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Abstract:
This paper describes a conceptual framework within which models can be developed

for predicting the exposure to specified pollutants, of a randomly selected member of a
designated population. Such predicted exposures can in turn be used for such things as the
analysis of their impacts on human health. The model uses randomly selected time-activity
patterns of individual members of the population to determine exposure variations. It can
answer questions like: (i) what fraction of the population sustained ‘high’ levels of exposure,
(ii) how many sustained such exposures for say 10 days in a row? (iii) what impact will a
proposed new set of air quality criteria have on population members under the age of 4?
Over the age of 65?

The framework is developed by abstracting components (‘building blocks’) of common
exposure prediction models for risk assessment along with their linkages, stochastic and
structural. Practical considerations in implementing the framework to construct models are
considered, including human time-activity patterns and their relationship to environmental
factors that help determine such patterns. For example, in summer people may tend to stay
indoors in warm weather, while in winter the reverse may be true. Thus, on summer days
indoor sources of the hazardous substance may be more important in determining exposures
than outdoor sources.

The immediate implementation of the above framework is a computing platform referred
to as ‘pCNEM’ that can be accessed by registered users through the WWW. Such users
can then construct a model of the type referred to above, by designating a pollutant of
interest, a study area, and a study period. They then incorporate local pollution sources,
set source emission and other parameters, and finally upload the requisite data weather as
well as pollution data. The paper demonstrates the construction of such a model, one for
predicting the exposure to PM10 of random selected individuals from sub-populations of
Greater London in 1997.
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1 Introduction and Summary

This paper presents a methodology for predicting human exposure to an environmental
hazard. It addresses the question of the exposure to air pollution particles experienced by
individual members (or sub-groups) of the population. More specifically, it considers air
pollution consisting of inhalable particles, designated as PM10, that are widely considered
to be injurious to human health.

The underlying concepts behind the methodology presented here are well established and
have been implemented in a number of models, such as the ‘simulation of human activity
and pollutant exposure model’ (Ott et al 1988), the population-based exposure model of
MacIntosh et al (1995), its sequel Burke et al (2001) (hereafter referred to as ‘SHEDS’)
and the forerunner to this work; the ‘Probabilistic Version of the NAAQS Exposure Model’
(pNEM; Law et al 1997).

Models such as these have played an important role in estimating exposures to air
pollution, and the original pNEM model was used in formulating air quality criteria for
air pollutants in the United States. The implementation presented here builds on this
earlier work, but is original in that instead of a specific model, it provides an underlying
WWW platform for developing a wide variety of models. This paper demonstrates the use
of that platform and develops a model which can help answer substantive question relating
to human exposure to air pollution.

The structure of the paper is as follows. After an introduction, Section 2 describes
the general framework for the exposure models of Brauer et al (1996). It describes the
components (‘building blocks’) of models such as SHEDS and pNEM, along with their
linkages, both stochastic and structural.

Section 3 considers the practical considerations in the implementation of the framework,
including human time-activity patterns and their relationship to environmental factors.
This interaction between environment and behavior, though too complex to model, can be
represented by means of a catalogue of human behavior patterns. This catalogue contains
the patterns revealed in diary data obtained from surveys of human populations. Such
a catalogue was obtained from the National Human Activity Pattern Study (NHAPS) a
24 hour recall survey; (Robinson and Thomas, 1991) that was carried out in the United
States and three Canadian centers. To simulate human behavior conditional on individual
and environmental stratification factors, then requires only that a single item be sampled
at random from the catalogue under the assumption that it will serve to represent the
population on which the time-activity patterns were surveyed. Such information is required
in every application wherein human interaction with the environment is to be represented.

Section 4 presents the implementation of the above framework, a platform referred to
as ‘pCNEM’ (standing ambiguously for a ‘probabilistic version of the Canadian version of
NEM’ and a ‘PC version of NEM’, the latter referring to the fact that, to the best of the
authors’ knowledge, it is the first version of NEM to run on a PC). An important feature
of this implementation is that it can be accessed and run remotely by (registered) users
through the World Wide Web (WWW). Users can then develop a personal exposure model
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on that platform and apply it to any specified pollutant, area and time period of interest,
using their own data.

Section 5 provides examples of the development and application of the pCNEM model, in
order to predict the exposure to PM10 of random selected individuals from sub-populations
of Greater London in 1997. This begins with an analysis of hourly PM10 concentrations
during the study period, which gives a better understanding of the dispersion of PM10 and
informs some of the assumptions used in the model, including the construction of homoge-
neous ‘exposure districts’ surrounding each of the monitoring sites. That analysis is followed
by the construction of the model, including the designation of local sources of PM10 and
associated emission parameters. Three case studies are presented to demonstrate the use of
the resulting model, each considering sub-groups of the population; (1) senior males living
in apartments in the center of the city (Bloomsbury) who smoke and cook with gas, (2)
females who live outside the center of the city (Brent), work in Bloomsbury, smoke and
cook with gas. For this second group, exposures are estimated in the spring (2a) and the
summer (2b). The results from these three case studies are analyzed and discussed in the
remainder of Section 5, with overall conclusions in Section 6.

2 A Framework for Exposure Estimation

In this section, the general framework for exposure assessment is described. The full de-
scription consists of three parts; (i) the background probabilistic structure which provides
the ‘backbone’ of the modelling framework, (ii) an explanation of the ‘building blocks’
(structural elements) of the model and (iii) the links between these blocks (the stochastic
structure). To aid the clarity of the explanation, much of the technical detail is included
in Appendices A and B. This section concentrates on the parts required to implement the
model, including those which users will need to perform their own analysis using the WWW
facility.

2.1 Description of the Model.

This sub-section, together with the associated appendices (A and B) describes the general
framework presented by Bauer et al. (1996). The stochastic models used are based on the
theoretical probability space, (Ω,A, P ). The individual components of this space are as
follows:

Ω - the sample space of all underlying information relating to an individual’s exposure to
the pollutant in question. Items sampled from this space are denoted by ω, a purely
conceptual device labelling the sum of information about recognized and unrecognized
factors associated with an individual’s exposure, for example their residential address

A - the collection of subsets of Ω representing the outcome of a sampling experiment.
Membership of this class (A ∈ A) occurs when ω lies in A. Intuitively, P (A) is the
fraction of all ωs in A if all elements of Ω have an equal probability of being sampled.
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P - the population distribution of the ωs, which is unknown.

In reality, not all the information linked to ω is observed. Instead, only its relevant
attributes are measured, leading in general to a random multidimensional array X = X(ω)
of responses. X might be a vector representing exposures in successive time periods. If
several pollutant species were being monitored over time, X would be a matrix. Such a
matrix could even represent exposure to a single pollutant through several distinct media
such as air and water in successive time periods. The proposed setup is therefore general
in nature.

The population distribution P , induces a population distribution for X, PX , defined by
PX(B) = P (A) where A = {ω : X(ω) ∈ B}. Like P it is unknown and in practice needs
to be estimated by sampling. Good sampling designs are vital to obtaining good estimates
of population distributions. To characterize such designs imagine ω̃ is selected at random
from Ω. Sampling is ‘representative’ if the probability that ω̃ is in A equals P (A) for all
A. In that case, the sampling plan is ‘unbiased’. That notion extends in an obvious way
to the sampling distribution of say Y = X(ω̃) as well as to the case where a sequence of
ωs will need to be drawn to construct sensible estimates of the population estimate. These
ideas also extend to sampling from sub-populations when the population is stratified as in
Section 4. In this paper sub-population sampling designs are assumed to be unbiased.

