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Abstract

Predicting the outcome of a future game between two sports teams poses

a challenging problem of interest to statistical scientists as well as the general

public. To be effective such prediction must exploit special contextual features

of the game. In this paper, we confront such features and address the need to:

(i) use all relevant sample information; (ii) reflect the home game advantage. To

do so we use the weighted likelihood. Finally we demonstrate the value of the

method by showing how it could have been used to predict the 96/97 NBA playoff

results. Our weighted likelihood-based method proves to be quite accurate.

Key words: Likelihood; relevance weighted likelihood; predicting basketball scores;

sports statistics; NBA; basketball.
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1 Introduction

This paper demonstrates the use of the weighted likelihood (WL) to predict the winner

of National Basketball Association (NBA) final games and applies the method in each of

the games played in the 1996-97 finals between the two top ranked teams, the Chicago

Bulls and the Utah Jazz. However, as we try to indicate, the WL has much wider

applicability inside as well outside the domain of sports.

That domain has generated a lot of interest in statistics. For example, the March

13, 2003 edition of North Carolina’s “The News & Observer” (page 6D) carries the

column caption “Profs predict bubble teams”. The article goes on to describe how two

academics, Jay Coleman and Allen Lynch, in apparently unpublished work, produce

a method using “SAS analytics” for predicting the 65 NCAA teams to appear in the

2003 NCAA men’s basketball tournament. However,

“Coleman said the formula isn’t designed to make bolder predictions, such

as forecasting the tournaments’s winner,”

(according to the article), although the latter would have brought their work closer to

the objectives of the present paper.

The abundance of data on the WWW (where we found the data for this paper)

demonstrates that interest, as do the statistical methods found there. At

http://www.rawbw.com/ deano/ we found articles on, and links to a variety of such

methods. We learned that some of these methods are

“similar to those found in the analysis of baseball, particularly those of Bill

James, whose work popularized the study of statistics in sports because it

was scientifically solid and entertaining to read.”

A book has even been written about statistics in sports (Bennett 1998), and ref-

ereed papers published. Harville (1977) uses regression analysis to rate high school
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and college football teams (from first to last) based on observed score differences. The

ratings are then based on the estimates of a random effects model parameter associated

with each team. In a later paper (Harville 1980), he develops a method for forecasting

the point spread of NFL games, again using regression methods, again based on his-

torical point spreads, and linear random effects models. The topic of that paper comes

closer to ours, since these forecasted point spreads can be used to predict NFL game

winners.

In related papers, Schwertman et al (1996) and Carlin (1996) tackle NCAA bas-

ketball. Both papers (like this one) estimate the probability that team i beats j. They

(unlike us) are based on pre-game information. The first uses a logistic regression

analysis of win - loss records and various functions of seed numbers, as a way of incor-

porating prior knowledge and expert opinion. The second extends earlier unpublished

work of Schwertman et al (1993) by using other external information such as “...the

RPI index, Sagarin ratings, and so on...” in addition to seed numbers. Like Harville

(1980) and Stern (1992), Carlin uses published point spreads to capture pregame in-

formation and does a linear regression analysis of observed point spreads on pregame

information. Models derived from that analysis can be used to predict game winners.

Kuonen and Roehrl (2000) use a logistic model like that of Schwertman et al (1996)

to explore the credibility of France’s win in the 1998 World Cup of soccer tournament.

The pre-game ratings had put Brazil well ahead of France casting doubt on the victory.

They conclude France’s victory should not have come as a surprise. (They also give a

recent review of literature on the subject of predicting wins.)

Our approach unlike those described above, does not attempt to take pre-game

information into consideration although it may be possible to do that through the

weights in the WL. That issue remains to be explored. Instead, our goal is to introduce

the WL method and show how it can be used. No doubt improvements that build on
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earlier work could enhance the method. However, we do assess our approach against

a logistical method that embraces the celebrated method of Bradley and Terry (1952)

that also underlies the work of Schwertman et al (1996).

The genesis of our work lies in two statistical problems encountered in sports: (i)

the prediction of the outcome of a future game between two specified sports teams; (ii)

the assessment of the accuracy of this prediction. Since typically these two teams will

not have met more than just a few times in the given season, little direct information

will be available to the forecaster. The consequent small sample size will make naive

predictions inaccurate and the associated prediction intervals excessively large.

