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Abstract

This paper presents a dynamic linear model for modeling hourly ozone
concentrations over the eastern United States. That model, which is developed
within an Bayesian hierarchical framework, inherits the important feature of
such models that its coefficients, treated as states of the process, can change
with time. Thus the model includes a time–varying site invariant mean field
as well as time varying coefficients for 24 and 12 diurnal cycle components.
This cost of this model’s great flexibility comes at the cost of computational
complexity, forcing us to use an MCMC approach and to restrict application of
our model domain to a small number of monitoring sites. We critically assess
this model and discover some of its weaknesses in this type of application.

Keywords: Dynamic linear model, hierarchical Bayes, ozone, random field,
space–time fields.
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1 Introduction

This paper presents a model for the spatio–temporal field of hourly ozone
concentrations for subregions of the eastern United States, one that can in
principle be used for both spatial and temporal prediction. It goes on to
critically assess that model and the approach used for its construction, with
mixed results.

Such models are needed for a variety of purposes as described in Ozone
(2005) where a comprehensive survey of the literature on such methods is
given, along with their strengths and weaknesses. In particular, they can
be used to help characterize population levels of exposures to ozone in out-
door environments, based on measurements taken at often remote ambient
monitors.

These interpolated concentrations can also be used as input to computer
models that incorporate indoor environments to more accurately predict pop-
ulation levels of exposure to an air pollutant. Such models can reduce the
deleterious effects of errors resulting from the use of ambient monitoring mea-
surements to represent exposure. For example, on hot summer days the am-
bient levels will overestimate exposure since people tend to stay in air con-
ditioned indoor environments where exposures are lower. To address that
problem, the US Environmental Protection Agency (EPA) developed APEX.
It is being used by policy–makers to set air quality standards under hypo-
thetical emission reduction scenarios (Ozone, 2005). Interpolated ozone fields
could well be used as input to APEX to further reduce that measurement error
although that application has not been made to date for ozone. However, it
has been made for particulate air pollution through an exposure model called
SHEDS (Burke et al., 2001) as well as a simplified version of SHEDS (Caldor
et al., 2003).

Interest in predicting human exposure and hence in mapping ozone space–
time fields, stems from concern about the adverse human health effects of
ozone. Ozone (2005) reviews an extensive literature on that subject. Exposure
chamber studies show that inhaling high concentrations of ozone compromises
lung function quite dramatically in healthy individuals (and presumably to
an even greater degree in unhealthy individuals such as those suffering from
asthma). Moreover, epidemiology studies show strong associations between
adverse health effects such exposures. Consequently, the US Clean Air Act
mandates that National Ambient Air Quality Standards are necessary for
ozone to protect human health and welfare. Thus, the spatio–temporal models
can have a role in setting these NAAQS.

Ozone concentrations over a geographic region vary randomly over time,
and therefore constitute a spatio–temporal field. In both rural and urban
areas such fields are customarily monitored, the latter to ensure compliance
with the NAAQS among other things. In fact, failure can result in substantial
financial penalties.
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A number of approaches can be taken to modelling such space time fields.
Here we investigate a promising one that involves selecting a member of a very
large class of so–called state space models. Section 2 describes our choice, a
dynamic linear model (DLM), a variation of those proposed by Huerta et
al. (2004) and Stroud et al. (2001). Here “dynamic”, refers to the DLM’s
capability of systematically modifying its parameters over time, a seemingly
attractive feature since the processes it models will themselves generally evolve
“due to the passage of time as a fundamental motive force” (West and Harri-
son, 1997). However, other approaches are possible and in a companion report
currently in preparation, the DLM selected here will be compared with two
other possibilities.

For completeness, Section 2 also introduces some basic features of space–
time theory along with the a review of the celebrated Kalman filter out of
which the state space model of statistics evolved.

