
Paradox, simple inconsistency, or serious pathology? Comment on ‘Conditioning as disintegration’

by Chang & Pollard

M. Stone1, A. P. Dawid1, and J. V. Zidek2

1Department of Statistical Science, UCL, Gower St, London WC1E 6BT, UK

2Department of Statistics, University of British Columbia, 6356 Agriculture Rd, Vancouver, BC V6T 1Z2, Canada

1. Introduction

CHANG & POLLARD (1997) provide a rigorous general formulation of ensembles of conditional probability distri-

butions (“disintegrations”) that includes conditioning within general measures. In their Example 12, they apply the

formulation to Example 1 of STONE & DAWID (1972) and take the view that it reveals a “flaw” in the marginal-

ization paradox, as expressed in that example. Scepticism and disbelief concerning the general significance of the

marginalization paradox as developed by DAWID et al (1973) can be found in AKAIKE (1980) and JAYNES (1979)

as well as in the discussion of the 1973 paper. The validity of our work was defended in STONE (1982) and DAWID

et al (1996)—the latter being a response to Chapter 15 of a website publication that has now been revised and

posthumously published as JAYNES (2003).

2. Terminology

The term “paradox” was not used in the 1972 paper. Instead, the phenomenon revealed there was described as an un-

Bayesian and serious pathology. As a less pejorative description, we might have used “inconsistency”, since we now

prefer to follow the useful distinction between a paradox (as two aspects of something that appear be irreconcilable

but can be seen to be consistent when looked at more closely) and an inconsistency (where such reconciliation is

impossible). We regret that this distinction was not drawn and acted on in the major 1973 study, since its use of

“paradox” may have encouraged some to ignore the problem as something resolvable by others with the time to think

about it.

3. Preparing the ground

Let us agree with Chang & Pollard when they write:

For a measure λ on the product space X ⊗Y it is traditional to use the name X -marginal for the image of λ under the map

X that projects onto the X coordinate space. If λ happens to be a product of probability measures, P ⊗ ν, the X -marginal

equals P . One can safely refer to both P{xεX : xεA} and (P ⊗ ν){(x, y)εX ⊗Y : xεA} as “the probability that X lies in the
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set A”. However, if ν is not a probability measure, the X -marginal of λ does not equal P . At worst, ν might not even be a

finite measure, in which case the image measure assigns mass ∞ to every A with PA > 0, In this situation there is a real

danger in thinking of the X - and Y-coordinates as being independent, or even in thinking of P as the distribution of X.

But the rider that:

Bayesians with a penchant for improper priors should be particularly aware of this problem.

needs a little elucidation. For example, transgressing notational convention and taking X and Y to be components

of the unknown parameter Θ = (X,Y ) for some problem of inference, two cases are to be distinguished assuming

that we need to decide, for some other purpose (e.g. inference from some reduction of the data), what to adopt as

the prior for X alone. Case 1 is where that prior (the proper P ) was the first or given element of λ, which was then

augmented more casually with the improper prior ν for Y . Case 2 is where the measure λ was the undifferentiated

starting point from which a not-yet-specified prior for X has to be somehow extracted for the alternative purpose.

In Case 1, it would be perverse to allow the augmenting ν to affect the status of P as the proper and appropriate

marginal prior for X. But Case 2 appears to be as bad as Chang & Pollard’s warning suggests. A change of variables

from (X,Y ) to (X,T ) where T = t(X,Y ) (of the kind that worried Dempster in the discussion of DAWID et al

(1973) in which the Jacobian factorizes as a(X)b(Y )) will yield a factorization of λ that would typically suggest a

quite different marginal prior for X than P .

4. The perceived “flaw” in our Example 1

Example 1 of STONE and DAWID (1972) sets out the problem of a statistician B1 given two scientifically certified

exponential random variables X and Y with joint density f(x, y|θ, φ) = θφ2 exp{−φ(θx+ y)}, where the interest is

in inference about Θ = E(Y |Φ)/E(X|Θ,Φ) (the median of the ΘF (2, 2) distribution of Z = Y/X that has density

f(z|θ) = θ/(θ+z)2). Suppose that prior knowledge of Θ can be expressed with some conviction by the proper density

π(θ), whereas hardly anything is known about the magnitude of the common scale parameter 1/Φ of X and Y , as

measured on the same uncalibrated instrument. So B1 (not well-read in the art of simulating ignorance) casually

gives Φ a uniform (Lebesgue) measure on R+.