Modelling has been simplified (as in Section 4) by splitting ω into two parts, one as-
sociated with individual factors (I) like ‘age’ and one with factors external (E) to the
individual like ambient pollution levels that pervade the study area. Thus, we assume that
Ω = ΩI × ΩE , or in other words, that ω = (ωI , ωE) for each ω ∈ Ω where ωI ∈ ΩI while
ωE ∈ ΩE . Further details of the estimation of probabilities within this framework can be
seen in Appendix A.

This model has a broad domain applicability in that ‘sampling’ can be either from a
real or a simulated population. The latter may well obtain when ωE is generated by a
complex computer model of environmental processes. Alternatively, the latter could be a
small finite population of patterns of individual behavior combined with computer models
to yield outcomes of randomized activity patterns. That is exactly the sort of population
encountered in pCNEM simulation where ωE is fixed. Continuing with this example, note
that the model includes the possibility realized in pCNEM of choosing different individuals
at different time-points. In other words, ωI can index a composite individual made up of
successively sampled individuals, this allows an estimate of the uncertainty associated with
each of the estimates to be calculated, in the form of a standard error. Further details of
how such a standard error can be obtained can be seen in Appendix B.

2.2 Structural Elements of the Model.

This sub-section contains a description of the building blocks of the model, including the
associated processes, such as the interaction between individuals and their environment,
that link ω (the theoretical information obtained by sampling) with X (the observed infor-
mation). Some of these elements may depend on space or time, but for expository simplicity
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that dependence is suppressed.
As described in Section 1, the sample space Ω, is split into two parts, comprising internal

(ΩI) and external (ΩE) factors. This stratification is achieved using discrete stratification

variables, S to get Ωs
defn
= {ω : S(ω) = s} and Ω = ∪{Ωs : s ∈ S}, S denoting S’s range. This

stratification: (i) gives us a natural way of incorporating important qualitative variables
into the model; (ii) creates homogeneous sub-populations with respect to exposure, thereby
facilitating model development.

Although the aforementioned stratification variables will be context dependent, they will
fall into either one of the two categories. The collection of internal variables, I, consists of
individual stratification variables such as age, and are not constant across all the individuals
in the study population.

The external variables, E, will consist of external stratification variables such as the
daily maximum temperature. These strata are constant across individuals. Modelling can
now be done conditional on both the I and E variables.

Human behavior is an important part of any realistic exposure model and a set of
variables, B, relating to this needs to be defined. The ranges of such variables involve:

MEs: microenvironments - homogeneous personal exposure settings such as kitchens
or cars. A random individual’s random activity pattern takes him or her through a
sequence of MEs during the exposure period. An example used in the BEADS model
for benzene exposure is the ME associated with fuelling a car.

As: activities - activities carried out in the MEs. This aspect of behavior can affect the
impact of the exposure. Playing tennis or jogging can increase breathing rate and
consequently, the dosage of an hazardous air pollutant.

POSs: positions - the geographical locations of the MEs. Activity diaries usually do not
record POS. However, it can be of great importance in the presence of a heterogeneous
pollution field. In such cases, if it is not modelled then severe measurement error may
be introduced into the estimates of exposure. An example from the model proposed
by Ott et al (1988), uses a variable denoting whether an individual is ‘outdoors and
within 100 feet of a road’ as a proxy for their position (POS).

A number of additional model components need to be defined. The first, AF, denotes
the temporally varying random ambient pollution field that takes values at points of a
discrete, not necessarily regular, grid distributed over the study area. To date exposure
models have only considered concentrations of a single pollutant, however it could be ex-
tended to represent multivariate responses, thus enabling several pollutants to be considered
simultaneously.

Since AF cannot be completely measured, ambient monitors measure AF at selected
points in space and time, leading to, AM, the ambient monitoring field. AM can be
considered a subfield of AF (if measurement error is ignored) and whilst it is not intrinsic
to X, it must be included in the model since it provides the only information available
about AF.
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Individuals move randomly through the AF, exposing themselves to varying concentra-
tions of a pollutant. However, actual exposure depends on how much AF penetrates the
MEs through which an individual moves. For example, ambient ozone can enter an indoor
ME only through the exchange of outdoor and indoor air. Furthermore, it depends on
the rate at which this reactive gas deteriorates within the indoor environment once it is
admitted.

Thus, actual exposure from ambient sources, XA differs from the AF levels at the
position P of the ME. In fact, X = XA + XL where XL denotes exposure from local
sources. In the case of carbon monoxide for example, XL could be a substantial fraction of
X as a result of emissions from a gas cooker in a kitchen.

2.3 Stochastic Structure of the Model.

Exposure models such as pCNEM and SHEDS use structural linkages between model com-
ponents (the structural elements described in the previous sub-section) that are expressed
through mathematical equations. In general, the form of these equations are determined
using statistical techniques applied to training data, for example, in pCNEM the AM are
related to the ME concentrations using such equations to determine XA. Where applicable
the form of the equations can be based on physical laws of the process; in pNEM such a
model is used to determine the ozone’s decay rate after it has reached an ME’s interior.

Whatever their origin, structural linkage models leave residual uncertainty about X.
Some of that uncertainty will be due to prediction error and some to replacing model
parameters with estimates which will introduce sampling error. This stochastic uncertainty
means that the structural parts of the model must have an associated stochastic element,
which is at the heart of probabilistic exposure models such as pCNEM. Measuring the
uncertainty in X is of fundamental importance, for amongst other things, it will determine
the confidence that decision-makers, such as planners, regulators and those formulating air
quality objectives can place in the results.

The hierarchical framework for the required stochastic links is described in terms of
conditional probabilities. For that description, (T, V), (T| V) and (T) denote generally the
joint distribution of T and V, the conditional distribution of T given V and the marginal
distribution of T, however expressed, for any random objects T and V.

Assume

(X, XL, XA, B, AM, AF, I, E) = (X | XL, XA)(XL | B)
× (XA | ME,P, AF )(AF | E)
× (AM | AF )
× (B | I, E)(I, E), (1)

where B=(A,ME,POS). This model is sufficiently general as to embrace not only pCNEM
but earlier computational models such as SHEDS. The uncertainty about X = X(ω) can
now be represented and it can be shown that the population distribution of X is a function
of the conditional probability (X|AM). The proof of this, together with further details of
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the derivation of the conditional probabilities which are required can be found in Appendix
C. One such result shows that for fixed AM the conditional probability, (X | AM), is
a mixture of (X|I, E, AM), any one of which could hypothetically be used in setting air
quality criteria. Alternatively, the criteria could be more targeted and based on (X|I, E,
AM) for specified choice of I and E. Progress has been made on the development of the
(AF | AM) module in a variety of contexts (see, for example, Brown, Le and Zidek 1994;
Le, Sun and Zidek 1997; Sun, Le, Zidek and Burnett 1995; Diggle et al 1998). A module
for (ME, A | I, E) is discussed in Section 3.

The conditional distribution of position given the (internal and external) variables de-
noted by (POS | I, E) is more problematical since, as noted earlier, time-activity diaries
will not usually indicate the location of MEs (although postal codes yield it for residential
MEs). One solution, relies on a coarse grid P, an accurate specification of a surrogate
POS∗ for POS, but a large measurement error in determining XA. Another, would rely on
a accurate model AF (POS) given the unknown POS and a another model (POS | POS∗),
given POS∗, of position. Which of these strategies is preferable in terms of reducing XA’s
measurement error is unclear.

Note that

(B | I, E) =
∫

(POS | ME, A, I, E, POS∗)(POS∗ | ME, A, I, E)d(POS∗)

× (ME, A | I, E).

(POS | ME, A, I, E, POS∗) might be determined from such things as census data, traffic
survey data, workforce surveys, and maps of school locations within school districts. With-
out such data, (POS | ME,A, I, E, POS∗) might be taken to be uniform over POS∗, the
region in which POS lies.