Turning to the NBA’s 1996-97 finals, we note that the winner was the team that

won the best of 7 games. To predict that outcome, one might sequentially determine

the prediction probability of a Bulls win in each of a series of successive games. To find

that probability, the 1996-97 season data would be used. However, the Bulls met the

Jazz just twice, providing the only ‘direct’ information available, in the terminology

of Hu and Zidek (1993) and Hu (1994). However, that small sample cannot generate

accurate predictions.

To overcome this data deficiency, observe that the Bulls (like the Jazz) played

82 games in the season (2 with the Jazz and 80 with other teams). The 160 games

these two played against other teams provide “relevant” information, in the Hu-Zidek

terminology.

To use both the “direct” and “relevant” information in some simple yet flexible way,

Hu (1994) proposes the “relevance weighted likelihood”. Hu and Zidek (2002) extend

that likelihood and Wang (2001) further extended it to get the “weighted likelihood

(WL)”, the terminology we use in this paper.

The method of weighted likelihood has been applied to a neurophysiology experi-

ment (Hu and Rosenberger, 2000). In that paper, they find that both bias and mean
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square error are significantly reduced by using the weighted likelihood method. Hu and

Zidek (2001) use the WL to predict the number of goals (with prediction intervals) for

each of the Vancouver Canucks and Calgary Flames in their NHL games against each

other during the 1996-97 season. They (Hu and Zidek 2002) show how the WL can be

used to construct generalizations of the classical Shewhart control charts. Their gen-

eralization includes the moving average and exponentially moving average charts and

allows for a variety of failure modes when processes go out of control. This application

introduces the weighted likelihood ratio test. In that same paper, they show how the

James Stein estimator, including generalizations, can be found with the WL.

A particularly important class of applications arise in estimating parameters that

are interrelated, leading to natural relationships among the associated populations and

inducing transfers of information from their associated samples. Van Eeden and Zidek

(2002) show how such interrelations may be exploited through the WL when the means

of two normal populations with known variances are ordered. The analogous problem

when the mean difference is bounded is treated in Van Eeden and Zidek (2000). Finally,

we would mention an application to disease mapping in Wang (2001).

In Section 2, we apply the WL in the NBA forecasting application above by taking

advantage of special features of sports data. The maximum WL estimator (MWLE)

is developed for predicting the result of a future game. The mean square error of this

MWLE is given. Moreover, we construct approximate confidence intervals using the

asymptotic theory for the MWLE given by Hu (1997).

In Section 3, we apply the method developed in Section 2 to predict the 1996-97

NBA playoff results, specifically for games involving the Chicago Bulls and the Utah

Jazz. Our predictions agree quite well with the actual outcomes.

To validate that positive performance assessment, in Section 3 we consider the

playoff games played by the Bulls against each of three other teams, the Miami Heat, the
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Atlanta Hawks, and the New York Knicks. Similarly, playoff games between the Heat

and Knicks are considered. These additional predictions are also in good agreement

with the actual game outcomes.

Many other approaches can be taken in our application. In Section 4, our method

is shown to compare favorably with a ‘purpose built’ competitor, an extension of the

Bradley Terry model (Bradley and Terry 1952). Moreover, it proves to have all the

flexibility and much of the simplicity of its classical predecessor proposed by Fisher.

Thus, we are able to recommend it as a practical alternative to its competitors for the

application considered.

2 Sports Data and the WL.

2.1 Contextual features.

Usually in sports, the outcome of any one game derives from the combined efforts of

two teams that have seldom played each other before. Yet these games yield the only

direct sample information available about the relative strength of these two teams. At

the same time, each of these teams will have played many games against other teams

thereby generating relevant (although not direct) sample information. The predictive

probability of a win in the next game between these two teams, should combine both

kinds of information.

In some sports, the home team has a great advantage (see Section 3) that must be

accounted for when the data are analyzed (although in their application, Hu and Zidek

(2002) ignored that advantage). Finally, the outcome of any one game will depend

on both the offensive and defensive capabilities of the teams involved. Information

about those capabilities is revealed through the scores of games involving the teams

and ideally, would be used to help predict the outcome of future games. Hu and
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Zidek (2001) use the weighted likelihood for that purpose in another sports application.

However, in this paper we do not assume those scores to be available and more simply

base our methodology on the binary outcomes of those games instead.