Chang & Pollard do not question B1’s mechanical derivation of his posterior distribution for Θ: the “(Θ, X, Z)-

marginal is sigma-finite” and has an “(X,Z)-disintegration” with a conditional probability density for Θ that is

what B1 got. They do question B2’s posterior density (∝ π(θ)f(z|θ)) simply because they were unable to give it an

analogous justification as a “Z-disintegration in the (Θ, Z)-marginal” of B1’s set-up. (The Z-margin is not sigma-
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finite.) However the inconsistency at the heart of the marginalization “paradox” does not depend on the success or

failure of such a justification, because B2 starts his inference engine with the value of Z alone. The notation in our

equation (5) did not make this clear enough: it should have been πB2(θ|z).

Deeper understanding (and a reversal of the pecking order that Chang & Pollard bestowed on B1 and B2) comes

if we can accept that an unbounded measure to represent knowledge of Φ is at best a convenient approximation

to reality. In reality, it would be possible to specify a lower bound to the scale factor 1/Φ of the instrument that

measured both X and Y—enough to truncate the infinity in the uniform prior for Φ. We should then be able to

validate the result of using the uniform prior as a limit, in some sense, of what you can get from proper priors (Stone

1961, 1970, 1982).

This is an old, largely neglected topic on which we will not expand here, except to see what it does for B1 in Example

1. Instead of truncation, it is mathematically simpler to give Φ an Exp(λ) prior (with proper density λexp(−λφ)).

This gives the posterior

πλ(θ|x, y) ∝ π(θ)θ/[λ+ x(θ + z)]3 (1)

∝ π(θ)θ/[1 + w(θ + z)]3 (2)

where w ≡ x/λ. One sort of limit (satisfying some, e.g. Jeffreys, 1957; Wallace, 1959; Box & Tiao, 1973; Berger,

1980; Leonard & Hsu, 1999) is got if we look at formula (1), fix the data (x, z), and let λ go to zero (to approach

uniformity). The limiting distribution is, unsurprisingly, the one that B1 got.

The other sort of limit comes (if it comes at all) from formula (2) on noting that the influence of λ on how the

distribution differs from B1’s is determined by the size of w: only if w is very large can the posterior be approximated

by that of B1. Now the marginal distribution of W is Exp(λΘΦ) i.e. Exp(ΘΨ) where Ψ = λΦ is Exp(1). Clearly,

under our model, W does not in any way go off to ∞ as λ → 0. Moreover, because the distribution of W is not

degenerate, there is not just one posterior to be considered but a class of very different ones indexed by (w, z). Since

the marginal distribution of (W,Z) can be shown to be independent of λ, the probability distribution of the posterior

actually realized does not even depend on λ. There is no reasonable sense in which the posterior distributions

obtained from any choice of λ can be approximated by that of B1.

By contrast, this marginal-probability-of-data approach is able to justify B2’s posterior if we give Φ a Γ(λ, λ) prior

with kernel exp{−λφ}φλ−1. Then

πλ(θ|x, y) ∝ π(θ)θ/[λ+ x(θ + z)]2+λ (3)

∝ π(θ)θ/[1 + w(θ + z)]2+λ (4)

With this, the marginal probability that W ≥ w is
∫
π(θ)(1 + θw)−λdθ, which tends to 1 as λ → 0 for any fixed
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w. In this case, W does go to ∞ in probability as λ → 0, and (4) becomes B2’s posterior in the limit. The same

posterior is now also given by fixing (x, z) in (3) and taking λ → 0—a fortuitous consequence of a combination

of underlying group structure and the associated right Haar character of the prior element dφ/φ (as explained in

STONE & DAWID (1972)).

5. Serious pathology

If there is a flaw in all this, it lies in a willingness (manifested by B1 in Example 1) to allow an impropriety in a

conventionally assigned measure to overwhelm the science embedded in the distribution of Z. Widespread adoption

of any argument that lends support to B1 and finds fault with B2 would constitute a serious pathology for Bayesian

practice. If there are any who doubt this, we would be happy to accept a large number of increasingly large,

mutually agreed bets based on B1’s posterior, using Monte Carlo simulation of Θ from an agreed π(θ) and of Z from

the corresponding F (2, 2) distribution. That B1’s posterior is not “expectation consistent” (DAWID & STONE,

1973) should be enough to reassure our bank manager.
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