3 Implementing the General Framework.

Sections 1 and 2 provide a general framework for predicting exposure. This section concen-
trates on certain elements required to implement an exposure prediction model. Specifically,
Subsection 3.1 describes the module, (ME, A) | (I, E) based on a possible stratification of
I and E in the case of PM10. Then in Subsection 3.2, several alternatives for modelling
POS | (I, E) are discussed from a practical point of view.

3.1 Modelling Human Activities.

In general, the (ME, A) | (I, E) module provides a database of activity patterns for use in
specific applications of the general framework. For any given pollutant, that data-base will
have its diary records organized in a particular fashion. For clarity of explanation, PM10 is
the target pollutant with the knowledge that other pollutants could be handled in a similar
way.
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To realistically capture the variations in human behavior needed to predict exposure, the
time-activity records of real subjects can be used. The databases derived from the National
Human Activity Pattern Survey (NHAPS) conducted in the United States and a similar
survey conducted in Canada provide convenient sources of such records. The databases are
very similar so they have been integrated into a single database for the purpose of the online
computer model described below in Section 4.

The subjects in the NHAPS telephone surveys were asked to recall what happened
during the 24 hours of the day before the interview day. Specifically, they were asked 66
major questions:

1 to 7 concerned the household, for example, whether any gasoline or kerosene was stored
anywhere in the home;

8 to 39 asked about events during the 24 hour period, including their start and finish
times as well as if anyone smoked during that event;

40 to 66 concerned background information such as the year of birth and employment
status.

Each diary consists of a sequence of starting times, durations and NHAPS locations
from midnight to midnight. There were 78 possible location codes, grouped in 5 categories.
In addition to the diary records, the NHAPS surveys include a large number of demographic
variables (almost 500), the most important of which appear in Table 1.

Variable Description
RESPID Respondent ID
REGION Region
EMPLOYMENT Employment status
AGE Age
SEX Gender
WORKPLACE Workplace
YEAR Year of diary
MONTH Month of diary
DAY Day of diary
MAXTEMP Maximum temperature

Table 1: The most important NHAPS demographic variables.

As noted in Section 1, modelling behavior for subpopulations of the population of in-
terest may be preferable to treating the population as a whole. Such a strategy leads to
the stratification of the population by I, representing individual strata and E, representing
external strata (I × E strata for short). For PM10 , elements of I are, ‘AGE’, ‘WORKING-
STATUS’ and ‘GENDER’ forming homogeneous sub-populations called DEMOGRAPHIC

8



GROUPS (DGRPs). These would be selected with reference to available data sources so that
in particular, the subpopulation fractions in these groups could be found. These fractions
(i.e.marginal probabilities) of membership in these DGRPs would then enable population
level aggregates to be found from the conditional probabilities given membership in the
DGRPs.

Likewise E strata are formed using the stratification (i.e. conditioning) variables each
measured according to the calendar date of the sampled person-day:

• SEASON: summer or winter

• TEMPERATURE: cool or warm

• DAY TYPE: weekday or weekend.

The temperature classification would be based on the daily maximum temperature on that
date, ‘cool’ being defined as below a ‘cut point’ that differs in winter and summer. An
analysis of the relationship between people’s outdoor activities and temperature provides
suitable cut points for the temperature classification.

Each (exposure) event reported in an activity diary has the following components:

• POSITION: geographical location;

• ME: microenvironment;

• SMOKE: passive smoking status.

NHAPS defines ‘microenvironments’ differently than pCNEM (Details can be found in
Brauer et al 1996). We discuss the problem of specifying POSITION abbreviated as POS
in our notation the next section.

3.2 Modelling POS | (I, E) – a Practical Perspective

The problem of specifying the geographical location (POS) is now considered. An ideal
activity survey would give POS for each activity so that the associated exposure could be
predicted from the AF (POS) | AM module (see Subsection 2.3). However, such a survey
would not be feasible. Instead, in the NHAPS surveys, ‘home’ and ‘work post code’ are
the best available indicators of POS, forcing some additional modelling. For example, one
might well take (POS | (I, E)) to be uniform over the smallest census survey ‘tract’ that
can be linked to the postal code. Ambient monitor (AM) measurements would then be
interpolated down to the tract level. Then, after stratification and the incorporation of
census data the exposure of the whole population of the study area could be estimated.

As noted in Subsection 2.3, this approach has the advantage that AF(POS) and hence
XA can be predicted from POS, while incorporating model uncertainty in specifying POS |
POS∗. (Recall that POS∗ was defined above in Section 3.1 as a surrogate of POS.) However,
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such an approach ties the eventual results of the exposure study closely to the underlying
activity survey designed for a particular area and year. To ensure the validity of population
level extrapolation of the results of that study, the activity survey must be spatially and
temporally representative of the demographic population subgroups. This requirement is re-
lated to the I × E stratification described above. For example, with the PM10 stratification
enough person-days with different characteristics as indicated by DGRP, SEASON, DAY-
TYPE, and TEMPERATURE are necessary. To ensure geographical coverage, that number
should be multiplied by the number of tracts within the study area. Finally, the association
between exposure and the activity-survey implies that an exposure study for a new study
year or area will (unrealistically) entail a new activity survey.

An alternate approach to modelling POS | (I, E) like that of pCNEM in Section 4,
assumes activities can serve as prototypes for use in other situations say with a different
area and year. For example, an activity pattern corresponding to an index DGRP = 1
(0-5 kids), SEASON = 1 (winter), DAYTYPE=1 (weekend) and TEMPERATURE =1
(warm) represents a typical activity for 0-5 year old children on a warm winter weekend.
Consequently, the position variable defined in pCNEM needs to be as vague as possible. In
the current version of pCNEM, POSITION becomes a binary variable, called the ‘district
identifier’. It tells us only if the activity happened within a home- or work-district. pCNEM
links activity pattern, ambient pollutant and the ‘cohort’ defined by DEMOGRAPHIC
GROUP, HOME DISTRICT and WORK DISTRICT. This somewhat coarse approach has
the advantage of allowing data from several surveys to be used and allows census data at
the aggregated level to be utilised, thus supplying exposure indices for the population of
any urban areas for different years.

4 Using the pCNEM Model.

This section describes how the pCNEM model works in practice and gives details of a unique
feature, namely the ability for users to develop and run models remotely using the WWW
site. Details of how prospective users may resister to use the site and the requirements
regarding model parameters, variables and data are given in Appendix D.

4.1 Overview.

The pCNEM simulator basically generates a sequence of pollutant concentrations to which
an randomly selected individual is exposed over time. This sequence is termed the personal
exposure sequence. The generation is a fairly complex stochastic process that follows the
randomly selected individual in his activities over the period of the simulation. The indi-
vidual is thought of as visiting one microenvironment (ME) after another as he or she is
involved in his or her activities through time. The universe in which the individual evolves
is partitioned into a set of exposure districts or district for short, for each of which the
pCNEM simulator will require the ambient pollutant concentration throughout the period
of the simulation. Although this partition is arbitrarily fine, in its current implementation,
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the pCNEM simulator will position the individual in one of two specific districts, the home
district and the work district, which are selected at the time the simulation is launched.

The generation of the personal exposure sequence involves the following arrays:

• ambientd,t the ambient concentration in district d at time t,

• sourced,m,t the pollutant production in microenvironment m of district d at time t,

• locald,m,t the concentration to which an individual in microenvironment m of district
d at time t would be exposed,

• d(t) the district in which the individual finds himself at time t, and

• m(t) the microenvironment in which the individual finds himself at time t.

The simulator has two major tasks

• the creation of the locald,m,t array, and

• the creation of an activity sequence for the randomly selected individual (the activity
sequence will determine d(t) and m(t)).