Section 3 introduces the hourly concentration field that is to be modeled
in this report. There consideration of measurements made at fixed site moni-
tors and reported in the AIRS1 dataset leads to the construction of our DLM.
That model becomes the object of our assessment in subsequent sections. To
illustrate how to select some of the model parameters in the DLM, we use the
simple first–order polynomial DLM in Section 4 to shed some light on this
problem. Moreover, we prove there in a simple but representative case, that
under the type of model constructed here and by Huerta et al. (2004), the
predictive variances for successive time points conditional on all the data must
be monotonically increasing, an undesirable property. Theoretical results and
algorithms on the DLM are represented in Sections 5 and 6. The MCMC
sampling scheme is outlined in Section 5.1. The forward–filtering–backward–
sampling (FFBS) method is demonstrated in Section 5.2 to estimate the state
parameters in the DLM. Moreover, we outline the MCMC sampling scheme
to obtain samples for other model parameters from their posterior conditional
distributions with a Metropolis–Hasting step. Section 6 gives theoretical re-
sults for prediction and interpolation at unmonitored (ungauged) sites from
their predictive posterior distributions. Section 7 shows the results of MCMC
sampling along with interpolation results on the ozone study. Section 8 de-
scribes problems with the DLM process revealed by our assessment. We sum-
marize our findings and draw conclusions from our assessment in Section 9.

As an added note, we have developed software, written by C and R (see
Appendix B), that alleviates some of the immense computational burden as-
sociated with the MCMC method. That software may be downloaded from
http://enviro.stat.ubc.ca for others wishing to reproduce our findings or apply
the model for modelling hourly ozone in other settings.

1Notice that EPA (Environmental Protection Agency) changed the AIRS (Aerometric Informa-
tion Retrieved System) to the AFS (Air Facility Subsystem) in 2001.
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2 Background

2.1 Space–time process

Let D be the spatial domain of a space–time field, that can in practice
be taken to be a finite set of spatial locations which is monitored at sites,
si, i = 1, . . . , n, some of which are monitored. Let Y (si, t) denote the random
response at time t ∈ R and site si ∈ D and Z(si, t), its measured value.

A very general model is given by

Z(si, t) = Y (si, t) + ε(si, t), i = 1, . . . , n, t = 1, . . . , T, (1)

where ε(si, t) is a white noise process.
The space–time process Y (si, t) can be expressed as

Y (si, t) = µ(si, t) + w(si, t), (2)

where µ(si, t) is the mean process that may depend on the covariate x(si, t)
while w(si, t) is a spatio–temporal process with mean 0.

Since we will be assuming below that our fields have conditional Gaussian
distributions, the covariance defined next plays a fundamental role.

Definition 1 The space–time covariance function is defined as

C(s1, s2; t1, t2) = Cov[w(s1, t1), w(s2, t2)], (3)

where si is the location, and ti is the time point, for i = 1, 2.

To simplify inference about this fields, the covariance is assumed to have
the simple form defined next.

Definition 2 The zero mean spatio–temporal process w(s, t) is covariance
stationary if

C(s1, s2; t1, t2) = C(s1 − s2; t1 − t2) = C(h; η), (4)

where h = s1 − s2 and η = t1 − t2.

Note that h in (4) denotes the vector distance between the two sites.
If w(s, t) does not satisfy (4), it is called a non–stationary spatio–temporal
process.

Sometimes an even more specialized form of the covariance is assumed.

Definition 3 The zero mean stationary spatio–temporal process w(s, t) is
isotropic if

C(h; η) = C(‖h‖; |η|). (5)

Covariances with this property depend on the difference (or separation) vectors
only through the length of their difference vectors, ‖h‖ and |η| . If the spatio–
temporal process is not isotropic, then it is called anisotropic.
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The covariance structure for the spatio–temporal process can be greatly
simplified by assuming separability defined as follows.

Definition 4 The zero mean stationary and isotropic spatio–temporal process
w(s, t) is separable if

C(‖h‖; |η|) = Cs(‖h‖)Ct(|η|), (6)

that is, the covariance function for the spatio–temporal process can be decom-
posed as the product of an isotropic spatial and an isotropic temporal covari-
ance function.

If the covariance for spatio–temporal process is not separable, it is called
non–separable and the process is then non–separable. A fairly general ap-
proach to modelling space–time fields entails the construction of a valid sepa-
rable covariance function (Gelfand et al., 2004). Brown, Le and Zidek (1994)
and Le, Sun and Zidek (1997) use a separable covariance structure to deal
with non-stationary multivariate spatial models in a hierarchical Bayesian
framework. This approach has two advantages: (i) it reduces the number of
parameters to be estimated in the model; (ii) it guarantees a positive definite
covariance matrix.

