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Abstract

We give a sufficient condition for the admissibility of generalized Bayes estima-
tors of the location vector of spherically symmetric distribution under squared error
loss. Compared to the known results for the multivariate normal case, our sufficient
condition is very tight and is close to being necessary. In particular we establish
the admissibility of generalized Bayes estimators with respect to the harmonic prior
and priors with slightly heavier tails than the harmonic prior. The key to our proof
is an adaptive sequence of smooth proper priors approaching an improper prior fast
enough to establish admissibility.

1 Introduction

Let X = (X1, . . . , Xp)
′ have a spherically symmetric density function f(‖x − θ‖) and

consider estimation of a p-dimensional location parameter θ with a quadratic loss function

L(θ, d) = (d − θ)′(d − θ) = ‖d − θ‖2. Therefore an estimator δ(X) is evaluated using the

risk function

R(θ, δ) = Eθ

[
‖δ(X) − θ‖2

]
=

∫

Rp

‖δ(x) − θ‖2f(‖x − θ‖)dx.

An estimator δ is said to be admissible if no estimator δ′ exists such that R(θ, δ′) ≤ R(θ, δ)

for all θ with strict inequality for some θ. Hence admissibility is a desirable property for

estimators. It is well-known that any proper Bayes estimator is admissible under very

mild conditions. In many cases, however, a target estimator is generalized Bayes (gBayes),

with respect to an improper prior like the Lebesgue measure. There is no guarantee that

any gBayes estimator is admissible.

∗The University of Tokyo and The University of British Columbia
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A famous sufficient condition for admissibility of gBayes estimator has been given

by Blyth (1951). A version of the Blyth result is the following. Let g(θ) be the target

improper prior density and g1 ≤ g2 ≤ · · · ≤ g, an increasing sequence of proper prior

densities approaching g. Each gi is not necessarily normalized, so just satisfies
∫

Θ
gi(θ)dθ <

∞ for any fixed i. Let δg and δgi be the gBayes estimator with respect to g(θ) and the

proper Bayes estimator with respect to gi(θ), respectively. The non-standardized Bayes

risk difference between δg and δgi with respect to gi(θ) is given by

∆i =

∫

Rp

[R(θ, δg) − R(θ, δgi)] gi(θ)dθ. (1)

Blyth (1951) showed that if ∆i → 0 as i → ∞, δg is admissible. (See Theorem A.1 in

Appendix.) Therefore a good choice of the sequence of proper priors approaching the

target prior is the key to finding admissible gBayes estimators. As Berger (1985) pointed

out, however, “ Indeed, in general, very elaborate (and difficult to work with) choices

of the gi are needed.” For example, when p = 1 under normality and spherical symme-

try, Blyth (1951) and Stein (1959) showed that the most natural estimator X, which is

gBayes with respect to g(θ) = 1, is admissible by using a sequence of conjugate priors

gi(θ) = exp(−θ2/i) and by using gi(θ) = (1 + θ2/i)−1, respectively. These are relatively

comprehensible choices. But when p = 2, neither a sequence gi(θ) = exp(−‖θ‖2/i) nor

a sequence gi(θ) = (1 + θ2/i)−1 works to show the admissibility of X under normality.

Under spherically symmetry, James and Stein (1961) showed for p = 2 that gi(θ) = h2
i (θ)

works where

hi(θ) =





1 ‖θ‖ ≤ 1

1 − log ‖θ‖
log i

1 ≤ ‖θ‖ ≤ i/2
α(i,‖θ‖)

‖θ‖{log ‖θ‖} ‖θ‖ > i/2

and α(i, ‖θ‖) is chosen so that, for fixed θ, α(i, ‖θ‖)‖θ‖−1{log ‖θ‖}−1 → 1 as i → ∞
and h1 ≤ h2 ≤ · · · ≤ 1. On the other hand, X for p ≥ 3, is inadmissible as shown by

Stein (1956) under normality and Brown (1966) in quite a general setting. Therefore, in

general, we would like to know the mechanisms for discrimination between admissibility

and inadmissibility for gBayes estimators. In this paper, we will investigate a sufficient

condition for the admissibility of gBayes estimators with respect to spherically symmetric

priors.

Under normality, Brown (1971) gave a powerful condition for admissibility as follows.

Let G(‖θ‖) be a spherically symmetric target prior density. Then the marginal density
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is also spherically symmetric as m(‖x‖) =
∫

f(‖x − θ‖)G(‖θ‖)dθ. Brown (1971) showed

that if the gBayes estimator with respect to G(‖θ‖) has a finite risk and
∫ ∞

1

r1−pm(r)−1dr = ∞ (2)

then it is admissible. Since m(r) ∼ G(r) for large r under suitable, mild conditions as

shown in Maruyama and Takemura (2006), the sufficient condition above reduces to
∫ ∞

1

r1−pG(r)−1dr = ∞.

Brown also showed that if the integral in (2) is finite, the gBayes estimator is inadmissible.

Needless to say, Brown (1971) dealt with quite general priors (which are permitted to have

a non-differentiable density, to have some holes on Rp and not to be spherically symmetric)

and gave a general sufficient condition for them. Unfortunately even if we assume that

the target prior has a differentiable density and that the support is Rp in Brown’s (1971)

condition, we do not find an easier proof than Brown (1971) and his choice of the sequence

is still extraordinarily complicated.

On the other hand, Brown and Hwang (1982) consider estimation of the natural mean

vector of an exponential family under a quadratic loss function and so the intersection

of their setting and ours is the normal case. Brown and Hwang (1982) give a sufficient

condition for gBayes estimators to be admissible when the target prior density g(θ) =

G(‖θ‖) is differentiable. Their ingenuity lies in the decomposition of ∆i given by (1), a

result using the triangle and Cauchy-Schwartz inequalities, i.e.