Once the two tasks are completed, it is simply a matter of tracking the individual through
his activities in the locald,m,t array. Formally, the result of the simulation is the sequence
of personal exposures EXP

EXPt = locald(t),m(t),t (2)

Figure 1 shows a 2×3×24 local array and highlights the path followed by an randomly
selected individual through time. His activities take the individual from home, to outdoor,
to indoor (in the work district), to outdoor, to indoor and back to home at times 5, 6, 14,
16 and 17. The sequence of personal exposures EXP is obtained by reading the local array
at the highlighted cells from left to right.

The ambient concentrations ambientd,t need to be supplied. The simulator will au-
tomatically generate random values for the pollutant productions sourced,m,t. The many
parameters that affect this random generation can each be adjusted. The local concentra-
tions are derived from the ambient concentrations and the source productions

local = Φ(ambient, source) (3)

where Φ needs to be determined.
The activity sequence of the randomly selected individual that is being tracked through

the local array is obtained by concatenating randomly selected NHAPS diary records. It
is possible to restrict the random selection of the diary records to those that belong to a
particular demographic group. A demographic group is defined by imposing a restriction of
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some of the demographic variables of the NHAPS records The simulator can also be con-
figured to restrict the random selection of diary records to those that match the simulation
day in terms of season, day type and meteorological conditions. This ability takes into
account the possibility that season, day type and meteorological conditions may affect the
activity patterns of individuals.

4.2 The Derivation of the Local Array.

There are two types of microenvironment: closed and open. A closed microenvironment is
one for which the derivation, (see Equation (3)), of the local array involves a mass balance
equation. Such a microenvironment may have sources that produce amounts of the pollutant
and its volume and other quantities are used in the mass balance equation that is used to
derive the resulting local concentration. On the other hand, an open microenvironment is
one for which there is no source and for which the local concentration is a simple linear
transformation of the ambient one.

Closed microenvironments.

A closed microenvironment may have sources of the pollutant under consideration,
thereby increasing the concentration to which its occupants are exposed. On the other
hand, as air from within is exchanged with air from outside, there is a tendency for the
microenvironment local concentration to adjust itself to the ambient one. The mass balance
equation governs the path to this equilibrium

d

dt
Cin(t) =

S(t)
V

+ νFpCout(t)− (ν + Fd)Cin(t) (4)

where

• Cin(t) is the concentration (local) inside the enclosure at time t (mass/volume),

• Cout(t) is the concentration (ambient) outside the enclosure at time t (mass/volume),

• S(t) is the pollutant generation (source) rate inside the enclosure at time t (mass/time),

• V is the volume of the enclosure (volume),

• ν is the air exchange rate (1/time),

• Fp is the penetration factor (unitless), and

• Fd is the deposition (decay) rate (1/time).

The penetration factor Fp and the deposition rate Fd affect the position of the equilib-
rium while the air exchange rate ν affect the speed at which it is reached. The transformation

12



Φ in Equation(3) amounts to solving the differential equation (4) and assuming that the
inputs ambient and source do not change too quickly, we have an approximate solution in

Cin(t + 1) = 0 (5)

Open microenvironments.
For an open microenvironment, Equation (3) requires the specification of a slope bm

and an intercept am. Equation (3) for the local array is a simple linear transformation, in
other words, Φ is linear in it’s first argument:

locald,m,t = am + bm ∗ ambientd,t (6)

4.3 The WWW Interface.

The following provides a brief guide to a unique feature of the pCNEM system, namely the
WWW interface. The interface can be used to configure a model and to launch simulations.
Models can be created from scratch using the interface, but it may be easier to use an already
existing model as a starting point. The site contains an existing model for PM10 exposures
in the Vancouver area which is accessible to all users as a template.

The computer model consists of several components:

• the model data,

• the location,

• the simulator,

• the demographic groups,

• the microenvironments, and

• the sources.

The model data component is used to supply the ambient field and possibly the meteo-
rological data corresponding to the area and the period for which the simulation will be
done. The location component is used to define the mapping from NHAPS locations to the
microenvironments defined in the simulation. The simulator component is used to launch
simulations. The demographic groups component is used to edit and inspect the demo-
graphic groups defined for the model. The microenvironments component is used to edit
and inspect the microenvironments defined for the model. The sources component is used
to edit and inspect the sources defined for the model.

Prospective users of the pCNEM system should apply to jim@stat.ubc.ca. Once regis-
tered, users can
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• upload their own databases;

• add their own ‘micro-environments (MEs)’, key building blocks for the model;

• add sources interior to each ME;

• fit appropriate source parameters

• make replicate runs of the model remotely

• download outputs in spreadsheet format to their own PC for further analysis and
application.

More detail is available on-line by accessing the ‘help’ screens.

5 pCNEM Predictions of PM10 for London, 1997.

This section demonstrates how the model described in Section 4 has been used to find
conditional predictive exposure distributions for PM10 in London in 1997. This is done
by considered three specific case studies each referring to a particular subpopulation of
Greater London (Sub-section 5.2). These sub-populations were selected for their potential
interest and diversity. Moreover, under realistic assumptions, their membership totals can
be estimated.

Thus in principle, population level distributions could be found by combining these
conditional exposure probabilities with those for the other subpopulations, {GLi} of Greater
London using the standard formula, P (B) =

∑
P (B|GLi)P (GLi). For example, B could

be the event that in 1997, the 98th percentile of the daily average PM10 exposures for a
randomly selected Greater Londoner exceeds 50 µg m−3. The subpopulation GL1 could be
that considered in the first case study of Subsection 5.2, namely males older than 60 years,
who smoke and live in an apartment equipped with a gas stove.

The aggregation of subpopulation probabilities will be left for future work. Instead,
this paper focuses on finding subpopulation probabilities to illustrate pCNEM’s use. These
analyses demonstrate pCNEM’s flexibility and in particular consider the effect of reductions
in the ambient concentrations of PM10 which might be affected by changes in policy. The
effects of such reductions, known as ‘rollbacks’ can be assessed in terms of the changes
in exposure experienced by individual members of the population. In addition, the effect
of using different emission parameters can be set for different sub-populations (GLis) is
assessed, for example, the difference in the distributions of the number of cigarettes smoked
by randomly selected males in GL1 and in the 0-to-17 year age range, respectively, can be
accommodated.
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Site Name Site Type Easting Northing
Bexley Suburban 5518 1763
Bloomsbury Urban Centre 5302 1820
Brent Urban Background 5200 1840
Eltham Suburban 5318 1816
Haringey Urban Centre 5266 1791
Hillingdon Suburban 5348 1862
North Kensington Urban Background 5321 1831
Sutton Roadside Roadside 5256 1640

Table 2: Description of the PM10 monitoring sites used in the model.

5.1 London’s PM10 Field in 1997

Daily data from 8 PM10 monitoring sites were uploaded to the pCNEM site together with
maximum daily temperatures for London for 1997. Details of the pollution monitoring
sites are given in Table 2. Each site represents a pCNEM’s exposure district, that is a
geographical area surrounding it whose ambient PM10 level can realistically be imputed
to be that of its central monitoring site. Previous work on the spatial distribution of
PM10 in London for this period (Shaddick and Wakefield, 2002) indicates that the PM10 field
is relatively homogeneous, meaning that the boundaries of the exposure regions are less
critical than might otherwise be the case. In order to compute the marginal membership
probabilities as described in the introduction to this section, the regions would be linked to
census wards for which the required population counts are routinely available. Summary
statistics for the 8 monitors in this study are given in Table 3.

Total % Missing Mean SD 25% 50% 75% Max
Bexley 8760 7.4 23.0 15.8 13 19 28 243
Bloomsbury 8760 3.9 26.6 16.2 17 23 32 349
Brent 8760 4.9 21.6 14.4 13 18 26 235
Eltham 8760 9.5 21.2 13.8 13 18 25 224
Haringey 8760 3.2 26.4 16.2 16 22 31 292
Hillingdon 8760 2.6 25.0 16.7 14 21 32 227
N.Kensington 8760 2.5 24.3 15.7 15 20 29 219
Sutton 8760 0.9 24.1 14.5 15 21 29 219

Table 3: Summary of hourly PM10 measurements at eight sites in London during 1997.
Units are µgm−3 (except for % missing). The minimum value in all cases is 1 except for
the last two sites where it is 2.