2.2 The Weighted Likelihood.

To develop a statistical model for the analysis of sports data, one should recognize

the distinctive contextual features described in the last subsection. Let YAB(h) be a

Bernoulli random variable that is 1 or 0 according as the home team, A, wins against

team B or not. Similarly, let YAB(r) be a random variable that is 1 or 0 according as

team A wins against team B when team B is at home. Note that YAB(h) = 1−YBA(r).

As an approximation, assume the time series of Y’s for different games and team pairs

are independent in this paper. Clearly, a more sophisticated approach like that of Hu,

Rosenberger, and Zidek (2000) would allow dependent game outcomes.

Suppose the {YAB(h)} and {YAB(r)} have probability density functions f(y, pAB(h))

and f(y, pAB(r)) respectively. To predict the game result, (YAB(h), YBA(r)) or (YAB(r), YBA(h)),

we have to estimate the parameters pAB(h) and pAB(r).

To create the weights required in implementing the WL, we choose the same weight

in the likelihood factor corresponding to each of the games A played against teams

other than B, irrespective of the opponent. From Hu and Zidek (2002), we may use

the weighted likelihood method to estimate the parameters pAB(h) and pAB(r). The

log weighted likelihood of pAB(h) thus becomes

kAB∑

i=1

log f(yAB(h), pAB(h)) + αAB(h)
∑

A(B)

log f(yA(B)(h), pAB(h))

+βAB(h)
∑

(A)B

log f(y(A)B(h), pAB(h)), (1)

where kAB is the number of games that A against B at home;
∑

A(B) denotes the sum

over all games that A played against teams other than B in the league with A at
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home and yA(B)(h) the corresponding binary game outcomes;
∑

(A)B is the sum over

all games that B played against teams other than A when B is away and y(A)B(h)

the corresponding outcomes. Let p̂MWLE
AB (h) be the corresponding maximum weighted

likelihood estimate (MWLE) of pAB(h). The MWLE of pAB(r) can be defined in a

similar way.

We adopt the approximate Akaike criterion (Akaike, 1977, Akaike, 1985, and Hu

and Zidek, 2002) to select the weights αAB(h) and βAB(h) by minimizing with respect

to both,

E(p̂AB(h)− pAB(h))2. (2)

The resulting optima will, however, depend on the unknown p’s being estimated. To

address this problem we can use ‘plug - in’ estimators obtained in any reasonable way,

for these p’s, to obtain α̂AB(h) and β̂AB(h) from Equation (2). One possible way of

doing this is demonstrated in Section 3.

In most applications, we need confidence intervals (or the equivalent) for the pa-

rameters. The impossibility of finding exact confidence intervals based on the MWLE

leads us to use approximate ones based on the asymptotic normality of the MWLE

(see Theorem 5 of Hu, 1997). We obtain such a 95% confidence interval for pAB(h) as

[p̂MWLE
AB (h)− ˆbiasAB − 1.96

√
ˆvarAB, p̂MWLE

AB (h) + ˆbiasAB + 1.96
√

ˆvarAB]. (3)

Here ˆbiasAB and ˆvarAB are the estimators of the bias and variance given in Theorem

5 of Hu (1997). With those estimates p̂AB(h) and p̂BA(r), we can find the predictive

probabilities of winning, losing and drawing the game (along with their approximate

confidence intervals) when a game is played at the home of Team A.
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3 Predicting the NBA playoff results.

In this section, we turn to the problem of predicting the outcomes of NBA playoff

games. Our analysis concerns the 1996-1997 season.

The home team advantage is significant in the NBA. We tested the null-hypothesis

of no home team advantage against the alternative of a home team advantage and

found a p-value of about 10−7 suggesting the need to separate home and away games.

Remark 1 Here the simple sign test is used to test the home team advantage. There

are 29 teams total in NBA. Each team played at home and away for 41 games. If a

team has more wins at home, then the sign is 1. If a team has less wins at home, then

the sign is −1. Use the data of 1996-97, there are 28 teams with more home wins and

only one team with less home wins. By the sign test, the p-value is 30 ∗ 0.5−29 < 10−7.

To describe our application, let YAB(h) ∼ Bernoulli(1, pAB(h)) be independently

distributed random variables representing a “win” or “loss” by team A in any one game

played against team B while A is at home. We first estimate the predictive probabilities

pAB(h) and pBA(h) where ‘A’ and ‘B’ denote respectively the Chicago Bulls and the

Utah Jazz, two top NBA teams.