Because of the dynamic features of spatio–temporal processes, we special-
ize the model above and adopt with a dynamic modelling approach. In the
following sections, we follow that approach, introduce that general state space
model and present some basic results.

2.2 The general state–space model

Suppose yt : n× 1 is a vector of observable random responses for t = 1, 2, . . . .
The state space model that is sometimes referred to as a dynamic linear model
(DLM) involves both an “observation equation” and an “evolution equation”.
The former is given by

yt = F ′
txt + νt, νt ∼ N [0, Vt], (7)

the latter by
xt = Gtxt−1 + ωt, ωt ∼ N [0,Wt], (8)

Ft : p × n, Gt : p × p, Vt : n × n, and Wt : p × p being known matrices.
In Equation (7), Ft is called the design matrix, xt is the state (or system)
vector and νt is the observational error. Equation (8) is also called the state
or system equation. Gt is the system or state matrix and ωt, the system or
evolution error with evolution matrix Wt.

The DLM’s specification is completed with the initial information for the
state parameter given by

(x0|y0) ∼ N [m0, C0]. (9)
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2.3 Kalman filter and smoother

Kalman recursion, or Kalman filtering as it is sometimes referred to, is used
to update and forecast the state parameters. One version of that method is
derived by West and Harrison (1997, Chapter 4) for updating and forecasting
state parameters in the DLM framework. This result can also be derived by
means of Bayesian inference. Carter and Kohn (1994) label this approach
forward–filtering–backward–sampling. It is particularly powerful and will be
used in the following sections. It is summarized in the following theorem
which will be applied to the filtering and smoothing processes.

Theorem 1 Let x1:t = (x1, . . . ,xt) and y1:t = (y1, . . . ,yt), t ≥ 1, denote
all the state parameters and the responses observed until time t, respectively.
Under models (7)–(8), together with the initial information (9), we have

(i)

(xt−1|y1:t−1, θ) ∼ N [mt−1, Ct−1]
(xt|y1:t−1, θ) ∼ N [at, Rt]
(yt|y1:t−1, θ) ∼ N [ft, Qt]

(xt|y1:t, θ) ∼ N [mt, Ct],

where

at = Gtmt−1 Rt = GtCt−1G
′
t + Wt

ft = F ′
tat Qt = F ′

tRtFt + Vt

et = yt − ft At = RtFtQ
−1
t

mt = at + Atet Ct = Rt −AtQtA
′
t.

(ii) Let Bt = CtG
′
t+1R

−1
t+1. For 0 ≤ k ≤ T − 1,

(xT−k|y1:T , θ) ∼ N [aT (−k), RT (−k)], (10)

where

aT(−k) = mT−k + BT−k[aT(−k + 1)− aT−k+1]
RT (−k) = CT−k + BT−k[RT (−k + 1)−RT−k+1]B′

T−k

with aT (0) = mT , RT (0) = CT , aT−k(1) = aT−k+1, and RT−k(1) =
RT−k+1.

This approach has the advantage that the smoothing process does not
require any more information about the observations y1:T . Instead, all the
information about y1:T has been assimilated into x1:T through the forward
filtering process. That fact allows us to discard the past observations. Note
that the distributions for the smoothing and filtering processes are obtained
conditionally on the parameter vector θ. In practice, it is often exceedingly
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difficult to obtain the posterior distribution of θ because it may not have a
closed form. In this case, the Markov Chain Monte Carlo (MCMC) method
is often used to sample θ from its posterior conditional distribution. After
obtaining the θs, we can use Theorem 1 to get samples of state parameters
from their corresponding distributions. If we can obtain all the samples of
θs and state parameters, we can then work out methods for prediction and
interpolation, the general goal of the well known kriging method in a purely
spatial setting. Instead of the space–time setting we confront, the DLM will
be developed for interpolation and prediction. That application will be shown
in Section 7. But first we need to describe more precisely in the next section,
the specific context in which that model is needed.

