1. Introduction

CHANG & POLLARD (1997) provide a rigorous general formulation of ensembles of conditional probability distributions ("disintegrations") that includes conditioning within general measures. In their Example 12, they apply the formulation to Example 1 of STONE & DAWID (1972) and take the view that it reveals a "flaw" in the marginalization paradox, as expressed in that example. Scepticism and disbelief concerning the general significance of the marginalization paradox as developed by DAWID et al (1973) can be found in AKAIKE (1980) and JAYNES (1979) as well as in the discussion of the 1973 paper. The validity of our work was defended in STONE (1982) and DAWID et al (1996)—the latter being a response to Chapter 15 of a website publication that has now been revised and posthumously published as JAYNES (2003).

2. Terminology

The term “paradox” was not used in the 1972 paper. Instead, the phenomenon revealed there was described as an un-Bayesian and serious pathology. As a less pejorative description, we might have used “inconsistency”, since we now prefer to follow the useful distinction between a paradox (as two aspects of something that appear be irreconcilable but can be seen to be consistent when looked at more closely) and an inconsistency (where such reconciliation is impossible). We regret that this distinction was not drawn and acted on in the major 1973 study, since its use of “paradox” may have encouraged some to ignore the problem as something resolvable by others with the time to think about it.

3. Preparing the ground

Let us agree with Chang & Pollard when they write:

For a measure λ on the product space $X \otimes Y$ it is traditional to use the name X-marginal for the image of λ under the map X that projects onto the X coordinate space. If λ happens to be a product of probability measures, $P \otimes \nu$, the X-marginal equals P. One can safely refer to both $P\{x \in X : x \in A\}$ and $(P \otimes \nu)\{(x,y) \in X \otimes Y : x \in A\}$ as “the probability that X lies in the
set \(A \). However, if \(\nu \) is not a probability measure, the \(X \)-marginal of \(\lambda \) does not equal \(P \). At worst, \(\nu \) might not even be a finite measure, in which case the image measure assigns mass \(\infty \) to every \(A \) with \(PA > 0 \). In this situation there is a real danger in thinking of the \(X \)- and \(Y \)-coordinates as being independent, or even in thinking of \(P \) as the distribution of \(X \).

But the rider that:

Bayesians with a penchant for improper priors should be particularly aware of this problem.

needs a little elucidation. For example, transgressing notational convention and taking \(X \) and \(Y \) to be components of the unknown parameter \(\Theta = (X,Y) \) for some problem of inference, two cases are to be distinguished assuming that we need to decide, for some other purpose (e.g. inference from some reduction of the data), what to adopt as the prior for \(X \) alone. Case 1 is where that prior (the proper \(P \)) was the first or given element of \(\lambda \), which was then augmented more casually with the improper prior \(\nu \) for \(Y \). Case 2 is where the measure \(\lambda \) was the undifferentiated starting point from which a not-yet-specified prior for \(X \) has to be somehow extracted for the alternative purpose. In Case 1, it would be perverse to allow the augmenting \(\nu \) to affect the status of \(P \) as the proper and appropriate marginal prior for \(X \). But Case 2 appears to be as bad as Chang & Pollard’s warning suggests. A change of variables from \((X,Y)\) to \((X,T)\) where \(T = t(X,Y) \) (of the kind that worried Dempster in the discussion of DAWID et al (1973) in which the Jacobian factorizes as \(a(X)b(Y) \)) will yield a factorization of \(\lambda \) that would typically suggest a quite different marginal prior for \(X \) than \(P \).

4. The perceived “flaw” in our Example 1

Example 1 of STONE and DAWID (1972) sets out the problem of a statistician \(B_1 \) given two scientifically certified exponential random variables \(X \) and \(Y \) with joint density \(f(x,y|\theta,\phi) = \theta \phi^2 \exp\{-\phi(\theta x + y)\} \), where the interest is in inference about \(\Theta = E(Y|\Phi)/E(X|\Theta,\Phi) \) (the median of the \(\Theta F(2,2) \) distribution of \(Z = Y/X \) that has density \(f(z|\theta) = \theta/(\theta + z)^2 \)). Suppose that prior knowledge of \(\Theta \) can be expressed with some conviction by the proper density \(\pi(\theta) \), whereas hardly anything is known about the magnitude of the common scale parameter \(1/\Phi \) of \(X \) and \(Y \), as measured on the same uncalibrated instrument. So \(B_1 \) (not well-read in the art of simulating ignorance) casually gives \(\Phi \) a uniform (Lebesgue) measure on \(R^+ \).