Only a relatively small proportion of measurements are missing even though a small
number of negative numbers and zeros (for which there were no meaningful interpretation)
were excluded. The mean exceeds the median (the 50 percentile) at all sites, pointing to the
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heavy right distribution tail seen typically in air pollutant concentration series, suggesting
the log-normal distribution might be appropriate for modelling purposes. For this reason,
the (natural) log scale was used in some of the plots below.

The similarity of the values in each column of Table 3, indicates the great similarity in
the series for the eight sites. The high correlations observed between the individual series
from the sites, was exploited when imputing missing hourly values, where the average value
for that hour at the remaining sites was used.

Figure 2 shows the high level of spatial homogeneity. In the upper panel (a), the hourly
measurements from the most central of all the eight sites (Bloomsbury) are plotted against
time and can be compared to the average of the corresponding measurements from the
remaining seven sites. Little difference is observed between the two series, as was the case
in the corresponding figures using the other sites as the ‘central’ site (not shown). The
high correlation between the Bloomsbury and the seven site average series is seen in the
scatterplot, 2(b). Again, similarly high correlations were seen when looking at the other
sites in turn (not shown).

The eight time series of hourly values exhibit relatively little systematic variation. For
example, the weekly effect (geometric mean of all the hourly measurements over all eight
sites for that week) plotted on a log scale in Figure 3(a) shows no clear seasonal pattern and
only small week-to-week fluctuations. To examine the daily effect, shown in Figure 3(b), the
geometric average of all the hourly measurements over all sites and all weeks 1, . . . , 52 were
calculated, after removing the weekly effect. For day 1 in week 1, all 24×8 = 192 hourly
measurements for day 1 (Sunday) from all sites, were divided by week 1’s average. Measure-
ments for each of the days 2, . . . , 7 were treated analogously and in turn measurements for
week 2, . . . , 52. The resulting, adjusted, average concentrations were plotted on the log scale.
Note that ‘1’ on the vertical scale indicates no deviation from the weekly effect while 1.05
means a 5% deviation above that effect. A distinct day-of -the-week is seen, consistent with
the smaller volumes of traffic seen on Sunday in London. However, the absolute variation
is small. Finally, in Figure 3(c) hourly effects (hour 1 being the period from 0:00 to 01:00
hours) are shown, after adjusting for the week and day effect in a manner analogous to that
used for computing the day effect. Once again a distinct pattern of (small) variation is seen.

After completing the initial analysis, the PM10 data file, with imputed missing values
was uploaded to the pCNEM site.

5.2 Case Studies

In this example, five microenvironments (MEs) are incorporated into the model: Outdoors,
Home, Transit, Indoors not at home, and Bar/Restaurant. These are the MEs incorporated
by Özkaynak et al (1995) in their study. Home and Bar are closed and the remainder, open.
Thus, parameters for the mass balance equations are needed for the former, regression
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coefficients for the latter.
The ME sources of PM10 emissions are: ‘home.cooking’, ‘home.smoking’, ‘home.other’,

‘bar.smoking’, and ‘bar.other’. pCNEM links sources to MEs so they can have different
parameters (that may also depend on population subgroup). The proposal of Özkaynak et al
(1995) and Burke et al (2001) is adopted, that of including ‘other’ as source of unaccounted
for emissions. Note that any of these sources can be excluded simply by setting their
emission levels to 0 rather than deleting them from the model. Home is the primary ME
since so much of peoples lives are spent therein.

The parameters in the mass balance equation in Section 4 are based on published data.
These data yield the elements of Table 4. The distributions for the air exchange rate
are based on the study reported by Murray and Burmaster (1995). In particular, results
are used for what they call ‘Region 1’, that part of the US that seems to best approximate
London. Obviously, data for London would improve the model’s accuracy. The distributions
for residential volume are drawn from Murray, D (1997) based on a survey of US housing.
Again, if available, data for London would be preferable. The remaining entries in Table
4 are based on Özkaynak et al (1996) and the well know PTEAM study. Note that, as in
Özkaynak et al (2001), parameters can be specified as probability distributions to account
for the uncertainty about their exact value.

While Table 4 gives emission distributions for cigarettes, estimates of the average number
of cigarettes smoked in the closed MEs are also required. The number of cigarettes is
assumed to follow a Poisson distribution, for which an estimate of the mean is required.
Members of a subpopulation of smokers will smoke some of these cigarettes themselves while
they are in those MEs. For both smokers and non-smokers, environmental tobacco smoke
will potentially be produced by other smokers in those MEs. These need to be incorporated
into the Poisson mean.

Table 5 gives the weekly number of cigarettes consumed by smokers in the UK in 1998,
the year closest to 1997 for which data are available. Ökaynak et al (2001, Table 7) provide
estimates of the number of cigarettes smoked by others in a residential ME. From there we
are able to compute the means presented in Table 6. Although the age ranges in these two
surveys do not match, they can be combined to yield the approximate hourly means reported
in Table 7 thus giving the required parameter for the Poisson distribution in home.smoking
source. To obtain this mean it is assumed that the cigarettes are consumed between 07:00
and 22:00 hours.

Ökaynak et al (1995) and Ökaynak et al (2001) treat the Bar/Restaurant as an open
ME. Linear regression predictors are used to predict the ME concentrations in both cases.
In the first of these two references, different predictors are used to predict ME concentra-
tions from ambient concentrations differently for smoking and non-smoking establishments.
In the second, a single regression predictor is used but a third term is incorporated involv-
ing a random covariate representing the active smoking count. This assumes a uniformly
distributed random simultaneous number of between 0 and 3 cigarettes at any one time.
For the purpose of this demonstration, ‘Bar’, loosely refers to bars and restaurants, and is
defined as a closed environment. A small non-random sample of pubs in London carried out
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Table 4: Distributions Assumed for Residential Mass Balance Equation. ‘Winter’ means
{Dec, Jan, Feb} and each of the remaining seasons follow in 3 month blocks. LN(µ,σ)
denotes the lognormal distribution with mean µ and standard deviation σ in logarithmic
space. N(µ,σ) denotes the normal distribution with mean µ and standard deviation σ.

Parameter Categories Distribution
Air exchange rate Winter LN(-0.8, 0.7)

(h−1) Spring LN(-1.2, 0.8)
Summer LN(0.2, 0.7)
Autumn LN(-1.2, 0.5)

Volume Detached LN(6.02, 0.50)
(m3) Attached LN(5.78, 0.48)

Apartment LN(5.24, 0.43)
Other LN(5.34, 0.36)

Penetration N(1.00,0.08)
(Unitless)

Deposition N(0.68,0.21)
(h−1)

Cigarette emission N(22, 4.23)
(µ g /cig)

Cooking emissions N(4.1, 0.79)
(µ g /min)

Other emissions N(5.6, 1.56)
(µ g /hr)

Table 5: Average daily cigarette consumption by smokers aged 16 and over, by age and
gender, England 1998. Source: Office of National Statistics General Household Survey,
1978 to 1998.

All 16-19 20-24 25-34 35-49 50-59 60 & over
Men 15 10 14 13 17 17 15
Women 13 10 11 12 15 15 12
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Figure 1: The path followed by an randomly selected individual through 24 hours of time.
The 2 ×3 × 24 local array categorises their exposure to pollution at home or work and
whether they are exposed to sources either in the home, (other) indoor or outdoor.

Table 6: Mean number of cigarettes smoked by other inhabitants per day in a residence by
smoking status, age and gender.