∆i ≤ 8

∫

Rp

g(θ)‖∇hi(θ)‖2dθ + 2

∫

Rp

∥∥∥∥
m(∇g|x)

m(g|x)
− m(∇gh2

i |x)

m(gh2
i |x)

∥∥∥∥
2

m(gh2
i |x)dx

= Ai + Bi

where gi = gh2
i , m(ψ|x) =

∫
Rp ψ(θ)f(‖θ − x‖)dθ and the gradient of a function ρ(x) is

denoted by

∇ρ(x) = (
∂

∂x1

ρ(x), . . . ,
∂

∂xp

ρ(x))′.

Hence the problem reduces to the simultaneous minimization problem of Ai and Bi.

Brown and Hwang (1982) showed that when the sequence is chosen as

hi(θ) =





1 ‖θ‖ ≤ 1

1 − log ‖θ‖/ log i 1 ≤ ‖θ‖ ≤ i

0 ‖θ‖ > i,

(3)
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Ai and Bi go to 0 as i → ∞ if

∫ ∞

1

rp−3G(r)dr

{log(r + 2)}2
< ∞ (4)

and

∫

Rp

m

(
g

∥∥∥∥
∇g

g
− m(∇g)

m(g)

∥∥∥∥
2
)

dx < ∞, (5)

respectively. Needless to say, when Ai and Bi go to 0 as i → ∞, the gBayes estimator

is admissible by the Blyth method. They called (4) and (5) the “growth condition” and

“asymptotic flatness condition”, respectively. We see that their method of proof is much

more transparent than Brown’s (1971) and their sequence in (3) is simpler.

However the growth condition may be weaker than Brown’s (1971) condition given by

(2) e.g. G(‖θ‖) = ‖θ‖2−p log(‖θ‖ + 2), which is slightly heavier than ‖θ‖2−p, satisfies (2),

but not the growth condition. The reason seems to be that the sequence (3) does not

depend on the target prior density g but is optimized for g(θ) ≤ ‖θ‖2−p for sufficiently

large ‖θ‖. Furthermore if G(‖θ‖) → ∞ around the origin like ‖θ‖2−p, it does not satisfy

the asymptotic flatness condition. The reason found in their method of bounding Bi

in order to apply the dominated convergence theorem, is very rough around the origin.

Moreover the lack of power in Brown and Hwang (1982) stems from their choice of the

sequence; hi given in (3) is non-differentiable at ‖θ‖ = 1 and truncated at ‖θ‖ = i.

When we deal with Ai, the truncated sequence does not cause trouble. But the truncated

sequence generally does cause trouble when dealing with Bi.

In this paper, I naturally extend Brown-Hwang’s decomposition method to the spher-

ically symmetric case and give as strong a condition as that of Brown (1971) under nor-

mality. In Section 2, I consider a minimization problem, and show for the corresponding

term Ai in Brown and Hwang (1982),

inf
h

∫ ∞

0

{h′(η)}2ηp−1G(η)dη = 0

under some constraints. As an alternative to (3), I propose a smoother sequence for a

solution of the problem

Hi(η) =

∫ ∞
η

e(η−r)/iβ(r)dr
∫ ∞

η
β(r)dr

(i = 1, 2, . . . ) (6)
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where

β(r) = − d

dr

{(∫ 2+r

1

s1−p

G(s)
ds

)−1
}

=
(r + 2)1−p/G(2 + r)

(
∫ 2+r

1
{s1−p/G(s)}ds)2

, (7)

which works very well when
∫ ∞

1
{s1−p/G(s)}ds = ∞. This choice of the adaptive sequence

to G is stimulated by the sequence in Zidek (1970), which was however truncated and

non-differentiable. In Section 3, we show that our Hi also works well for proving that

the corresponding Bi approaches 0 as i → ∞ in spherically symmetric case. As a result,

we can prove a strong sufficient condition for the admissibility of gBayes estimators by

using an adaptive sequence of proper priors G(‖θ‖)H2
i (‖θ‖) which approaches the target

improper prior G(‖θ‖). In particular, we show that the gBayes estimators with respect

to the harmonic prior G(‖θ‖) = ‖θ‖2−p and with respect to a prior with a slightly heavier

tail

G(‖θ‖) = ‖θ‖2−p log(‖θ‖ + c), c > 1, (8)

are admissible under mild regularity conditions on f .

Brown (1979) considered a more general problem than ours: estimation of θ for a

general density p(x−θ) and a general loss function W (δ−θ). He conjectured that the prior

g(θ) ∼ ‖θ‖a with a ≤ 2 − p for sufficiently large ‖θ‖ leads to admissibility, regardless of

the density p and the loss W . However there has been no exact results about admissibility

in this type of setting unless normality and quadratic loss function are assumed. Hence

our results support Brown’s (1979) conjecture for the case of spherically symmetric family

and a quadratic loss function.

The companion paper of Maruyama and Takemura (2006) deals with the same problem

and gives a sufficient condition for admissibility without the assumption that the target

prior is regularly varying. However the results in Maruyama and Takemura (2006) do not

necessarily include the ones in this paper. Adaptive sequence of proper priors of the type

suggested by Zidek (1970) as well as the assumption of the regularly varying prior yield

more elegant results than in Maruyama and Takemura (2006).