The use of the weighted likelihood seems especially appealing here given the paucity

of “direct” information about the relative strengths of A and B. In fact, the Jazz

played only one game in Chicago. The classical likelihood leaves no chance of finding

reasonable parameter estimates. In contrast, the MWLE brings in information from

games each of these teams played against others in the NBA. That is, the MWLE uses

the information in the “relevant sample” in addition to that in the “direct sample”.

We find the MWLE of pAB(h) (from the weighted likelihood (1)) to be

p̂MWLE
AB (h) = ȳAB(h) + αAB(h)(ȳA(B)(h)− ȳAB(h)) + βAB(h)(ȳ(A)B(h)− ȳAB(h)), (4)

9



where ȳAB(h) denotes the fraction of wins for A in the kAB(h) games played against B

during the season with A at home. The ȳA(B)(h) represents the corresponding fraction

of wins for A in the kA(B)(h) games played against teams other than B with A at home.

By using the approximate Akaike criterion with a reasonable estimate p̂AB(h) (de-

scribed below), an optimal weight may be estimated by

α̂AB(h) =
VAB(h)[V(A)B(h) + (ȳ(A)B(h)− p̂AB(h))(ȳ(A)B(h)− ȳA(B)(h))]

C + D
(5)

and

β̂AB(h) =
VAB(h)[VA(B)(h) + (ȳA(B)(h)− p̂AB(h))(ȳA(B)(h)− ȳ(A)B(h))]

C + D
(6)

where

VAB(h) =
p̂AB(h)(1− p̂AB(h))

kAB(h)
,

VA(B)(h) =
ȳA(B)(h)(1− ȳA(B)(h))

kA(B)(h)
,

V(A)B(h) =
ȳ(A)B(h)(1− ȳ(A)B(h))

k(A)B(h)
,

C = VAB(h)[V(A)B(h) + VA(B)(h) + (ȳ(A)B(h)− ȳA(B)(h))2]

and

D = VA(B)(h)(ȳ(A)B(h)− p̂AB(h))2 + V(A)B(h)(ȳA(B)(h)− p̂AB(h))2 + VA(B)(h)V(A)B(h).

The corresponding mean square error of the MWLE may be estimated by

ˆMSEMWLE = [α̂AB(h)(ȳA(B)(h)− p̂MWLE
AB (h))

+ β̂AB(h)(ȳ(A)B(h)− p̂MWLE
AB (h))]2

+ α̂2
AB(h)

ȳA(B)(h)(1− ȳA(B)(h))

kA(B)(h)

+ β̂2
AB(h)

ȳ(A)B(h)(1− ȳ(A)B(h))

k(A)B(h)

+ (1− α̂AB(h)− β̂AB(h))2 p̂MWLE
AB (h)(1− p̂MWLE

AB (h))

kAB(h)
.
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The 95% confidence interval of pAB(h) based on the MWLE would be:

[p̂MWLE
AB (h) − ˆbiasAB(h) − 1.96

√
ˆvarAB(h), p̂MWLE

AB (h) + ˆbiasAB(h) + 1.96
√

ˆvarAB(h)],

where

ˆbiasAB(h) = |α̂AB(h)(ȳA(B)(h)− p̂MWLE
AB (h)) + β̂AB(h)(ȳ(A)B(h)− p̂MWLE

AB (h))|

and

ˆvarAB(h) = α̂2
AB(h)

ȳA(B)(h)(1− ȳA(B)(h))

kA(B)(h)

+ β̂2
AB(h)

ȳ(A)B(h)(1− ȳ(A)B(h))

k(A)B(h)

+ (1− α̂AB(h)− β̂AB(h))2 p̂MWLE
AB (h)(1− p̂MWLE

AB (h))

kAB(h)
.

We now describe how we found the plug-in estimates, the optimal weights, the win

probabilities and the corresponding confidence intervals by considering Bull against

Jazz while Bull at home.

During the regular season, Bull played 41 games at home. One game was against

Jazz and Bull win this game. So kAB = 1 and ȲAB = 1. Bull played 40 games against

teams other than Jazz and win 38 of these games. Thus, kA(B) = 40 and ȲA(B) = 0.95.

Jazz played 40 (k(A)B = 40) games against teams other than Bull on road and win 26

of these games. Ȳ(A)B = 1− 26/40 = 0.35. For this case, the plug-in estimate,

p̂AB(h) =
kABȲAB + kA(B)ȲA(B) + k(A)BȲ(A)B

kAB + kA(B) + k(A)B

=
1 + 38 + 14

1 + 40 + 40
=

53

81
= 0.6543.

