value of one parameter to be known is a route to
identifiability. For instance, if enough is known about the measurement error process then r
might be presumed known. We refer to the model obtained by fixing the value of r as Model D.

An alternate route to gaining identifiability is through model expansion. In a recent paper,
Huang and Huwang (2001) demonstrate that the model

X∗|X,Y ∼ N(X, rλ2),

Y |X ∼ N(β0 + β1X + β2X
2, σ2),

X ∼ N(µ, λ2),

is identifiable, even if all seven parameters θ = (β0, β1, β2, σ
2, µ, λ2, r) are unknown. Hence-

forth we refer to this model as Model F. Initially it seems remarkable that replacing the linear
regression function in Model E with the quadratic regression function in Model F leads to identi-
fiability. The key is that under Model F V ar(Y |X∗) is no longer constant. It is now a quadratic
function of X∗. Roughly speaking then, we can consistently estimate two parameters describing
V ar(Y |X∗), three parameters describing E(Y |X∗), and two parameters describing the marginal
distribution of X∗. Unfortunately, the distribution of (Y,X∗) implied by Model F does not have
a closed-form, and therefore one cannot readily evaluate the Fisher information matrix in order
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to study the asymptotic behaviour of estimates generated by Model F. However, Model F can
be fit to data with iterated algorithms, including MCMC algorithms.

Of course identifiable Model F reduces to nonidentifiable Model E when β2 = 0. Conse-
quently, it may not be wise to use Model F if one suspects that β2 is close to zero. Alternatively,
if there is some prior information about r available, one might use Model E, notwithstanding its
lack of identifiability. Or to avoid the specification of a prior one might simply fix r at a ‘best
guess’ value, and use Model D.

3.1 Performance of Model E Estimators

For Model E a transparent parameterization φ = (φI , φN) is obtained if we take the components
of φI to be

β∗0 = β0 + µβ1/(1 + r),

β∗1 = β1/(1 + r),

σ2
∗ = σ2 + β2

1λ
2r/(1 + r),

µ∗ = µ

λ2
∗ = λ2(1 + r),

while φN = r. Then the distribution of the observable data (X∗, Y ) depends on φ only through
φI according to

Y |X∗ ∼ N(β∗0 + β∗1X
∗, σ2
∗),

X∗ ∼ N(µ∗, λ2
∗).

The developments of Section 2.2 can be applied to study the asymptotic performance of
posterior means arising from Model E. As an illustrative example, suppose the analyst assigns
independent priors to the six original parameters, specifically β0 ∼ N (0, 1), β1 ∼ N (0, 1),
σ2 ∼ IG(0.5, 0.5), µ ∼ N (0, 1), λ2 ∼ IG(0.5, 0.5), and r ∼ Beta(α1, α2). The use of standard
normal priors might be appropriate if the data are standardized prior to analysis, while the
choice of hyperparameters for the inverse gamma distributions can be interpreted as giving ‘unit-
information’ priors, roughly in the spirit of Kass and Wasserman (1995). We also consider three
choices of hyperparameters for the prior on r. Prior (i) uses (α, β) = (1, 1), i.e. in the absence of
any subjective knowledge r is assigned a uniform prior. Prior (ii) uses (α, β) = (7.6, 14.1), giving
E(r) = 0.35, SD(r) = 0.10, while the more concentrated prior (iii) uses (α, β) = (24.9, 58.1),
giving E(r) = 0.30, SD(r) = 0.05.

We consider what happens when the data-generating mechanism involves the parameter
values β0 = 0, β1 = 1, σ2 = 0.25, µ = 0, λ2 = 1, r = 0.25. Note that the true value of r is one
standard deviation below the mean with respect to both priors (ii) and (iii). Thus in a rough
sense we can view these priors as being ‘typically’ representative of the truth, though of course
prior (iii) represents stronger knowledge about r than does prior (ii).

Following Section 2.2, the key to describing the asymptotic behaviour of Model E estimators
is the prior distribution of φN |φI . In the present context it is easy to check that the Jacobian
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Figure 5: Prior (dashed curve) and limiting posterior (solid curve) densities for r under Model
E. The true value of r is 0.25, while the true values of the other parameters are given in the
text.

of the φ→ θ mapping is 1, and consequently

f(r|β∗0 , β∗1 , σ2
∗, µ

∗, λ2
∗) ∝ fN(β∗1(1 + r))fIG(σ2

∗ − r(β∗1)2λ2
∗)fIG(λ2

∗/(1 + r)) ×
rα1−1(1− r)α2−1I(0,m(β∗1 ,σ

2
∗,λ

2
∗))