2 A minimization problem

In this section, when a nonnegative function k(η) satisfies

∫ 1

0

k(η)dη < ∞ (9)
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and
∫ ∞

1

k(η)dη = ∞, (10)

we consider a minimization problem

inf
h

∫ ∞

0

{h′(η)}2k(η)dη = 0 (11)

subject to

∫ ∞

0

h2(η)k(η)dη < ∞. (12)

In Section 3, we set k(η) = ηp−1G(η) where G(‖θ‖) is our target prior density. This type

of minimization problem has been famous in mathematical physics. See Rukhin (1995)

for the details. A very well-known sufficient condition on k(η) to satisfy (11) is

∫ ∞

1

dη

k(η)
= ∞. (13)

Indeed when (13) is satisfied, we define hi (i = 1, . . . ) as

hi(η) =





1 0 < η < 1/2
R i

η{1/k(s)}ds
R i
1/2{1/k(s)}ds

1/2 ≤ η < i

0 η ≥ i,

(14)

and easily find that

∫ ∞

0

{h′
i(η)}2k(η)dt =

1∫ i

1/2
{1/k(s)}ds

, (15)

which approaches 0 as i → ∞. Since hi(η) is truncated at η = i,
∫ ∞

0
h2

i (η)k(η)dη < ∞ is

guaranteed.

In the statistical context, this type of sequence has been considered by Stein (1965),

Zidek (1970) and Brown (1971). However, we will have to apply the same sequence for

(11) to another minimization problem (inf Bi = 0 as explained in Section 1). It is very

hard to deal with a truncated and non-differentiable hi(η) like (14) in such a simultaneous

minimization problem. Here we produce a differentiable and non-truncated sequence for

our purpose.
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We assume that k(η) is continuously differentiable and regularly varying with index

α, that is,

lim
η→∞

k(ηx)/k(η) = xα (16)

for any x > 0. When k(η) satisfies (16), we sometimes use the notation k(η) ∈ RVα. A

typical k(η) is ηα{log(η + 2)}β for any β. Under (10) and (13), we have only to consider

the case −1 ≤ α ≤ 1.

We now define functions Hi(η), i = 1, 2, . . . by

Hi(η) =

∫ ∞
η

e(η−r)/iβ(r)dr
∫ ∞

η
β(r)dr

(17)

where

β(r) = − d

dr

{(∫ 2+r

1

1

k(s)
ds

)−1
}

=
1/k(2 + r)

(
∫ 2+r

1
{1/k(s)}ds)2

. (18)

The properties of β and Hi are given in the following theorems.

Theorem 2.1. (I) β(r) ∈ RVα−2,
∫ ∞

r
β(s)ds ∈ RVα−1 and β′(r) ∈ RVα−3.

(II) limr→∞ rβ(r)/
∫ ∞

r
β(s)ds = α − 1 and limr→∞ rβ′(r)/β(r) = α − 2.

(III) β(r)/
∫ ∞

r
β(s)ds is bounded for r ≥ 0.

Proof. See Proposition 1.7 of Geluk and de Haan (1987) for part I and II.

By part I, β(r)/
∫ ∞

r
β(s)ds ∈ RV−1 and hence β(r)/

∫ ∞
r

β(s)ds → 0 as r → ∞. Since∫ ∞
0

β(r)dr < ∞ by (18) and k(r) is continuous, {β(r)/
∫ ∞

r
β(s)ds}|r=0 is bounded.

By part II, there exists r0 such that β′(r) ≤ 0 for all r ≥ r0. By redefining β(r) as

β(r + r0), we have β(r) which is nondecreasing for r > 0.

Theorem 2.2. (I) 0 ≤ H1(η) ≤ H2(η) ≤ · · · ≤ 1. For any fixed η, limi→∞ Hi(η) = 1.

(II) For any fixed i, limη→∞
∫ ∞

η
β(r)drβ(η)−1Hi(η) = i.

(III) For any fixed η, limi→∞ H ′
i(η) = 0.

(IV) |H ′
i(η)| < 2β(η)/

∫ ∞
η

β(r)dr for all η > 0.

7



(V) For any ε > 0, there exists η0 such that −1 − ε < ηH ′
i(η)/Hi(η) ≤ 0 for all η ≥ η0

and for all i.

Proof. It is obvious that 0 ≤ H1(η) ≤ 1 and Hi(η) is increasing in i. For fixed η, Hi(η) ↑ 1

by the monotone convergence theorem.

By integration by parts, the numerator of Hi(η) is written as

∫ ∞

η

e(η−r)/iβ(r)dr = iβ(η) + i

∫ ∞

η

e(η−r)/iβ′(r)dr. (19)

Therefore

Hi(η) = i
β(η)∫ ∞

η
β(r)dr

+ i

∫ ∞
η

e(η−r)/iβ′(r)dr
∫ ∞

η
β(r)dr

. (20)

(20) divided by (17) is

1 = i
β(η)

Hi(η)
∫ ∞

η
β(r)dr

+ i

∫ ∞
η

e−r/iβ′(r)dr
∫ ∞

η
e−r/iβ(r)dr

.

Since β′(r)/β(r) → 0 by part II of Theorem 2.1, the second term of the above equation

for fixed i, converges to 0 as η → ∞ by the L’Hospital theorem.

Using (19) again, differentiation of the numerator of Hi(η) gives

(∫ ∞

η

e(η−r)/iβ(r)dr

)′

=
1

i

∫ ∞

η

e(η−r)/iβ(r)dr − β(η) =

∫ ∞

η

e(η−r)/iβ′(r)dr.