The corresponding values in equation (5) and (6) can be calculated by using above

results. And the values are: VAB(h) = 0.2262, VA(B)(h) = 0, 0011875, V(A)B(h) =

0.0056875, C = 0, 082987 and D = 0.000637. Subsistute these values into equation (5)

and (6), we get the optimal weights:

α̂AB(h) = 0.50925, and β̂AB(h) = 0.4831.
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The MWLE in (1) is then

p̂MWLE
AB (h) = 0.66.

The corresponding mean square erroer, bias and variance of this MWLE are

MSEMWLE = 0.001653, ˆbiasAB(h) = 0.002 and ˆvarAB(h) = 0.001648.

The 95% confidence interval of pAB(h) based on this MWLE is then [0.58, 0.74].

The above MWLE is based on the games with all teams that Bull played at home

or Jazz played on the road. Each game has the same weight in the weighted likelihood.

This seems unreasonable because some of the teams are significantly weaker than oth-

ers. Now we only use the teams (10 teams in 1996/97 season) which won at least 50

games in the season. By using the games with these 10 teams, we calculate the win

probabilities as well as the confidence intervals, which is deonted by MWLE1.

Before the 1996-97 finals between the Bulls and the Jazz, both teams had played

the first and second round as well as the conference finals. This additional information

is used in constructing MWLE2.

We now use MWLE, MWLE1 and MWLE2 to predict the 1996-97 Finals between

the Bulls and Jazz. We report the point estimates of the probabilities, the mean square

errors and the confidence intervals of pAB(h) in Table 1

Based on the probabilities and the confidence intervals of Table 1, we can find the

probabilities with which the Bulls (and Jazz) will win the Final by Game 4, 5, 6 or 7.

Also we can calculate the total win probabilities for the Bulls against the Jazz based

on its home and away win probabilities given by each of the three estimation methods.

Confidence intervals for these win probabilities may be obtained as well. In Table 2

where the results are reported, and in the tables that follow, that interval is obtained for

any pair of teams say A and B from the 95% asymptotic intervals for A’s home- and A’s

away-win-against-B probabilities. Since those intervals are stochastically dependent,
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MWLE MWLE1 MWLE2

At Chicago 0.66 (0.002) 0.77 (0.007) 0.75 (0.004)

95% C.I. [0.58,0.74] [0.60,0.94] [0.62,0.89]

At Utah 0.40 (0.002) 0.36 (0.008) 0.34 (0.004)

95% C.I. [0.32,0.48] [0.16,0.55] [0.21,0.47]

Table 1: The Bulls predictive win probabilities (with mean square error) and confidence

intervals based on MWLE, MWLE1 and MWLE2 for a future game between the Bulls

and the Jazz during the 1996 - 97 Season.

we use a Bonferonni argument and obtain an asymptotic interval of confidence at least

90%. In obtaining that interval, we rely on the heuristically obvious fact that the

overall win probability must be a monotonically increasing function of the home and

away win probabilities.

Table 1 indicates general agreement between MWLE1 and MWLE2. But MWLE

gives a much smaller estimator of a Chicago win at home. Both MWLE1 and MWLE2

predict that the Bulls would win the Finals with high probability. Also MWLE1 and

MWLE2 predict the Bulls will win at Game 6. These predictions agree with the actual

result: the Bulls won the Final at Game 6.

To explore the performance of our method further, we calculated prediction prob-

abilities for other pairs of teams, the Bulls vs. the Miami Heat, the Atlanta Hawks,

the New York Knicks as well as the Miami Heat against the Knicks. The results are

summarized in Table 3.

From Table 4, we see that MWLE, MWLE1 and MWLE2, respectively predict a

Bulls win against the Heat with probabilities 0.62, 0.72 and 0.77. MWLE1 and MWLE2

also predict that most probably the Bulls will win at Game 5. That prediction proved

to be correct.
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Game # Game 4 Game 5 Game 6 Game 7 Total 90+%a C.I.

MWLE Bull Win 0.07 0.11 0.21 0.21 0.61 [0.43,0.77]

Jazz Win 0.04 0.13 0.11 0.11 0.39 [0.23,0.56]

MWLE1 Bull Win 0.07 0.11 0.27 0.26 0.71 [0.30,0.95]

Jazz Win 0.02 0.11 0.08 0.08 0.29 [0.05,0.70]

MWLE2 Bull Win 0.07 0.10 0.26 0.26 0.69 [0.37,0.92]

Jazz Win 0.02 0.12 0.09 0.08 0.31 [0.08,0.63]

Table 2: The predictive probabilities of a Bulls win against the Jazz together with

confidence intervals for MWLE, MWLE1 and MWLE2 in the 1996 - 97 Final.

aAn interval of confidence at least 90% based on an asymptotic approximation.