3 Model specification
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Figure 1: Geographic locations for AIRS dataset, where the latitude and longitude are
measured by degrees. (Those of our cluster appear in the square.)

The space–time field addressed in this paper represents hourly ozone con-
centrations in the unit of ppb (parts per billion) over part of the eastern United
States during the summer of 1995. That field is monitored by 375 irregularly
located monitoring sites (or stations). To enable a focused assessment of DLM
approach as well as overcome computational barries, we consider just one clus-
ter of ten sites (Cluster 2), in close proximity to one another. However, in
unreported work (not reported here for brevity), two other such clusters have
also been investigated with similar results. The geographical locations speci-
fied by latitude and longitude of the monitoring sites, including those of our
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cluster, are depicted in Figure 1. Incidentally, Cluster 2 has the same number
of sites that for Mexico City studied by Huerta et al. (2004).

To develop a suitable model for this space–time field, and construct a DLM
(which of necessity must have normally distributed residuals), we conducted
an exploratory data analysis (EDA) like the one used by Huerta et al. (2004)
to construct their model. For convenience, a small amount of randomly miss-
ing data were filled in by the spatial regression method (SRM), before we
began.

The analysis revealed an asymmetric empirical distribution for the hourly
ozone concentrations, suggesting a data transformation to validate the as-
sumed normality of DLM residuals. The square–root transformation has
been proved best among various options considered, in line with Huerta et
al. (2004).
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Figure 2: Bayesian periodograms for square–root transformed hourly ozone concentrations
at the Cluster 2 sites under the study from May 15 to September 11, 1995 (data taken
from the AIRS database).

To look for periodicity in the ozone data, we plotted the Bayesian peri-
odograms for the square–root transformed ozone levels measured during the
summer of 1995 at the sites in our cluster (Figure 2). A high peak was seen
between 1 pm and 3 pm each day for 120 days. In fact, a significant 24–hour
cycle was obtained for all these gauged (that is, monitoring) sites. We also
found a slightly significant 12–hour cycle by plotting the periodicities that
contribute the most variation judging from the spectrum for each site in our
cluster (Figure 3). However, no obvious weekly cycles or nightly peaks were
seen.

The DLM thus suggested by our analysis is a variant of that of Huerta et
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Figure 3: Periodicity plots for the Cluster 2 sites. The horizontal axes represents the
index of the descending order at which the spectrum density for each site is estimated.

al. (2004), with a state vector equation accounting for trend and periodicity
across sites.

To describe the model suggested by the DLM, let yit denote the square–
root of the observable ozone concentration, at site si, i = 1, . . . , n, and time t,
t = 1, . . . , T, where n being the total number of gauged sites in the geographi-
cal subregion of interest and T, the total number of time points. Furthermore,
let yt = (y1t, . . . , ynt)′ : n× 1. Then the DLM for the field is

yt = 1′nβt + S1t(a1)α1t + S2t(a2)α2t + νt (11)
βt = βt−1 + wt (12)

αjt = αj,t−1 + ωt
αj , (13)

where νt ∼ N [0, σ2Vλ], wt ∼ N [0, σ2τ2
y ], ωt

αj ∼ N [0, σ2τ2
j Vλj ], Vλ = exp(−V/λ),

Vλj = exp(−V/λj), j = 1, 2, and αjt = (αj1t, . . . , αjnt)′ : n × 1, j = 1, 2. Here
βt denotes a canonical spatial trend and αjit, a seasonal coefficient for site
i at time t corresponding to a periodic component, Sjt(aj), where Sjt(aj) =
cos(πtj/12) + aj sin(πtj/12), j = 1, 2. Note that V = (vij) : n × n represents
the distance matrix for the gauged sites s1, . . . , sn, that is, vij = ||si − sj|| for
i, j = 1, . . . , n, where ||si − sj|| denotes the Euclidean distance (km) between
sites si and sj.