(r), (6)

where fN() is the N (0, 1) density function, fIG() is the IG(0.5, 0.5) density function, and
m(β∗1 , σ

2
∗, λ

2
∗) = min[σ2

∗/{(β∗1)2λ2
∗}, 1]. Thus for a given quantity of interest ψ = g(φ) one can

easily evaluate both the value and the first derivatives of

g̃(β∗0 , β
∗
1 , σ

2
∗, µ

∗, λ2
∗) =

∫
g(β∗0 , β

∗
1 , σ

2
∗, µ

∗, λ2
∗, r)f(r|β∗0 , β∗1 , σ2

∗, µ
∗, λ2
∗) dr

via one-dimensional numerical integration. Thus the bias and asymptotic variance of ψ̂ =
E(ψ|data) as in (4) are readily evaluated.

Of course we can interpret (6) evaluated at the true value of φI as the large-sample limiting
posterior density of r. For each prior (i) through (iii) the prior density of r and the limiting
posterior density of r under the illustrative DGM appear in Figure 5. In the case of the uniform
prior (i) there is a surprising amount of indirect learning about r. There is slightly less such
learning under prior (ii), and almost none at all under the sharper prior (iii).

To be more specific, consider estimating r and β1 by their posterior means. For priors (i)
through (iii) the asymptotic bias, variance and RMSE corresponding to a sample size of n = 250
are given in Table 4. As we might expect, both the bias and variance of r̂ decrease as the prior
distribution for r improves. The surprising feature, which relates back the indirect updating
witnessed in Figure 5, is that the performance of r̂ based on the flat prior (i) is not terrible,
either in absolute terms, or relative to priors (ii) and (iii). For the sake of comparison Table 4
also gives the RMSE if Model D is employed, with the fixed value of r taken to be the prior mean
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r̂ β̂1

PRIOR BIAS SD RMSE (RMSE-D) BIAS SD RMSE (RMSE-D)
(i) -0.056 0.036 0.066 (0.250) -0.045 0.038 0.059 (0.208)
(ii) 0.044 0.028 0.052 (0.100) 0.036 0.041 0.055 (0.095)

(iii) 0.040 0.008 0.041 (0.050) 0.032 0.046 0.056 (0.064)

Table 4: Asymptotic bias and variance of posterior means under Model E. Results are given for
both r̂ = E(r|data) and β̂1 = E(β1|data), under priors (i), (ii) and (iii) described in the text.
The approximate standard deviation (SD) and RMSE are based on a sample size of n = 250.
The RMSE incurred under Model D, if r is assumed known and equal to the prior mean, also
appears in parentheses. The underlying parameter values are β0 = 0, β1 = 1, σ2 = 0.25, µ = 0,
λ = 1, r = 0.25.

of r. For instance, with prior (i) we simply have r̂ = 0.5, regardless of the data. The RMSE
under Model E with a full prior is consistently lower than under Model D with a corresponding
best guess, with the difference being very large in some cases. Thus it is clearly worthwhile to
formulate a prior and use Model E rather than simply fix r at a ‘best guess’ value in Model D,
in order to reap the benefit of indirect learning about r.

Table 4 also shows that the bias in estimating β1 decreases as the prior distribution for r
improves. In terms of RMSE, however, this improvement is offset by a corresponding increase
in variance. To understand this, note that in terms of the transparent parameterization, β1 =
β∗1(1 + r). The asymptotic variance of r̂ decreases as the prior improves, and of course the
asymptotic variance of β̂∗1 is unaffected by the prior. However there is a negative asymptotic
covariance between the two, which decreases in magnitude as the prior improves fast enough to
cause the slight increase overall. Surprisingly, then, we can estimate β1 about as well using the
flat prior (i) as we can with the sharp prior (iii).

3.2 Performance of Model F Estimators

Model F, while identifiable, does not have a closed-form Fisher information matrix. Thus we
use simulation to evaluate the performance of Model F estimators. We extend the DGM used
above by taking β0 = 0, β1 = 1, σ2 = 0.25, µ = 0, λ2 = 1, r = 0.25 as before, and considering
(i) β2 = 0, (ii) β2 = 0.125, and (iii) β2 = 0.25. The latter value is deliberately chosen to
maximize the curvature of the true regression function subject to the function being monotone
on the interval from µ − 2λ = −2 to µ + λ = 2 containing the bulk of the X distribution. To
be more specific, it is easy to verify that the regression function will be monotone on (−c, c) if
|β2| ≤ (2c)−1|β1|. Since we expect many relationships of practical interest to be monotone, in a
practical sense DGM (iii) represents an extreme degree of curvature.