Table 5 gives MWLE, MWLE1 and MWLE2 predictions when the Bulls play the

Atlanta Hawks. MWLE1 and MWLE2 predict that the Bulls will win with probabilities

0.96 and 0.93 respectively while MWLE is only 0.72. MWLE1 and MWLE2 also predict

a Bulls win at game 5 with the highest probabilities (0.43 and 0.40). [In the playoffs

the Bulls did win at game 5.]

Table 7 shows that a Heat - Knicks game will be close. MWLE and MWLE1 predict

that the Heat has a slight advantage in the playoffs, while MWLE2 favors the Knicks

slightly. In fact, the Heat won at game 7. However an accident occurred in that series

leading to a suspension of several New York players in Games 6 and 7. Undoubtedly

this influenced the outcome.

Overall, MWLE is more conservative in that it’s predictions are closer to 0.5 than

the other methods. This is because MWLE uses some not-so-relevant information from

games involving weak teams. When the Bulls and the Jazz play weak teams each wins.

Thus, these data will tend to increase both of their success rates. However, since

they both enjoy that benefit, the relevant difference in their estimated strengths will
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Pairs MWLE MWLE1 MWLE2

Bull At Chicago 0.59 (0.001) 0.72 (0.007) 0.75 (0.005)

vs 95% C.I. [0.52,0.67] [0.55,0.90] [0.60,0.90]

Heat At Miami 0.51 (0.002) 0.44 (0.01) 0.45 (0.007)

95% C.I. [0.41,0.61] [0.24,0.64] [0.29,0.61]

Bull At Chicago 0.73 (0.002) 0.95 (0.001) 0.91 (0.003)

vs 95% C.I. [0.65,0.82] [0.88,1.0] [0.81,1.0]

Hawks At Atlanta 0.32 (0.002) 0.32 (0.009) 0.44 (0.007)

95% C.I. [0.34,0.51] [0.23,0.62] [0.28,60]

Bull At Chicago 0.66 (0.002) 0.76 (0.006) 0.77 (0.004)

vs 95% C.I. [0.58,0.74] [0.59,0.93] [0.63,90]

Knicks At New York 0.49 (0.002) 0.42 (0.009) 0.46 (0.006)

95% C.I. [0.39,0.58] [0.23,0.62] [0.29,0.60]

Heat At Miami 0.52 (0.003) 0.63 (0.012) 0.59 (0.008)

vs 95% C.I. [0.40,0.63] [0.38,0.87] [0.33,0.85]

Knicks At New York 0.51 (0.002) 0.40 (0.013) 0.34 (0.008)

95% C.I. [0.42,0.60] [0.20,0.60] [0.16,0.53]

Table 3: The predictive win probabilities, the mean square errors and the confidence

intervals based on MWLE, MWLE1 and MWLE2: the Bulls against the Miami Heat

(where the Bulls win); the Bulls against the Atlanta Hawks (the Bulls win); the Bulls

against the New York Knicks (the Bulls win) and the Miami Heat against the New

York Knicks (the Heat wins).
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Game # Game 4 Game 5 Game 6 Game 7 Total 90+%a C.I.

MWLE Bull Win 0.09 0.18 0.17 0.18 0.62 [0.44,0.79]

Heat Win 0.04 0.08 0.13 0.13 0.38 [0.21,0.56]

MWLE1 Bull Win 0.10 0.24 0.16 0.22 0.72 [0.32,0.97]

Heat Win 0.02 0.05 0.12 0.08 0.28 [0.03,0.68]

MWLE2 Bull Win 0.11 0.27 0.17 0.22 0.77 [0.43,0.96]

Heat Win 0.02 0.03 0.11 0.07 0.23 [0.04,0.57]

Table 4: The predictive win probabilities and the confidence intervals for MWLE,

MWLE1 and MWLE2 between the Bulls and Miami Heat for the 1996-97 East Con-

ference Final.

aAn interval of confidence at least 90% based on an asymptotic approximation.

Game # Game 4 Game 5 Game 6 Game 7 Total 90+%a C.I.