Models (11)–(13) can also be written as in (7)–(8) by letting Gt = I,
Vt = σ2Vλ and Wt = σ2W, where W being a block diagonal matrix with
diagonal entries τ2

y , τ2
1 exp(−V/λ1), and τ2

2 exp(−V/λ2). In other words, the
observation and state equations can also be written as

yt = F′txt + νt (14)
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and xt = xt−1 + ωt, (15)

where x′t = (βt, α1t
′, α2t

′), and F′t is given by



1 S1t(a1) 0 . . . 0 S2t(a2) 0 . . . 0
1 0 S1t(a1) . . . 0 0 S2t(a2) . . . 0
...

...
...

...
...

...
...

1 0 0 . . . S1t(a1) 0 0 . . . S2t(a2)


 .

Let y1:T = (ym
1:T , yo

1:T )′, where ym
1:T = (ym

1 , . . . , ym
T ) representing all the

missing values and yo
1:T , all the observed values in Cluster 2 sites for t =

1, . . . , T. The model parameters are (λ, σ2, x1:T , ym
1:T , a1, a2), in which the vec-

tor of state parameters up to time T is given by x1:T = (x1, . . . ,xT), the range
parameter by λ, the variance parameter by σ2 and the phase parameters by
a = (a1, a2). Let γ = (τ2

y , τ2
1 , λ1, τ

2
2 , λ2) be the vector of parameters fixed in

the DLM to make computation feasible.
Specification of the DLM is then completed with the following hyperpriors

for some of the model parameters:

λ ∼ IG(αλ, βλ)
σ2 ∼ IG(ασ2 , βσ2)
a ∼ N(µo

a, Σ
o
a).

Notice that the hyperpriors for λ and σ2 whose choice is discussed in Section
7 have inverse Gamma distributions for computational convenience.2

We express the state–space model in two different ways because of our
dual objectives of parameter inference and interpolation. For simplicity, we
use models (14)–(15) for the purpose of inference on the range, variance and
state parameters (see Section 5.2), and use models (11)–(13) for inference on
the phase parameters (see Section 5.4) and interpolation (see Section 6).

The state–space models in (14)–(15) capture some important features of
field as indicated by data from the AIRS database. In particular, they reflect
the time–dependent structure of the field and capture the diurnal cycles of
the hourly ozone concentrations over the geographical subdomains of concern.
In the next section, the DLM is implemented in this field.

4 Parameter specification considerations

Before proceeding to the implementation of the approach in the next section,
we explore theoretically, albeit in a tractable special case, some features of
the model. That exploration leads to insight on how the model’s parameters
should be specified as well as undesirable consequences of inappropriately
choices. Our assessment will focus on the accuracy of the model’s predictions.

2X ∼ IG(α, β) if Y = 1/X ∼ G(α, β), where p(y) ∝ yα−1 exp(−βy) for α, β > 0.

10



The simple model we consider is a special case of the so–called “first–order
polynomial model”, a mathematically tractable, commonly used model that
captures many important features and properties of the DLM we use.

Emulating the DLM setting described above, let p = 1, F ′
t = 1n

′ : n × 1,
Gt = 1, and xt = βt in (7) and (8). For i = 0, 1, . . . , n (i = 0 indicates the
ungauged location) and t = 1, . . . , T , the first–order polynomial DLM is given
by

yit = βt + εit (16)
βt = βt−1 + δt, (17)

where εt = (ε0t, . . . , εnt)′ ∼ N(0, σ2
ε exp(−V/λ)), and δt ∼ N(0, σ2

δ ). Assume
β0 ∼ N(0, σ2

β) and λ, σ2
ε , σ

2
δ and σ2

β are all known.
The first–order polynomial DLM is particularly useful for short–term pre-

diction. For a small time change the underlying evolution βt is roughly con-
stant. Moreover, the evolution error δt has zero–mean and is independent
over time, so that the underlying process is merely a random walk, meaning
the model does not anticipate long–term variation. At any fixed time t,

βt = β0 +
t∑

k=1

δk (18)

yit = β0 +
t∑

k=1

δk + εik. (19)

Consequently, the covariance structure of the first–order polynomial DLM is
as follows:

Var(yit) = σ2
β + tσ2

δ + σ2
ε (20)

Cov(yit, yjt) = σ2
β + tσ2

δ + σ2
ε exp(−dij/λ) (21)