Smoking Status Age Group Male Mean Female Mean
Smoker 12-17 yr 15 2

18-64 yr 14 3
≥ 65 yr 17 4

Non-smoker 12- 17 yr 14 3
18-64 yr 11 2
≥ 65 yr 12 2

Table 7: Mean number of cigarettes smoked per hour in a residence by smoking status, age
and gender.

Smoking Status Age Group Male Mean Female Mean
Smoker 12-17 yr 1.67 0.80

18-64 yr 2.00 1.07
≥ 65 yr 2.13 1.07

Non-smoker 12- 17 yr 0.93 0.20
18-64 yr 0.73 0.13
≥ 65 yr 0.80 0.13
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Figure 2: (a) Time series plots for hourly Bloomsbury PM10 and that of the average of the
remaining seven sites. (b) The corresponding scatterplot for the two series.

by the first author and his assistant, found between 11 and 32 patrons in a pub, or about
22 on average. The number of smokers at any one time ranged from 0 to 6 (about 1.9 on
average). That number was between 0 % and 27% of the patrons or 8.5% on average.

Looking at this issue in a different way, the Office of National Statistics General House-
hold Survey 1998, indicates that about 28% of England’s adult population are smokers.
According to Table 5 (and assuming 15 hours in the ‘day’), each of these will smoke about 1
cigarette per hour. Thus, 22×0.28 = 6 smokers would be expected among the average of 22
patrons. They would together smoke about 6 cigarettes in an hour. A cigarette takes about
6 minutes to smoke. So at any given time, cigarettes ignited at most 6 minutes before or
after that time will be burning. Assuming (tenuously) that smokers behave independently
of one another, a simple probability calculation suggests that 12/60 ×100 = 20% of these
cigarettes would be burning at any one time during that hour, that is about 1.2 cigarettes.
This number is in reasonable agreement with the 1.9 calculated from the non-scientific sur-
vey as well as the 0 to 3 assumed in the SHEDS model. Thus in the bar.smoking source
model, we assume the random number of cigarettes has (for convenience) a Poisson distri-
bution with a mean number of 6 cigarettes smoked per hour during the periods, 12:00-15:00
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Figure 3: Systematic variation in the joint 1997 hourly time series of all eight London
PM10 sites. The 52 week effects, 7 day effects and 24 hour effects are shown in panels (a),
(b) and (c) respectively. Note that in (b) and (c), due to the use of logged values, 1 on the
vertical scale means no deviation from the baseline.
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and 18:00-23:00 hours. The other parameters needed for that ME are adapted values of the
corresponding residential parameters.

The intercept β0 and slope β1 for the model that links ambient levels with concentrations
in the open MEs now needs to be determined. Obviously, for the Outdoor ME, β0 = 0.0
and slope β1 = 1.0. The remainder are found using a method suggested by Ökaynak et al
(1995) and the coefficients for PM2.5 in Ökaynak et al (2001, Table 3).

The idea is that PM2.5 is an important and sometimes primary fraction of PM10 ,
depending on the emission source. Thus, PM2.5 = α PM10 for some fraction, α. Ökaynak
et al (1995) take α = 0.6 (albeit for public and commercial buildings). Then given a model
ME:PM2.5 = β0 + β1 ambient:PM2.5, we obtain α ME:PM10 = β0 + β1 α ambient:PM10,
or in other words, ME:PM10 = α−1β0 + β1 ambient:PM10. Note that the slope does not
change whatever the value of α. In contrast, the intercept is inflated 1.67 times if α = 0.6
in going from the PM2.5 model to one for PM10 .

Values from this analysis and the values given in Ökaynak et al (2001) are given in Table
8. For the Indoor Non-residential the values given for Office, School and Store in that cited
reference have been averaged.

Table 8: Coefficients for the ambient to the open ME link models.
Microenvironment β0 (µg m−3) β1 (unitless)
Outdoor 0.0 1.0
Indoor Non-residential 10.8 0.5
Car 16.3 1.0

With no London time-activity data available for implementing pCNEM, the coefficients
used by Brauer et al (1996) are used with days classified as ‘warm’ if the daily maximum
temperature is above 13◦C in the winter and above 29◦C in the summer.

In the case studies that follow, two population subgroups are considered, with the sec-
ond case considering exposure distributions separately in both the spring and summer of
1997. In each case, 30 replicate pCNEM runs were used to estimate those distributions.
One very interesting feature of pCNEM is the ability to reduce the ambient PM10 levels to
any specified level (by 20% in these examples) under a hypothetical abatement program.
The predictive distributions are re-estimated under that scenario.

Case Study 1: Senior Male. This case study considers the sub-population of males
who are over 64 years of age, smoke, live in an apartment with a gas cooker in the Blooms-
bury exposure district. The study period is defined as ‘Spring’, the months of March-May
1997. The individual is assumed to be non-working so that by default his work and study
districts are identical.

Case Study 2: Working Female in Spring and Summer. This sub-population
consists of working women who smoke, live in Brent in semi-detached dwellings that use
gas as the cooking fuel and work in the Bloomsbury exposure district. Two sub-cases are
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considered, one covering the spring and the other the summer of 1997.
For each of the cases above, the output from a single pCNEM run consists of a sequence of

‘exposure events’ for a randomly selected member of the subpopulation under consideration.
That individual is composite; a different time-activity is selected for each succeeding day.
This composite individual better represents his/her subpopulation’s activity patterns than
any single member would do. The theoretical basis for this approach is set out above in
Subsection 2.1. Each event in the sequence takes place in a random micro-environment and
consists of exposure to a randomly varying concentration of PM10 for a random number of
minutes.

The output from the pCNEM model, consisting of 30 replicates generated for each
of the three cases, can be analysed in a variety of ways. The starting point here is to
look at the average instantaneous exposure in each of the five microenvironments used in
model. Thus, for each run, day, and microenvironment, the product of event time and event
concentration is divided by the total amount of time spent in that microenvironment. By
calculating the average over days for the daily values computed in that way, the average
‘instantaneous’ PM10 level for that microenvironment can be estimated. The 30 replicates
give the estimated predictive distributions, as is shown by boxplots for each of the three
cases in Figure 4

Comparing the upper and middle panels of that figure for seniors and working women,
both reflecting random exposure experiences in the spring of 1997, it can be seen that:

• for microenvironments other than ‘bars’, the greater boxplot widths for females than
seniors may reflect greater variety in their time activity studies;

• their in-home exposures are very similar, even though the greater volumes of the
homes of females should have diluted indoor source emissions more;

• the similarity of their non-home, ‘indoor’ exposures is expected since the females work
in Bloomsbury where the seniors live. Hence, if, as might be expected, the seniors
tend to remain in their home district during the day, their indoor exposures would be
similar;

• the greater variability of exposure in the ‘outdoor’ microenvironment would also be ex-
pected since the females are commuting from one district (Brent) to another (Blooms-
bury). That should naturally increase variability in their outdoor concentrations over
those of seniors.

• the same factor may help explain the comparatively higher levels of seniors in transit
over those of working women, if the former remain in their exposure district.

The middle and lower panels of Figures 4 enable a comparison of exposures of the
single subpopulation of working females addressed by the second case, during the spring
and summer of 1997. Since lifestyles generally defer between these two season, one would
expect to see differences in exposure that go beyond any differences in ambient pollution
levels.
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In fact, little difference is observed from one season to the next, suggesting no substantial
differences in time-activity patterns of women in this subpopulation again indicating the
lack of strong seasonality in London’s PM10 field in 1997 as seen in Figure 3.