Chang & Pollard do not question \(B_1 \)'s mechanical derivation of his posterior distribution for \(\Theta \): the “\((\Theta,X,Z)\)-marginal is sigma-finite” and has an “\((X,Z)\)-disintegration” with a conditional probability density for \(\Theta \) that is what \(B_1 \) got. They do question \(B_2 \)'s posterior density \(\propto \pi(\theta)f(z|\theta) \) simply because they were unable to give it an analogous justification as a “\(Z \)-disintegration in the \((\Theta,Z)\)-marginal” of \(B_1 \)'s set-up. (The \(Z \)-margin is not sigma-
finite.) However, the inconsistency at the heart of the marginalization “paradox” does not depend on the success or failure of such a justification, because B_2 starts his inference engine with the value of Z alone. The notation in our equation (5) did not make this clear enough: it should have been $\pi_{B_2}(\theta|z)$.

Deeper understanding (and a reversal of the pecking order that Chang & Pollard bestowed on B_1 and B_2) comes if we can accept that an unbounded measure to represent knowledge of Φ is at best a convenient approximation to reality. In reality, it would be possible to specify a lower bound to the scale factor $1/\Phi$ of the instrument that measured both X and Y—enough to truncate the infinity in the uniform prior for Φ. We should then be able to validate the result of using the uniform prior as a limit, in some sense, of what you can get from proper priors (Stone 1961, 1970, 1982).

This is an old, largely neglected topic on which we will not expand here, except to see what it does for B_1 in Example 1. Instead of truncation, it is mathematically simpler to give Φ an $\text{Exp}(\lambda)$ prior (with proper density $\lambda \exp(-\lambda \phi)$).

This gives the posterior

$$
\pi_\lambda(\theta|x, y) \propto \pi(\theta)\theta/[(\lambda + x(\theta + z))]^3
$$

(1)

$$
\propto \pi(\theta)\theta/[1 + w(\theta + z)]^3
$$

(2)

where $w \equiv x/\lambda$. One sort of limit (satisfying some, e.g. Jeffreys, 1957; Wallace, 1959; Box & Tiao, 1973; Berger, 1980; Leonard & Hsu, 1999) is got if we look at formula (1), fix the data (x, z), and let λ go to zero (to approach uniformity). The limiting distribution is, unsurprisingly, the one that B_1 got.

The other sort of limit comes (if it comes at all) from formula (2) on noting that the influence of λ on how the distribution differs from B_1’s is determined by the size of w: only if w is very large can the posterior be approximated by that of B_1. Now the marginal distribution of W is $\text{Exp}(\lambda\Theta\Phi)$ i.e. $\text{Exp}(\Theta\Psi)$ where $\Psi = \lambda\Phi$ is $\text{Exp}(1)$. Clearly, under our model, W does not in any way go off to ∞ as $\lambda \to 0$. Moreover, because the distribution of W is not degenerate, there is not just one posterior to be considered but a class of very different ones indexed by (w, z). Since the marginal distribution of (W, Z) can be shown to be independent of λ, the probability distribution of the posterior actually realized does not even depend on λ. There is no reasonable sense in which the posterior distributions obtained from any choice of λ can be approximated by that of B_1.

By contrast, this marginal-probability-of-data approach is able to justify B_2’s posterior if we give Φ a $\Gamma(\lambda, \lambda)$ prior with kernel $\exp\{-\lambda\phi\}\phi^{\lambda-1}$. Then

$$
\pi_\lambda(\theta|x, y) \propto \pi(\theta)\theta/[(\lambda + x(\theta + z))]^{2+\lambda}
$$

(3)

$$
\propto \pi(\theta)\theta/[1 + w(\theta + z)]^{2+\lambda}
$$

(4)

With this, the marginal probability that $W \geq w$ is $\int \pi(\theta)(1 + \theta w)^{-\lambda}d\theta$, which tends to 1 as $\lambda \to 0$ for any fixed
w. In this case, W does go to ∞ in probability as $\lambda \to 0$, and (4) becomes B_2’s posterior in the limit. The same posterior is now also given by fixing (x,z) in (3) and taking $\lambda \to 0$—a fortuitous consequence of a combination of underlying group structure and the associated right Haar character of the prior element $d\phi/\phi$ (as explained in STONE & DAWID (1972)).

5. Serious pathology

If there is a flaw in all this, it lies in a willingness (manifested by B_1 in Example 1) to allow an impropriety in a conventionally assigned measure to overwhelm the science embedded in the distribution of Z. Widespread adoption of any argument that lends support to B_1 and finds fault with B_2 would constitute a serious pathology for Bayesian practice. If there are any who doubt this, we would be happy to accept a large number of increasingly large, mutually agreed bets based on B_1’s posterior, using Monte Carlo simulation of Θ from an agreed $\pi(\theta)$ and of Z from the corresponding $F(2, 2)$ distribution. That B_1’s posterior is not “expectation consistent” (DAWID & STONE, 1973) should be enough to reassure our bank manager.

References