Cov(yit, yjs) = σ2
β + min{t, s}σ2

δ (s 6= t), (22)

where dij = ||si − sj||, for i, j = 0, 1, . . . , n and t, s = 1, . . . , T.
The first–order polynomial DLM in (16)–(17) has the important property

of non–stationarity because the covariance functions in (21)–(22) depend on
min{t, s}, rather than |t−s|. This DLM thus defines a non–stationary spatio–
temporal process since for the first–order polynomial model to be stationary,
the eigenvalues of Gt = G must lie inside of the unit circle (West and Harrison,
1997), whereas Gt = 1 in our model. Furthermore, the general DLM defined in
Section 3 is non–stationary because Gt = I2n+1 given all the model parameters
in (14)–(15).
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We readily find that the correlation between yit and yjs to be

Cor(yit, yjt) =
σ2

β + tσ2
δ + σ2

ε exp(−dij/λ)

σ2
β + tσ2

δ + σ2
ε

(23)

Cor(yit, yjs) =
σ2

β + min{t, s}σ2
δ√

σ2
β + tσ2

δ + σ2
ε

√
σ2

β + sσ2
δ + σ2

ε

(s 6= t) (24)

where i, j = 0, . . . , n and s, t = 1, . . . , T.

Remark 1 The correlations in (23) and (24) have the following properties
when i 6= j:

(i)

Cor(yit, yjt) > Cor(yit, yjs) (25)

for s 6= t, s, t = 1, . . . , T and

(ii)

Cor(yit, yjt)− Cor(yit, yjs) (26)

is a monotone increasing function of |t− s|.
Thus for any fixed time point t, Cor(yit, yjs) is maximized at s = t and de-
creases as |s− t| increases.

Remark 2 By (23), Cor(yit, yjt) → 1 as t → ∞ for i, j ∈ {0, . . . , n}. That
property seems unreasonable; the degree of association between two fixed mon-
itors should not increase as an artifact of a larger time t. That suggests a
need to make some of the model parameters, say σ2

δ , depend on time. More
specifically, (23) suggests making tσ2

δ = O(1)3 to stabilize Cor(yit, yjt).
Carrying this assessment further,

Cor(yit, yjt) '
σ2

β + tσ2
δ + σ2

ε

σ2
β + tσ2

δ + σ2
ε

= 1,

for any two sites in close proximity, i.e., dij ' 0, a result that seems quite
reasonable. For two disjoint sites very far from each other so that dij →∞,

Cor(yit, yjt) →
σ2

β + tσ2
δ

σ2
β + tσ2

δ + σ2
ε

=
σ2

β + O(1)

σ2
β + O(1) + σ2

ε

.

This correlation should be close to 0. In other words, we should have σ2
β +

O(1) ¿ σ2
ε . A sufficient condition for this to hold is σ2

β ¿ σ2
ε and tσ2

δ =
O(1) ¿ σ2

ε .

3O(1) represents a constant.
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Now consider the correlations of responses at an ungauged site s0 with
those at the gauged site sj, j ∈ {1, . . . , n}, respectively. Both (25) and (26)
hold for i = 0. Furthermore, we have restrictions on selecting the model
parameters σ2

β and σ2
δ , namely, σ2

β ¿ σ2
ε and tσ2

δ = O(1) ¿ σ2
ε . The key

result in (23) suggests a simple but straightforward way to adjust the model
parameter σ2

δ according to the size of T , namely, to replace σ2
δ by σ2

δ/T . That
choice is empirically validated in Section 9.

We now turn to the behavior of the predictive variances in the first–order
polynomial DLM that helps us understand the interpolation results. In fact,
the properties of the correlation structure in (25)–(26), lead us to the con-
jecture that the model’s predictive bands should increase monotonically over
time as more data become available, in the absence of the restrictions on
tσ2

δ = O(1) suggested above. Furthermore, even conditioning on all the data,
the predictive bands should also increase over time. In support of these con-
jectures, we prove that they hold in a simple case where n = 1 and T = 2 in
(16)–(17).