While the average instantaneous concentration of PM10 in a microenvironment gives the
level of PM10 typically encountered there, sojourn times seem more important in terms of
potential impacts of that level. Figure 5, provides comparisons resembling the last ones that
take weight concentrations by time of exposure. More precisely, the weighted daily product
of concentration by duration in minutes of exposure event is calculated and divided by 60
minutes to get the average over days of hourly cumulative exposures. This in effect moves
from averages over days of one minute cumulative exposures (i.e. approximate ‘derivative’
of the cumulative concentration function known as ‘instantaneous’ concentration’), to the
corresponding averages for hours. In terms of this cumulative index of exposure, ‘home’
tends to be higher for the senior males than the working females in spring. However, for
working females in summer, that index rises well above the one for senior males. That
observation suggests that these women spend proportionally more time in the home during
the summer months than they do in the spring.

In terms of cumulative exposure, ‘bar’ contributes little in all cases, although for women,
we see more variability in this measure than that for senior males.

Since the females in the case study are working they might be expected to experience
higher levels of cumulative exposure than that for senior males and the figures confirm this.
They also agree with our a priori expectations that this measure would show higher levels
in spring than summer, the latter being lower when women are on summer vacations, for
example. In fact, based on our previous observation for women in the ‘home’ microenvi-
ronment, it may be inferred that women tend to move from the office to home when they
go on vacation.

Working females in summer seem to have similar cumulative exposures outdoors as senior
males do in spring, that measure being higher in both cases than that for working females in
spring. However this exposure is small compared with that for all other microenvironments
except for bars. That suggests either that ambient levels are low when people are outdoors or
that they spend little time there. In contrast, the large values of that measure of cumulative
exposure for ‘transit’ compared to one for ‘outdoors’, suggests travel takes place when
ambient levels are high (since travel times tend to be relatively small). However, senior
males do not seem to sustain such high levels of that exposure as do working women.

In order to examine how exposure patterns over the day, the sum over exposure events was
computed for each hour of each day of the products of the concentrations times duration,
divided by 60 minutes. The result was then average for each hour over days. For each
replicate run, this gives an average hourly concentration. The 30 replicates in turn, allow
the predictive distribution for that effect to be estimated. For the cases under study, the
results appear in Figure 6.

It can be seen that these hourly exposures starting rise dramatically around 07:00 hours
along with their variability (that tends to be small during the night). For the senior males,
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Figure 4: Boxplots depict the estimated predictive distributions of PM10 exposure in 1997
for a random member of a selected subpopulation of Londoners. Here distributions are for
instantaneous average exposures by microenvironment. The upper panel is for springtime
exposures of senior males living in apartments in Bloomsbury, who smoke and cook with
gas. The other two panels are for Women who live in semi-detached Brent dwellings, Work
in Bloomsbury, smoke, and cook with gas. The middle and bottom refer respectively to
spring and summer for those woman.
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Figure 5: Boxplots depict the estimated predictive distributions of PM10 exposure in 1997
for a random member of a selected subpopulation of Londoners. Here distributions are
for cumulative one hour average exposures by microenvironment. The upper panel is for
springtime exposures of senior males living in apartments in Bloomsbury, who smoke and
cook with gas. The other two panels are for Women who live in semi-detached Brent
dwellings, Work in Bloomsbury, smoke, and cook with gas. The middle and bottom refer
respectively to spring and summer. 26



a peak of around 20 µgm−3 is reached around 10:00 hours, while for working women these
peaks are reached around 16:00 hours with values around 22 or 23 µgm−3. Exposures for
the senior males drop steadily from their peak to about 10 µgm−3 around midnight. In
contrast, those for working females have a broad peak spanning several hours. In spring,
those exposures also drop to around 10 µgm−3 while in summer they bottom out at close
to 15 µgm−3. That points to a higher ambient level at night in Brent where these women
are supposed to live. We next make comparisons over days for the sub-populations under
study. Specifically, for each replicate, we compute the daily averages of the hourly values
computed above. The results for daily averages appear in Figure 7.

Both the senior males and working females experience similar high exposures for a
period of about 4 days. However, that for women exhibits greater variability during that
period and, in particular, includes a number of replicates where high levels of average daily
exposure are seen, approaching or exceeding 50 µgm−3. This is still well below the standard
for daily average level for PM10 of 150 µgm−3 in both the UK and the US.

During August of 1997, similar peaks are seen in daily average exposures of working
females. Again, there are notable extremes among the replicate values, at about or exceeding
50 µgm−3.

Finally, Figure 8 shows the differential impact of a hypothetical 20% deflation termed
‘rollback’ of actual PM10 levels in the spring of 1997. The capacity of pCNEM to enable
such ‘scenario’ analyses proves to be one of the programs most important features, giving
regulators a way to check the impact of proposed changes on subpopulation groups. The
deflated scenario values are set by the user and computed as the linear reduction, baseline+
p×(x−baseline) for every hourly datum, x, for both Brent, the residential exposure district
for the working female, and Bloomsbury where that female worked and the senior male lived.
In our example, the reduction factor and baseline were chosen somewhat arbitrarily to be
p=0.8 and baseline = 15 µgm−3.

The senior males are regarded as more susceptible to morbidity from high levels of
PM10 . Moreover, the Figure shows that they will enjoy greater benefit from the hypothetical
reduction than the working females. This differential benefit may well be due to the male’s
greater duration of outdoor activity than the working female’s during periods when the
pollution levels are highest.

However, the size of the differential is small compared with others seen, for example, by
using the Vancouver template supplied with pCNEM for a child living in Burnaby versus
a male who lives in Burnaby and works in Vancouver. The child, a member of another
susceptible group, enjoys a substantial differential benefit compared to the working male.
This is because levels of PM10 in Burnaby tend to be high compared to those in Vancouver
where the working male will spend a sizeable fraction of his workdays.

6 Discussion and Conclusions.

This paper has presented an online exposure estimation platform and illustrated how it can
be readily adapted for use in estimating exposures for areas different to that on which it
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Figure 6: Boxplots depict the estimated predictive distributions of PM10 exposure in 1997
for a random member of a selected subpopulation of Londoners. Here distributions are for
hourly exposures. The upper panel is for springtime exposures of senior males living in
apartments in Bloomsbury, who smoke and cook with gas. The other two panels are for
Women who live in semi-detached Brent dwellings, work in Bloomsbury, smoke, and cook
with gas. The middle and bottom refer respectively to spring and summer.
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Figure 7: Boxplots depict the estimated predictive distributions of PM10 exposure in 1997
for a random member of a selected subpopulation of Londoners. Here distributions are for
average daily exposures. The upper panel is for springtime exposures of senior males living
in apartments in Bloomsbury, who smoke and cook with gas. The other two panels are for
Women who live in semi-detached Brent dwellings, Work in Bloomsbury, smoke, and cook
with gas. The middle and bottom refer respectively to spring and summer.

29



12
13

14

SM:NR SM:RB WF:NR WF:RB

P
M

10
 (

ug
/m

3)

Figure 8: Boxplots compare the estimated predictive distributions of PM10 exposure in
1997 for a random member of a selected subpopulation of Londoners. Here distributions
are for average daily exposures on spring days for senior males (labelled ‘SM’) and working
females (labelled ‘WF’) before (‘NR’) and after (‘RB’) a 20% rollback in hourly levels. Both
subpopulations are smokers and use gas as a cooking fuel. The males live in a Bloomsbury
apartment, the women in a semi-detached Brent dwellings. However the latter work in
Bloomsbury.
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was originally designed. In this paper, exposures were successfully estimated for randomly
selected Londoners in various designated sub-populations. The model executes quickly, is
flexible, and may be run remotely from the user’s PC.

To maximize the platform’s flexibility, it is not programmed to compute marginal ex-
posure predictive distributions by averaging over London’s sub-populations. However, this
would be of interest to policy-makers, after all, some sub-populations whose members might
be heavily impacted by high PM10 exposures may at the same time be negligible in size,
making that impact minimal. The platform could readily be extended to compute such
weighted averages, although this would add additional complexity with small benefit. This
would require a complete set of population counts for the sub-populations to be uploaded
by the client to enable the host server in computing those weighted averages. As such,
the calculation would be more efficiently carried out by users locally after downloading the
output from their pCNEM model simulations.