Under each DGM (i) through (iii) we simulate 200 datasets. For each dataset posterior
means and credible intervals for r and β1 are computed, under each prior (i) through (iii). The
results are summarized in Table 5. We omit details of the relatively straightforward MCMC
algorithm used to fit Model F, but note that this algorithm seems to mix quite well in most
situations, but less well in the case of DGM (i) and prior (i), i.e. no curvature and no prior
information. As mentioned earlier, this is not surprising in light of other MCMC experience
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estimating r estimating β1

DGM DGM
Prior (i) (ii) (iii) (i) (ii) (iii)

(i) RMSE 0.064 0.083 0.080 0.055 0.064 0.062
ALEN 0.337 0.276 0.212 0.274 0.227 0.185

COV 0.970 0.910 0.795 0.980 0.925 0.855

(ii) RMSE 0.055 0.062 0.063 0.052 0.056 0.056
ALEN 0.202 0.187 0.165 0.189 0.178 0.167

COV 1.000 0.870 0.810 0.960 0.915 0.885

(iii) RMSE 0.039 0.041 0.041 0.051 0.051 0.051
ALEN 0.119 0.116 0.109 0.152 0.150 0.151

COV 1.000 0.900 0.805 0.885 0.860 0.875

Table 5: Performance of Model F posterior distribution in estimating r and β1. DGMs (i)
through (iii) correspond to increasing curvature in the regression function, and priors (i) through
(iii) correspond to increasing prior information about r, as described in the text. Under each
condition the RMSE of the posterior mean, as well as the average length (ALEN) and coverage
(COV) of the 80% equal-tailed credible interval are reported, based on 200 simulated datasets
of size n = 250. Each posterior mean and credible interval is computed using 20000 MCMC
iterations after 1000 burn-in iterations.

with nonidentified or weakly identified scenarios.

In examining Table 5 we see that for both estimands increased curvature in the regression
function leads to shorter credible intervals with closer to nominal coverage. Thus there is a
benefit associated with the degree of identifiability. On the other hand, the RMSE performance
of the posterior means in fact tends to increase somewhat as the curvature increases. Given
this, and given that DGM (iii) represents an extreme degree of curvature in the sense described
above, we conclude that this benefit is quite modest.

Table 5 also indicates that when there is no curvature (i.e. Model E is in fact correct), the
Model F performance is very similar to the Model E performance quantified in Table 4. On
the other hand, the RMSE performance of the estimators is more favourably affected by an
improved prior distribution when curvature is present than when it is absent.

4 Discussion

The conventional view of identifiability might be crudely summarized as ‘identifiability good,
nonidentifiability bad’. The findings in this paper, however, suggest that a more nuanced view
be adopted. We have seen that it may not take very much prior information to yield reasonable
inferences in a nonidentified model, and we have seen that it may take ridiculously large sample
sizes and/or underlying parameter values which are very far from a nonidentifiable sub-model
to yield reasonable inferences in an identifiable model. These issues are particularly germane in
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problems involving measurement error and misclassification, where lack of knowledge about the
extent to which variables are mismeasured often raises questions about identifiability.

We have seen that there can be potential for considerable ‘indirect’ Bayes learning about a
nonidentifiable parameter. This speaks in favour of assigning a crude prior to such a parameter
if possible, rather than fixing its value at a ‘best guess’ value. In Scenario II, for instance,
Model E with a crude prior substantially outperforms Model D with a corresponding best guess.
The use of such a prior might be regarded as ‘soft’ model contraction, whereas presuming a
subset of the parameters to be known is a ‘hard’ contraction. While the development in Section
2.2 is very simple, it may come as a surprise that one can use standard asymptotic theory to
describe the performance of estimators obtained from a nonidentifiable model and a particular
prior distribution.

A limiting feature of our investigation is the inability to make conclusions which hold broadly
over large ranges of underlying parameter values. In the case of nonidentifiable models, estimator
performance must be evaluated on a ‘prior by prior’ and ‘DGM by DGM’ basis, and substantial
variation can arise. Similarly, if an identifiable model is obtained by expanding a nonidentifiable
model, performance can vary considerably with the distance of the underlying parameter values
in the identifiable model from the sub-model comprised of the original nonidentifiable model.
Thus in either case we have troubling design issues in scenarios similar to those studied here.
Further research is needed to make general recommendations about study design and analysis
in specific scenarios.
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