Result 1 For the first–order polynomial DLM in (16)–(17) with n = 1 and
T = 2, assume the prior for β0 to be N(0, σ2

β). The joint distribution of
y = (y01, y11, y02, y12)′ is N(0, Σ), where

Σ = (σ2
β+σ2

δ )14
′14+ block–diagonal{σ2

ε exp(−V/λ), σ2
δ12

′12+σ2
ε exp(−V/λ)},

with 1′k being the k×1 vector of 1s (k = 1, 2, . . .). Then we have the following
predictive conditional variances:

V ar(y01|y11) =
(σ2

β + σ2
δ + σ2

ε)
2 − (σ2

β + σ2
δ + σ2

ε exp(−d01/λ))2

σ2
β + σ2

δ + σ2
ε

; (27)

Var(y02|y12) =
(σ2

β + 2σ2
δ + σ2

ε)
2 − (σ2

β + 2σ2
δ + σ2

ε exp(−d01/λ))2

σ2
β + 2σ2

δ + σ2
ε

;(28)

V ar(y01|y11, y12) =
M1

∆
; (29)

V ar(y02|y11, y12) =
M2

∆
; (30)

where

∆ = (σ2
β + σ2

δ + σ2
ε)(σ

2
β + 2σ2

δ + σ2
ε)− (σ2

β + σ2
δ )

2; (31)

M1 = (σ2
β + 2σ2

δ + σ2
ε){(σ2

β + σ2
δ + σ2

ε)
2 − (σ2

β + σ2
δ + σ2

ε exp(−d01/λ))2}
−2(σ2

β + σ2
δ )

2(σ2
ε − σ2

ε exp(−d01/λ)); (32)

and

M2 = (σ2
β + σ2

δ + σ2
ε){(σ2

β + 2σ2
δ + σ2

ε)
2 − (σ2

β + 2σ2
δ + σ2

ε exp(−d01/λ))2}
−2(σ2

β + σ2
δ )

2(σ2
ε − σ2

ε exp(−d01/λ)). (33)
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For our simple model, we would expect the predictive variance of y01 based
on more data collected over time to be no greater than that of y01 based on
less, that is,

V ar(y01|y11) ≥ V ar(y01|y11, y12)

and
V ar(y02|y12) ≥ V ar(y02|y11, y12).

Moreover, we would expect that, based on the same amount of data, the
predictive variance of y01 would be no greater than that of y02, that is,

V ar(y01|y11, y12) ≤ V ar(y02|y11, y12).

The next result, whose proof is straightforward and hence omitted, proves
these conjectures and provides other comparisons of these predictive variances.

Result 2 Under the particular first–order polynomial DLM in Result 1, we
have the following properties of the predictive conditional variances:

Var(y01|y11)−Var(y01|y11, y12) =
σ4

ε(σ
2
β + σ2

δ )
2(1− exp(−d01/λ))2

∆(σ2
β + σ2

δ + σ2
ε)

≥ 0;

(34)

Var(y02|y12)−Var(y02|y11, y12) =
σ4

ε(σ
2
β + σ2

δ )
2(1− exp(−d01/λ)2)

∆(σ2
β + 2σ2

δ + σ2
ε)

≥ 0;

(35)

Var(y02|y11, y12)−Var(y01|y11, y12) =
σ4

εσ
2
δ (1− exp(−d01/λ))2

∆
≥ 0; (36)

Var(y02|y12)−Var(y01|y11) =
σ4

εσ
2
δ (1− exp(−d01/λ))2

(σ2
β + σ2

δ + σ2
ε)(σ2

β + 2σ2
δ + σ2

ε)
≥ 0; (37)

V ar(y01|y11)− V ar(y01|y11, y12) ≥ V ar(y02|y12)− V ar(y02|y11, y12); (38)

V ar(y02|y12)− V ar(y01|y11) ≤ V ar(y02|y11, y12)− V ar(y01|y11, y12). (39)

Remark 3 In Result 2, (34)–(36) verify our conjectures and we then con-
clude that the predictive variance function is a monotonic increasing func-
tion of time t given the same set of data. It decreases when more data and
equivalently, more time is involved. Furthermore, the difference between these
predictive variances decrease as t increases. It increases with time even when
conditioning on the same amount of data.

As an immediate consequence of (36), the predictive variances increase
monotonically at successive time points conditional on all the data. That
leads to monotonically increasing coverage probabilities at the ungauged sites,
an interesting phenomenon discussed in Section 8. There we will also discuss
the lessons learned in this section in relation to our empirical findings.