MWLE Bull Win 0.09 0.24 0.16 0.23 0.72 [0.54,0.87]

Hawks Win 0.02 0.05 0.13 0.08 0.28 [0.13,0.46]

MWLE1 Bull Win 0.16 0.43 0.15 0.21 0.96 [0.79,1.00]

Hawks Win 0.00 0.00 0.03 0.01 0.04 [0.00,0.21]

MWLE2 Bull Win 0.16 0.40 0.16 0.21 0.93 [0.72,1.00]

Hawks Win 0.00 0.00 0.05 0.02 0.07 [0.00,0.28]

Table 5: The predictive probability of a win and the confidence intervals for MWLE,

MWLE1 and MWLE2 between the Bulls and the Atlanta Hawks during the 1996-97

playoffs.

aAn interval of confidence at least 90% based on an asymptotic approximation.
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Game # Game 4 Game 5 Game 6 Game 7 Total 90+%a C.I.

MWLE Bull Win 0.10 0.22 0.17 0.20 0.69 [0.50,0.85]

Knicks Win 0.03 0.06 0.12 0.10 0.31 [0.15,0.50]

MWLE1 Bull Win 0.10 0.26 0.16 0.23 0.75 [0.35,0.98]

Knicks Win 0.02 0.04 0.12 0.07 0.25 [0.02,0.65]

MWLE2 Bull Win 0.12 0.28 0.16 0.22 0.78 [0.46,0.96]

Knicks Win 0.01 0.03 0.11 0.07 0.22 [0.04,0.54]

Table 6: The predictive probability of a win along with the confidence intervals of

MWLE, MWLE1 and MWLE2 between the Bulls and the New York Knicks during

the 1996-97 playoffs.

aAn interval of confidence at least 90% based on an asymptotic approximation.

Game # Game 4 Game 5 Game 6 Game 7 Total 90+%a C.I.

MWLE Heat Win 0.07 0.14 0.16 0.16 0.53 [0.31,0.74]

Knicks Win 0.06 0.11 0.15 0.15 0.47 [0.26,0.69]

MWLE1 Heat Win 0.06 0.16 0.14 0.20 0.56 [0.12,0.92]

Knicks Win 0.05 0.09 0.18 0.12 0.44 [0.08,0.88]

MWLE2 Heat Win 0.04 0.13 0.11 0.19 0.47 [0.07,0.91]

Knicks Win 0.07 0.12 0.21 0,13 0.53 [0.09,0.93]

Table 7: The predictive probability of win and the confidence intervals of MWLE,

MWLE1 and MWLE2 between the Miami Heat and the New York Knicks during the

1996-97 playoff.

aAn interval of confidence at least 90% based on an asymptotic approximation.
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diminish, making the MWLE tend toward 0.5. MWLE1 and MWLE2 agree with each

other, the latter giving slightly more precise predictions (as measured by the length

of the associated predictive intervals in Table 1) because it incorporates the playoff

games.

The Bulls and the Knicks did not meet in the playoffs. However, MWLE1 and

MWLE2 predict a hypothetical Bulls win with probabilities 0.75 and 0.78 had they

met. Both predict a hypothetical Bulls win for the series at game 5.

4 Concluding Remarks.

The method in this paper provides guidelines for the development of a prediction

strategy. Its implementation, more specifically the construction of weights entails the

incorporation of any special features that may obtain when the game is played. For

example, one might need to incorporate the knowledge that certain key players cannot

play in that game. [This last consideration did arise in the playoff between the Miami

Heat and the New York Knicks.]

The need for the incorporation of such features was reaffirmed by an unpublished

analysis carried out in the summer of 1998 by Farouk Nathoo. In that analysis, he

twice simulated the entire 1997/98 season based on the previous year’s results. In his

report he compared the simulation results with the actual results. Among other things

he found the fraction of wins for each of the 29 NBA teams and for example we include

the results for the Atlantic Division and give these results in Table 8.

We see in this example that the simulated winning precentages are in reasonable

agreement with the actual results except in the case of the Nets, the Knicks and the

Celtics. Given the severity of the challenge of predicting the outcomes of all games

over an entire year, we find our results encouraging.
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Win % : Win % Win % :

Team Actual Simulation 1 Simulation 2

Heat 67 66 59

Nets 52 35 38

Knicks 52 65 66

Wizards 51 52 54

Magic 50 54 48

Celtics 44 20 26

Sixers 38 27 35

Table 8: The percentage of wins in the actual and two simulated 1997/98 season for

the NBA’s Atlantic Division based on the WL win probability estimators obtained at

the end of the previous season.