Therefore

H ′
i(η) =

β(η)
∫ ∞

η
e(η−r)/iβ(r)dr

(
∫ ∞

η
β(r)dr)2

−
∫ ∞

η
e(η−r)/i{−β′(r)}dr

∫ ∞
η

β(r)dr
. (21)

Note that −β′(r) ≥ 0 by redefinition of β. Each term of the right hand side of (21) is

nondecreasing in i and hence by the monotone convergence theorem

lim
i→∞

H ′
i(η) =

β(η)
∫ ∞

η
β(r)dr

(
∫ ∞

η
β(r)dr)2

−
∫ ∞

η
{−β′(r)}dr

∫ ∞
η

β(r)dr
= 0.

Furthermore we have

|H ′
i(η)| <

∣∣∣∣∣
β(η)

∫ ∞
η

e(η−r)/iβ(r)dr

(
∫ ∞

η
β(r)dr)2

∣∣∣∣∣ +

∣∣∣∣∣

∫ ∞
η

e(η−r)/i{−β′(r)}dr
∫ ∞

η
β(r)dr

∣∣∣∣∣
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< 2β(η)/

∫ ∞

η

β(r)dr.

Dividing (21) by (17), we have

η
H ′

i(η)

Hi(η)
= η

(
β(η)∫ ∞

η
β(r)dr

+

∫ ∞
η

e−r/iβ′(r)dr
∫ ∞

η
e−r/iβ(r)dr

)
(22)

>
ηβ(η)∫ ∞

η
β(r)dr

−
∫ ∞

η
e−r/i{−rβ′(r)/β(r)}β(r)dr

∫ ∞
η

e−r/iβ(r)dr

>
ηβ(η)∫ ∞

η
β(r)dr

− sup
r>η

−rβ′(r)

β(r)
.

By II of Theorem 2.1 the right hand side converges to −1. This implies that for any ε > 0

there exists η0 such that ηH ′
i(η)/Hi(η) > −1 − ε for all η ≥ η0 and for all i. Finally we

will prove that H ′
i(η) ≤ 0 for sufficiently large η independent of i. By II of Theorem 2.1,

η
∫ ∞

η
β(r)dr

β(η)

(
β(η)∫ ∞

η
β(r)dr

)′

= η
β′(η)

β(η)
+ η

β(η)∫ ∞
η

β(r)dr
→ −1

and hence β(η)/
∫ ∞

η
β(r)dr is eventually nonincreasing. Hence by redefining η0 if nec-

essary, we can assume that β(η)/
∫ ∞

η
β(r)dr is monotone nonincreasing for η ≥ η0. By

integration by parts on the numerator of the first term in (21), we have

∫ ∞

η

e−r/iβ(r)dr = e−η/i

∫ ∞

η

β(r)dr − i−1

∫ ∞

η

e−r/i

{∫ ∞

r

β(s)ds

}
dr

and hence
{

i
∫ ∞

η
β(r)dr

∫ ∞
η

e(η−r)/i
{∫ ∞

r
β(s)ds

}
dr

}
H ′

i(η)

= − β(η)∫ ∞
η

β(r)dr
+

∫ ∞
η

e−r/iβ(r)dr
∫ ∞

η
e−r/i

{∫ ∞
r

β(s)ds
}

dr

= − β(η)∫ ∞
η

β(r)dr
+

∫ ∞
η
{β(r)/

∫ ∞
r

β(s)ds}e−r/i
{∫ ∞

r
β(s)ds

}
dr

∫ ∞
η

e−r/i
{∫ ∞

r
β(s)ds

}
dr

≤ − β(η)∫ ∞
η

β(r)dr
+ sup

t≥η

β(t)∫ ∞
t

β(r)dr
,

which is zero for η ≥ η0. Hence we find that H ′
i(η) ≤ 0 for all η ≥ η0 and for all i.
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Now we show that Hi(η) works very well for the minimization problem (11).

Theorem 2.3. Assume
∫ ∞
1
{1/k(η)}dη = ∞. Then Hi(η) given by (17) and (18) satisfies

lim
i→∞

∫ ∞

0

{
d

dη
Hi(η)

}2

k(η)dη = 0 (23)

and
∫ ∞

0

H2
i (η)k(η)dη < ∞ (24)

for fixed i.

Proof. Note that

∫ ∞

a

{
β(η)∫ ∞

η
β(r)dr

}2

k(η)dη

=

∫ ∞

a

k(η)

k(η + 2)

d

dr

{
−

[∫ 2+r

1

1

k(s)
ds

]−1
} ∣∣∣∣

r=η

dη

≤ sup
t≥a

k(η)

k(η + 2)

[∫ 2+a

1

1

k(s)
ds

]−1

< ∞

for a > 0. Using part IV of Theorem 2.2 and part III of Theorem 2.1, we have

∫ ∞

0

{
d

dη
Hi(η)

}2

k(η)dη

≤ 4

(∫ 1

0

+

∫ ∞

1

) {
β(η)∫ ∞

η
β(r)dr

}2

k(η)dη

≤ 4 sup
0≤t≤1

β(η)∫ ∞
η

β(r)dr

∫ 1

0

k(η)dη + 4

∫ ∞

1

{
β(η)∫ ∞

η
β(r)dr

}2

k(η)dη

< ∞

which guarantees (23) by the dominated convergence theorem together with part III of

Theorem 2.2.

For (24), since Hi(η) ≤ iβ(η)/
∫ ∞

η
β(s)ds for any η > 0 from (20), we have

(∫ η0

0

+

∫ ∞

η0

)
H2

i (η)k(η)dη
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≤
∫ η0

0

k(η)dη + i2
∫ ∞

η0

{
β(η)∫ ∞

η
β(r)dr

}2

k(η)dη

< ∞,

for any fixed i.

3 Admissibility

In this section, we give a sufficient condition for admissibility of the gBayes estimator with

respect to a spherically symmetric target prior density g(θ) = G(‖θ‖). The assumptions

on the behavior of G and f are following.