In the example presented, data for London was used wherever available, further en-
hancements could be made by incorporating a time-activity data file for Londoners along
with better parameter values for the various micro-environment emission sources.

The model needs to be tested empirically as a predictor. That needs to be left to future
work as resources become available. At the same time, an application to environmental
epidemiology has been started, the goal of which is to produce more realistic estimates of
the exposure to pollutants, particularly within susceptible groups, which will then be used
to assess the effects on health. Part of this work will be to compare the estimates from
the pCNEM model with those directly available from the monitoring sites, which in the
past have used in the majority of epidemiological studies into the short-term effects of air
pollution.
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Appendix A

Estimating population distributions

As described in Section 2, the sample space of all possible information relating to an in-
dividuals exposure to pollution, Ω is split into two parts, representing individual (I) and
external (E) factors, i.e. Ω = ΩI ×ΩE and ω = (ωI , ωE) for each ω ∈ Ω where ωI ∈ ΩI and
ωE ∈ ΩE

Assume that A, the collection of subsets of Ω representing the outcome of a sampling
experiment, includes all events of the form AI× AE where AI and AE are events in ΩI and
ΩE , respectively.

Given ωI = ω̃I , for any given ω̃I , the (conditional) population distribution of X, the
observed information, is P (X ∈ B | ωI = ω̃I) for all B. A standard result from probability
theory tells us that

PX(B) = EI [P (X ∈ B | ωI = ω̃I)]

where EI denotes the average over all ω̃I in ΩI with respect to the population distribution.
This shows that P (X ∈ B | ωI = ω̃I) would, if known, be an unbiased estimator of PX(B).
When several successive ω̃Is are sampled in an unbiased manner, we readily see that any
weighted average of the conditional probabilities, if known, yield an unbiased estimator.

Similar reasoning shows that the conditional probability distribution given ωE = ω̃E , if
known, also yields an unbiased estimator of PX(B). However, the last conditional proba-
bility for a fixed ω̃E , itself proves of interest in pCNEM’s scenario analysis to determine the
impact on population level exposures as a result of an intervention. Since in practice it is
not known, it is estimated (in pCNEM) by repeated (unbiased) sampling of ωIs.

As a generalization of the case of estimating PX(B) considered above, consider any
real-valued function of X, say G(X) . Note that the special case obtains when we let
G(X) = I{X ∈ B}, the 0-1 indicator function of B. The population averages [E(G(X)]
and [E(G(X) | ωE = ω̃E ] can then be expressed in terms of population and conditional
population distributions, respectively. Their associated unbiased estimators are then readily
seen.

Appendix B

Estimating the standard error associated with exposure estimates

By obtaining a measurement of the uncertainty associated with the exposure estimates,
the model can be used in statistical inference. Assume each of N individuals in a finite
population are exposed to a random pollutant concentration at n successive times to yield

33



X = (X(t1), ...., X(tn)). To calculate the expected number, ν, of person-times among these
N individuals and n times whose individual exposures exceed a specified level, xo, let Xik

be the exposure of individual k on day i for all i and k. Then ν = E[
∑n

i=1

∑N
k=1 I{Xik >

xo}] =
∑n

i=1

∑N
k=1 pik, where pik = E[I{Xik > xo}]. Note that that if pik = p for all i and k,

we obtain an expression involving the familiar formula for the expectation of the binomial
distribution, namely ν = nNp.

To estimate ν using the pCNEM sampling scheme, suppose a random individual Ki is
sampled on day i where πk = P (Ki = k), k = 1, . . . , N depends on the sampling design
used. Then ν̂ =

∑n
i=1 I{XiKi > xo}/πKi is an unbiased estimator of ν. When, in particular,

πk = N−1 for all k = 1, . . . , N we obtain ν̂ = Nn+ where n+ denotes the number of days
among the n for which that selected individuals had an exposure exceeding xo. The pCNEM
methodology uses precisely this estimator albeit in the case where ωE is held fixed.

Our model explicates and justifies the use of that estimator and thus enables a standard
error seν̂ to be calculated. To represent that standard error consider the following additional
notation:

p̄i = N−1
N∑

k=1

pik

p̄j|i = N−2

∑N
k=1

∑N
k′=1 E[I{Xik > xo}I{Xjk′ > xo}

p̄i
.

Intuitively p̄i represents the average probability of exceedance at time-point i over all
individuals, p̄j|i the average conditional probability of exceedance at time-point j given an
exceedance at i. With this notation,

N−2se2
ν̂ =

n∑

i=1

[
N∑

k=1

pik

N2πk
− p̄2

i

]
+

∑

(i,j):i6=j

p̄i(p̄j|i − p̄j). (7)

In the special case where πk ≡ N−1 we find in particular that

N−2se2
ν̂ =

n∑

i=1

p̄i(1− p̄i) +
∑

i 6=j

p̄i(p̄j|i − p̄j). (8)

Observe that positive correlation between all time-points i and j of exposure exceedances
makes p̄j|i − p̄j > 0 and hence the standard error larger as might be expected on intuitive
grounds. The standard error will be large as well unless the {p̄i} are not all close to 0 or
all close to 1.

Unless exposure exceedances at different time-points are independent we cannot estimate
the standard error given above, there being then just one replicate for each (i, j) pair of
time-points. The need for such replicates is an important consideration in the design of
simulated sample methods for exposure estimation.
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Appendix C

Determining the required conditional probabilities

The joint distribution of the structural components of the model can be expressed as follows;

(X, XL, XA, B, AM, AF, I, E) = (X | XL, XA)(XL | B)
× (XA | ME,P, AF )(AF | E)
× (AM | AF )
× (B | I, E)(I, E), (9)

where B=(A,ME,POS).
Various distributions of interest can now be defined in terms of this joint distribution.

The uncertainty about X = X(ω), that is, its population distribution, can be expressed
(assuming ω is sampled in an unbiased way);

(X) =
∫

X=XL+XA

(X, XL, XA, B,AM,AF, I, E)

× d(XL, XA, B, AM,AF, I, E) (10)

=
∫

X=XL+XA

(X | XL, XA)(XL | B)(XA | ME, P, AF )(AF | E)

× (AM | AF )
× (B | I, E)(I, E)d(XL, XA, B, AM, AF, I, E)

=
∫

X=XL+XA

(X | XL, XA)(XL | B)(XA | ME, P, AF )d(XL, XA)

× (AF | E)dAF (B | I, E)d(B)(E, I)d(I, E)

=
∫

X=XL+XA

(X | B,AF )(AF | E)dAF

× (B | I, E)d(B)(E, I)d(I, E)

=
∫

X=XL+XA

(X | I, E)(E, I)d(I, E), (11)

where

(AF | E) =
∫

(AF, AM | E)dAM =
∫

(AF | AM, E)× (AM | E)dAM

independently of all other variables above. Note that the uncertainty about the I and
E-strata from which ω was drawn has now been incorporated.

pCNEM finds the population distribution in accord with the distribution above, but
the distribution actually computed is (X | AM) for a fixed sequence of monitoring val-
ues. To represent this conditional probability distribution, using Equation (10) developed
differently:

(X) =
∫

X=XL+XA

(X, XL, XA, B,AM,AF, I, E)

35



× d(XL, XA, B, AM, AF, I, E)

=
∫

X=XL+XA

(X | I, E, AM)

× (I, E | AM)d(I, E)(AM)d(AM)

=
∫

X=XL+XA

(X | AM)(AM)d(AM). (12)

Thus, (X) is a mixture of (X|AM).
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