The WL method can be applied in other sports such as baseball, hockey (see Hu

and Zidek 2002), soccer. In this paper, we chose the same weight for all teams. This

seems unreasonable in some cases and there we may be able to use the rank of the

teams to get better weights. This is another topic for the future.

Finally, we would note the abundance of alternative approaches, Bayesian (Berger,

1985) and non-Bayesian that could be used in this context. Some specific methods

were discribed in the Introduction, We intend to compare our approach with some of

these in future work. Here, we restricted our comparisons to an extension of one of the

non - Bayesian approaches based on that of Bradley and Terry (1952) to estimate the

probabilities of a Bulls win for both home and away games against the Jazz. (We found

the corresponding probabilities for the remaining teams as well but do not report them

here.) With these probabilities we could then compute the termination probabilities

analogous to those in Table 2.
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To be more precise, we fitted a logistic model using the software R with the re-

sponse variable being 1 or 0 according as the outcome of any game during the season

was a visitor or home victory. We used dummy variables to represent visitor and home

teams in each game throughout the season. Thus for example, BullsV=1 and Super-

sonics=1, all other dummies being 0, would mean those two teams were playing for

that particular game, the visitors being the Bulls. For each of the factors, ‘visitor’ and

‘home’ we represented by the dummies in this way, we arbitrarily chose the 76er’s as

the baseline team. Thus, in effect, the fitted intercept, suitably transformed, provides

an estimate of the likelihood of a ‘1’ in the purely hypothetical situation where the

76er’s played themselves at home as the visitors. The coefficients for the remaining

dummies represent the deviations from the 76er’s performance for each of the other

teams depending on whether they were playing at home or away. In summary, the R

model we fitted is given by:

glm(formula = outcome ~ BucksV + BucksH + BulletsV + BulletsH +

BullsV + BullsH + CavaliersV + CavaliersH + CelticsV + CelticsH +

ClippersV + ClippersH + GrizzliesV + GrizzliesH + HawksV +

HawksH + HeatV + HeatH + HornetsV + HornetsH + JazzV + JazzH +

KingsV + KingsH + KnicksV + KnicksH + LakersV + LakersH +

MagicV + MagicH + MavericksV + MavericksH + NetsV + NetsH +

NuggetsV + NuggetsH + PacersV + PacersH + PistonsV + PistonsH +

RaptorsV + RaptorsH + RocketsV + RocketsH + SpursV + SpursH +

SunsV + SunsH + SupersonicsV + SupersonicsH + TimberwolvesV +

TimberwolvesH + TrailBlazersV + TrailBlazersH + WarriorsV +

WarriorsH, family = binomial, data = nba)

The results differed somewhat from those obtained by the MWLE2 WL method. To

be specific we found the probability of a Bulls win at home to be 0.76 as compared with
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Game # Game 4 Game 5 Game 6 Game 7

MWLE2 Bull Win 0.07 0.10 0.26 0.26

Jazz Win 0.02 0.12 0.09 0.08

Bradley-Terry Bull Win 0.05 0.08 0.25 0.28

Jazz Win 0.03 0.14 0.09 0.09

Table 9: The predictive probabilities of a Bulls win against the Jazz for both the

MWLE2 and Bradley-Terry (logistic) based methods in the 1996 - 97 Final.

the 0.75 seen in Table 1 while the corresponding probabilities for the Jazz were 0.71

and 0.66 respectively. These differences became more pronounced when we computed

the probabilities corresponding to Table 2. We see a comparison of the results in Table

9.

In Table 9, we see that the Bradley - Terry extension points to a Bulls victory

on Game 7 while the MWLE2 is ambivalent between games 6 and 7. Obviously a

more extensive comparison would be needed to assess the relative performance of the

methods. But considering the large number of parameters needed by the logistic model,

these very preliminary results make the weighted likelihood model more desirable for

forecasting the outcomes of NBA playoff games.

Although in this manuscript we have used only binary outcome information about

team wins or losses, the theory can be extended to incorporate more complex outcome

information such as the scores, for example. In that case, we could have defined the

YAB(h) to be the score of team A against team B when team A is at home and so on.

Acknowledgements. We are indebted to Farouk Nathoo for comments that im-

proved the clarity of our presentation.
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