F1 There exist r0 > 0, L > 0, and s > 1, such that rp+sf(r) ≤ L for all r ≥ r0.

G1 ηG′(η)/G(η) is bounded for 0 < η < 1.

G2
∫ 1

0
ηp−1G(η)dη < ∞ and

∫ 1

0
ηp−1|G′(η)|dη < ∞.

G3
∫ ∞

1
ηp−1G(η)dη = ∞.

G4 G is continuous differentiable and regularly varying.

FG1
∫ ∞

0
rp−1f(r)G(r)dr < ∞ and

∫ ∞
0

rp−2F (r)G(r)dr < ∞.

From G2 and G3, impropriety of G occurs at infinity. Notice that G2 and G3 correspond

to the constraints (9) and (10) in Section 2.

The gBayes estimator δg with respect to the improper density g(θ) is written as

δg(x) =

∫
Rp θf(‖x − θ‖)g(θ)dθ∫
Rp f(‖x − θ‖)g(θ)dθ

= x +

∫
Rp(θ − x)f(‖x − θ‖)g(θ)dθ∫

Rp f(‖x − θ‖)g(θ)dθ

= x +

∫
Rp F (‖x − θ‖)∇g(θ)dθ∫

Rp f(‖x − θ‖)g(θ)dθ
, (25)

which is well-defined if both
∫

Rp F (‖x−θ‖)∇g(θ)dθ and
∫

Rp f(‖x−θ‖)g(θ)dθ are integrable

for all x. These are guaranteed by the assumptions above.

Write

m(ψ|x) =

∫

Rp

ψ(θ)f(‖θ − x‖)dθ

11



M(ψ|x) =
1

Cf

∫

Rp

ψ(θ)F (‖θ − x‖)dθ

where Cf = {πp/2/Γ(p/2+1)}
∫ ∞

0
zp+1f(z)dz. Notice that F (·)/Cf is a probability density

function because
∫

Rp

‖y − θ‖αF (‖y − θ‖)dy =

∫

Rp

‖y‖α{
∫

‖y‖
sf(s)ds}dy

= cp

∫ ∞

0

rp−1+α

∫ ∞

r

sf(s)dsdr

= cp

∫ ∞

0

rp+1+α

∫ ∞

1

tf(rt)dtdr

= cp

∫ ∞

1

t{
∫ ∞

0

rp+1+αf(rt)dr}dt

= cp

∫ ∞

1

t−p−1−αdt ·
∫ ∞

0

zp+1+αf(z)dz

=
cp

p + α

∫ ∞

0

zp+1+αf(z)dz.

Then δg is written as

δg(x) = x + Cf
M(∇g|x)

m(g|x)
.

Now we state the main theorem of this paper.

Theorem 3.1. Assume F1 with s > 5, G1–G4 and FG1. Then the gBayes estimator

with respect to G(‖θ‖) is admissible if
∫ ∞

1
r1−p{G(r)}−1dr = ∞.

Proof of Theorem 3.1. Let δgi denote the Bayes estimator with respect to the proper prior

density g(θ)h2
i (θ) = G(‖θ‖)H2

i (‖θ‖) where Hi(η) has been given by (17) and let k(η) in

(18) be ηp−1G(η). Then the Bayes risk difference of δg and δgi with respect to the density

g(θ)h2
i (θ) is written as

∆i =

∫

Rp

[R(θ, δg) − R(θ, δgi)] g(θ)h2
i (θ)dθ

=

∫

Rp

∫

Rp

[‖δg − θ‖2 − ‖δgi − θ‖2]f(‖x − θ‖)g(θ)h2
i (θ)dθdx

=

∫

Rp

{
[‖δg‖2 − ‖δgi‖2]

∫

Rp

f(‖x − θ‖)g(θ)h2
i (θ)dθ

− 2(δg − δgi)
′
∫

Rp

θf(‖x − θ‖)g(θ)h2
i (θ)dθ

}
dx

12



=

∫

Rp

‖δg − δgi‖2

{∫

Rp

f(‖x − θ‖)g(θ)h2
i (θ)dθ

}
dx

= C2
f

∫

Rp

∥∥∥∥
M(∇g|x)

m(g|x)
− M(∇{gh2

i }|x)

m(gh2
i |x)

∥∥∥∥
2

m(gh2
i |x)dx

= C2
f

∫

Rp

∥∥∥∥
M(∇g|x)

m(g|x)
− M(∇gh2

i |x)

m(gh2
i |x)

− M(g∇h2
i |x)

m(gh2
i |x)

∥∥∥∥
2

m(gh2
i |x)dx.

As in Brown and Hwang (1982), we have

∆i ≤ 2C2
f

∫

Rp

∥∥∥∥
M(g∇h2

i |x)

m(gh2
i |x)

∥∥∥∥
2

m(gh2
i |x)dx

+ 2C2
f

∫

Rp

∥∥∥∥
M(∇g|x)

m(g|x)
− M(∇gh2

i |x)

m(gh2
i |x)

∥∥∥∥
2

m(gh2
i |x)dx

= 2C2
f (Ai + Bi) (say).

Using the Cauchy-Schwartz inequality for Ai, we have

Ai = 4

∫

Rp

‖M(ghi∇hi|x)‖2 {m(gh2
i |x)}−1dx

≤ 4

∫

Rp

M(gh2
i |x)

m(gh2
i |x)

M(g‖∇hi‖2|x)dx.

By Theorem A.2 in Appendix, there exists L1 such that

M(gh2
i |x)/m(gh2

i |x) < L1

for all x, all i and s > 5. Then

Ai ≤ 4L1

∫

Rp

M(g‖∇hi‖2|x)dx

= 4L1

∫

Rp

{1/Cf}F (‖x − θ‖)dx

∫

Rp

g(θ)‖∇hi(θ)‖2dθ

= 4L1

∫

Rp

g(θ)‖∇hi(θ)‖2dθ

= 8L1
πp/2

Γ(p/2)

∫ ∞

0

tp−1G(t)

{
d

dt
Hi(t)

}2

dt,

which goes to 0 as i → ∞ by Theorem 2.3.

Next we consider Bi. M(∇g|x) and M(∇gh2
i |x) at x = 0 are zero vectors because g

and h2
i are function of ‖θ‖. So the integrand of Bi is bounded around x = 0. When we

13



consider the asymptotic property of the integrand of Bi, note that there exists an L2 such

that η|G′(η)/G(η)| ≤ L2 for all η > 0 under the Assumption G1 because the regularly

varying G with index α satisfies limη→∞ ηG′(η)/G(η) = α. Then we have
∣∣∣∣
M(∇jg|x)

m(g|x)
− M(∇jgh2

i |x)

m(gh2
i |x)

∣∣∣∣

=

∣∣∣∣
∫

Rp

θj

‖θ‖
G′(‖θ‖)

(
1

m(g|x)
− h2

i

m(gh2
i |x)

)
F (‖x − θ‖)dθ

∣∣∣∣

≤
∫

Rp

|G′(‖θ‖)|
∣∣∣∣

1

m(g|x)
− h2

i

m(gh2
i |x)

∣∣∣∣ F (‖x − θ‖)dθ

≤ L2

∫

Rp

G(‖θ‖)
‖θ‖

(
1√

m(g|x)
+

hi√
m(gh2

i |x)

)∣∣∣∣∣
1√

m(g|x)
− hi√

m(gh2
i |x)

∣∣∣∣∣F (‖x − θ‖)dθ

≤ 2L2√
m(g|x)m(gh2

i |x)

∫

Rp

G(‖θ‖)
‖θ‖

∣∣∣∣∣1 −

√
m(g|x)

m(gh2
i |x)

hi

∣∣∣∣∣ F (‖x − θ‖)dθ

By the Cauchy-Schwartz inequality, Theorem A.2 and Corollary A.1 in Appendix, the

right-hand side of the inequality above is less than

2L2


 m(g‖θ‖−1|x)

m(g|x)m(gh2
i |x)

∫

Rp

G(‖θ‖)
‖θ‖

(
1 −

√
M(g|x)

m(gh2
i |x)

hi

)2

F (‖x − θ‖)dθ




1/2

<
L3√

m(gh2
i |x)

√
G(‖x‖)H1(‖x‖)

for sufficiently large ‖x‖, some constant L3 and s > 5. Hence there exists L4 and L5 such

that the integrand of Bi is less than

min{L4, L5G(‖x‖)H2
1 (‖x‖)}.

By (24) in Theorem 2.3 and the dominated convergence theorem, Bi converges to 0 as

i → ∞.

A Appendix

A.1 The Blyth method

There are several versions of the Blyth method. For our purpose, a following version from

Brown (1971) and Brown and Hwang (1982) is useful.

14



Theorem A.1. Assume that there is an increasing sequence of proper densities such that∫
‖θ‖≥1

g1(θ)dθ > c for some positive c and ∆i → 0 as i → ∞. Then δg is admissible.

Proof. Suppose that δg is inadmissible and let R(θ, δ′) ≤ R(θ, δg) for all θ with strict

inequality for some θ. Let δ′′ = (δg + δ′)/2. Then, using Jensen’s inequality,

R(θ, δ′′) =

∫
‖δ′′(x) − θ‖2f(‖x − θ‖)dx

<

(∫
‖δg(x) − θ‖2f(‖x − θ‖)dx +

∫
‖δ′(x) − θ‖2f(‖x − θ‖)dx

)

= [R(θ, δ′) + R(θ, δg)] /2 ≤ R(θ, δg),

for any θ. R(θ, δ′′) and R(θ, δg) are both continuous functions of θ. Hence there exists an

ε > 0 such that R(θ, δ′′) < R(θ, δg) − ε for ‖θ‖ ≤ 1. Then

∆i ≥
∫

Rp

[R(θ, δg) − R(θ, δ′′)]gi(θ)dθ

≥
∫

‖θ‖≤1

[R(θ, δg) − R(θ, δ′′)]g1(θ)dθ

≥ εc > 0,

which contradicts ∆i → 0.

A.2 The asymptotic behaviors of expected values

We give some results on the asymptotic behaviors of expected values when the loca-

tion parameter diverges to infinity. Actually, in Section 3, we need an evaluation of the

asymptotic behavior of expectation

Ex[ρ(θ)] =

∫

Rp

ρ(θ)f(‖θ − x‖)dθ

for sufficiently large ‖x‖, where a random vector θ has the density function f(‖θ − x‖).
This is the expected value with respect to the posterior distribution. Interchanging the

roles of x and θ, in this appendix, we consider the asymptotic behavior of expectation

Eθ[ρ(X)] =

∫

Rp

ρ(x)f(‖x − θ‖)dx

for sufficiently large ‖θ‖, where a random vector X has the density function f(‖x − θ‖).
Now we make the following regularity conditions on the density f and the function ρ.
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F1 There exist r0 > 0, L > 0, and s > 1, such that rp+sf(r) ≤ L for all r ≥ r0.

B1 ρ(x) is written as ρ(x) = %(‖x‖), where %(r) is continuously differentiable in r > 0.

B2 There exists r1 ≥ 1 and t1 ≤ t2 such that %(r) > 0 and t1 ≤ r%′(r)/%(r) ≤ t2 for all

r ≥ r1.

The following lemma is useful. The proof, based on the integration of (log %(r))′ =

%′(r)/%(r), is easy and omitted.

Lemma A.1. Under the assumption B2

(z/y)t1 ≤ %(z)/%(y) ≤ (z/y)t2

for any z > y ≥ r1. Moreover

lim sup
y→∞

sup
αy≤z≤βy

%(z)/%(y) ≤ max(αt1 , βt2)

for any 0 < α < 1 < β.

We now state the following theorem concerning the asymptotic behavior of Eθ[ρ(X)]

for large ‖θ‖.

Theorem A.2. Assume F1, B1 and B2. If s > max(1,−t1−p, t2) and
∫ 1

0
rp−1|%(r)|dr <

∞, then there exists ε > 0 (say ε = min(1, s + t1 + p)/4) such that

‖θ‖ε |Eθ[ρ(X)] − ρ(θ)| < Cρ(θ) (26)

for ‖θ‖ ≥ 2 max(r0, r1). Moreover C depends on ρ (or %) only through r1, t1, t2 and

{%(r1)}−1
∫ r1

0
rp−1|%(r)|dr.

Proof. Fix 0 < ν < 1 (set ν = 1/2 finally). Define

Vν = {x : ‖x − θ‖ ≤ ν‖θ‖}
V ′

ν = {x : (1 − ν)‖θ‖ ≤ ‖x‖ ≤ (1 + ν)‖θ‖}.

Clearly Vν ⊂ V ′
ν . Then

‖θ‖ε |E[ρ(X) − ρ(θ)]|

≤ ‖θ‖ε

(∫

Vν

+

∫

V C
ν

)
|ρ(x) − ρ(θ)| f(‖x − θ‖)dx
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≤ ‖θ‖ε

∫

Vν

|ρ(x) − ρ(θ)| f(‖x − θ‖)dx

+ ‖θ‖ερ(θ)

∫

V C
ν

f(‖x − θ‖)dx + ‖θ‖ε

∫

V C
ν

|ρ(x)|f(‖x − θ‖)dx

= I1 + I2 + I3 (say). (27)

Consider the first integral I1. If s > 1, then m1 =
∫

Rp ‖x − θ‖f(‖x − θ‖)dx is finite.

Therefore for ‖θ‖ ≥ (1 − ν)−1r1 we have

‖θ‖ε

∫

Vν

|ρ(x) − ρ(θ)| f(‖x − θ‖)dx

= ‖θ‖ε

∫

Vν

|(x − θ)′∇ρ(x∗)|f(‖x − θ‖)dx, x∗ ∈ Vν

≤ m1‖θ‖ε sup
x∈Vν

‖∇ρ(x)‖

≤ m1‖θ‖ε sup
x∈Vν

|%′(‖x‖)|

≤ m1‖θ‖ε−1 sup
x∈V ′

ν

‖θ‖
‖x‖

sup
x∈V ′

ν

%(‖x‖)
%(‖θ‖)

sup
x∈V ′

ν

‖x‖|%′(‖x‖)|
%(‖x‖)

× ρ(θ)

≤ m1

1 − ν
max

(
(1 − ν)t1 , {1 + ν}t2

)
max(|t1|, |t2|) × ρ(θ)

for 0 < ε < 1. Therefore we have I1 ≤ C1ρ(θ) for some C1.

Now we consider the integral outside of Vν . We only consider ‖θ‖ ≥ max(ν−1r0, r1).

Then for x ∈ V C
ν

‖x − θ‖ ≥ ν‖θ‖ ≥ r0.

Therefore we have, for 0 ≤ α < s
∫

V C
ν

‖x‖αf(‖x − θ‖)dx ≤
∫

V C
ν

{‖x − θ‖ + ‖θ‖}αf(‖x − θ‖)dx

≤ (1 + 1/ν)α

∫

V C
ν

‖x − θ‖αf(‖x − θ‖)dx

≤ (1 + 1/ν)αcpL

∫ ∞

ν‖θ‖
r−s+α−1dr

= (1 + 1/ν)αcpL
(ν‖θ‖)−s+α

s − α

≤ C2(α)‖θ‖α−s, (28)

where C2(α) = (1 + 1/ν)αcpLνα−s(s − α)−1. Hence for the second term I2, if s > 1 and

0 < ε < 1, then I2 ≤ C2(0)ρ(θ).

17



We have seen that I1 and I2 are bounded from above assuming only s > 1.

The third term I3 of (27) is more problematic. Write

I3 = ‖θ‖ε

∫

V C
ν

|ρ(x)|f(‖x − θ‖)dx

≤ ‖θ‖ε

(∫

V C
ν ∩{‖x‖<r1}

+

∫

V C
ν ∩{r1≤‖x‖≤‖θ‖}

+

∫

V C
ν ∩{‖x‖>‖θ‖}

)
|ρ(x)|f(‖x − θ‖)dx

= I31 + I32 + I33 (say.)

We take care of I33 first. Since %(r)r−t2 is monotone nonincreasing for r ≥ r1, ρ(x)‖x‖−t2 ≤
ρ(θ)‖θ‖−t2 for ‖x‖ > ‖θ‖(≥ r1). Therefore we have,

I33 ≤ ‖θ‖ε−t2ρ(θ)

∫

V C
ν ∩{‖x‖>‖θ‖}

‖x‖t2f(‖x − θ‖)dx.

If 0 ≤ t2 < s, as in (28)

∫

V C
ν ∩{‖x‖>‖θ‖}

‖x‖t2f(‖x − θ‖)dx ≤
∫

V C
ν

‖x‖t2f(‖x − θ‖)dx

≤ C2(t2)‖θ‖t2−s

and if t2 < 0,
∫

V C
ν ∩{‖x‖>‖θ‖}

‖x‖t2f(‖x − θ‖)dx ≤ ‖θ‖t2

∫

V C
ν

f(‖x − θ‖)dx

≤ C2(0)‖θ‖t2−s.

Hence I33 ≤ C33ρ(θ) where C33 = max(C2(t2), C2(0)).

Next we consider I31. For ‖θ‖ ≥ max(ν−1r0, r1) and x ∈ V C
ν

f(‖x − θ‖) ≤ L‖x − θ‖−p−s ≤ L(ν‖θ‖)−p−s. (29)

Therefore

I31 ≤ ‖θ‖εLν−p−s‖θ‖−p−s

∫

‖x‖≤r1

ρ(x)dx.

Note that by simple change of variables we have

∂

∂r

∫

‖x‖≤r

dx = cpr
p−1.
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Then ∫

‖x‖≤r1

|ρ(x)|dx = cp

∫ r1

0

rp−1|%(r)|dr.

Therefore

I31 ≤ C∗‖θ‖ε−p−s

∫ r1

0

rp−1|%(r)|dr,

where C∗ = Lν−p−scp. On the other hand for ‖θ‖ ≥ r1, ρ(θ) = %(‖θ‖) is bounded from

below as

%(r1)r
−t1
1 ‖θ‖t1 ≤ %(‖θ‖).

Therefore

I31 ≤ ‖θ‖ε−p−s−t1 × C∗
rt1
1

%(r1)

∫ r1

0

rp−1|%(r)|dr × ρ(θ).

Hence if s > −t1 − p, then we can choose ε > 0 (say ε = (p + s + t1)/4) such that

ε − p − s − t1 < 0 and hence I31 ≤ C31ρ(θ) where

C31 = C∗
rt1
1

%(r1)

∫ r1

0

rp−1|%(r)|dr.

Finally we consider I32. Note %(r) ≤ %(‖θ‖)‖θ‖−t1rt1 for r1 ≤ r ≤ ‖θ‖ and (29). Then

I32 ≤ ‖θ‖ε−t1Lν−p−s‖θ‖−p−s%(‖θ‖)
∫

r1≤‖x‖≤‖θ‖
‖x‖t1dx

≤ ‖θ‖ε−p−s−t1 × C∗

∫ ‖θ‖

r1

rp+t1−1dr × ρ(θ).

Consider the integral Q =
∫ ‖θ‖

r1
rp+t1−1dr. If p + t1 < 0, then

Q ≤ rt1+p
1 /(−t1 − p).

Therefore as in the case of I31, if s > −t1 − p, then we can choose ε > 0 (say ε =

(p + s + t1)/4) such that ε − p − s − t1 < 0 and hence

I32 ≤ rε−s
1 C32ρ(θ) ≤ C32ρ(θ)

where C32 = {−1/(p + t1)}C∗. If p + t1 ≥ 0,

Q =

∫ ‖θ‖

r1

rp+t1+ε3−1−ε3dr ≤ ‖θ‖p+t1+ε3r−ε3
1

p + t1 + ε3
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for any ε3 > 0. Hence

I32 ≤
C∗

p + t1 + ε3

‖θ‖ε+ε3−sρ(θ).

If s > 1, we can choose ε and ε3 (say ε = ε3 = 1/4) such that ε + ε3 − s < 0 and hence

I32 ≤ C32ρ(θ),

where C32 = (p + t1 + ε3)
−1C∗.

We have now confirmed that if s > max(1,−t1 − p, t2), there exist ε > 0 and C =

C1 +C2 +C31 +C32 +C33, such that (26) folds for ‖θ‖ ≥ max(ν−1r0, r1, (1−ν)−1r1) which

equals to 2 max(r0, r1) for ν = 1/2.

In Section 3, we also need asymptotic behavior of the expectation of ρ(X) × hγ
i (X)

where hi(θ) = Hi(‖θ‖) given by (17) and γ > 0.

Corollary A.1. Assume F1, B1 and B2. If s > max(1, γ−t1−p, t2) and
∫ 1

0
rp−1|%(r)|dr <

∞, there exists ε > 0 (say ε = min(1, s + t1 + p − γ)/4) such that

‖θ‖ε |Eθ[ρ(X)hγ
i (X)] − ρ(θ)hγ

i (θ)| < Cρ(θ)hγ
i (θ) (30)

for ‖θ‖ ≥ 2d1 max(r0, r1, η0). Moreover C does not depend on i.

Proof. Since we have

η{%(η)Hγ
i (η)}′/{%(η)Hγ

i (η)} = η%′(η)/%(η) + γηH ′
i(η)/Hi(η),

under Assumption B2 and by part V of Theorem 2.1, for ε1 = (s + t1 + p − γ)/16(> 0)

there exists η0 such that

t1 − γ − γε1 ≤ η{%(η)Hγ
i (η)}′/{%(η)Hγ

i (η)} ≤ t2

for all η ≥ max(η0, r1). Then for ε = min(1, s + t1 + p − γ)/4(> 0), (30) follows from

Theorem A.2.

For λ1 = max(η0, r1),

1

Hγ
i (λ1)%(λ1)

∫ λ1

0

rp−1|Hγ
i (r)%(r)|dr ≤ 1

Hγ
1 (λ1)%(λ1)

∫ λ1

0

rp−1|%(r)|dr

which implies that C does not depend on i.
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