Next, an interesting finding on the properties of the above predictive vari-
ances may explain their key features in the next result. This result considers
these predictive variances changing as a function of λ, d01 or σ2

ε . Part of its
proof is included in Appendix A.1.
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Result 3 The predictive conditional variances in (27)–(33) increase as d01

increases, or σ2
ε increases, or λ decreases.

Thus, keeping two variables as fixed, these predictive conditional variances
are monotone as a function of the remaining variable. It is interesting to note
that applying the DLM could paradoxically lead to larger predictive variances
when conditioning on more data. For example, for the case that n = 1 and
T = 2, applying the DLM model with only data at T = 2 yields a predictive
variance V ar∗(y02|y12), which is exactly the same as V ar(y01|y11) in (27).
This predictive variance is smaller than V ar(y02|y11, y12) in (30), which is
based on more data, under certain condition as specified in the result below.

Result 4 Under the particular first–order polynomial DLM in Result 1,

V ar∗(y02|y12) < V ar(y02|y11, y12) if and only if σ2
ε > σ2

β

(
1 +

σ2
β

σ2
δ

)
.(40)

This proof is straightforward and so omitted here. This behavior is also seen
in our application as demonstrated by the empirical results in Section 8.

5 Estimation algorithms

This section describes how to sample from the parameters’ posterior distri-
butions using the MCMC method, more specifically the forward–filtering–
backward–sampling algorithm of Carter and Kohn (1994).

Section 5.1 introduces the Metropolis–within–Gibbs method to sample
from the target joint posterior distribution of the model parameters. Sec-
tions 5.2, 5.3 and 5.4 show how to carry out that method in the DLM. Section
5.5 summarizes the algorithm to estimate the model parameters.

5.1 Metropolis–within–Gibbs algorithm

Recall the state space model defined in Equations (7) and (8). Let yo
1:T =

(yo
1, . . . ,yo

T) : n × T be the observation matrix at the n gauged sites up to
time T . Let x1:T = (x1, . . . , xT ) : (2n + 1)× T be the state parameters at the
n gauged sites until time T. For simplicity, the values of γ are fixed but the
problem of setting them will be addressed below.

The joint distribution, p(λ, σ2, x1:T , ym
1:T , a1, a2|yo

1:T ), is the object of in-
terest. Since it does not have a closed form, direct sampling methods en-
counter difficulties in drawing samples from it. The Markov chain Monte
Carlo (MCMC) method is a popular way to sequentially sample parameters
from their posterior distributions depending on the last value drawn, until the
chain converges. In fact, the MCMC method can be used to obtain the pos-
terior, predictive and interpolated results for the DLM (Huerta et al., 2004).
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Here a blocking MCMC scheme is used to sample iteratively each com-
ponent of the posterior distribution. Three blocks are chosen: (λ, σ2, x1:T ),
ym
1:T and (a1, a2). Two reasons lead us to this choice. Firstly, it is natural

to select blocks in which the parameters are highly correlated but relatively
conditionally independent between the blocks. The phase parameters are as-
sumed independent in time and location and so are not much correlated with
the other model parameters. Another reason stems from the fact that the full
conditional posterior distribution of the phase parameters can be obtained
by assuming a bivariate normal hyperprior. These considerations lead to the
method of inference presented in Appendix A.2.

Having no direct way of sampling from the posterior distribution, Gibbs
sampling is used to sample these two blocks iteratively from their full condi-
tional posterior distribution. In other words, iteratively, we can:

(i) sample from p(x1:T , λ, σ2|a1, a2, y1:T )

(ii) sample from p(ym
1:T |λ, σ2, x1:T , a1, a2, y

o
1:T ) and

(ii) sample from p(a1, a2|x1:T , λ, σ2, y1:T ).

However, p(λ, σ2, x1:T |a1, a2, y1:T ) has no closed form either. Instead, the
full conditional posterior distribution of x1:T can be obtained explicitly by
Kalman filtering and smoothing (Section 2.3), in other words, by the FFBS
algorithm. Assuming an inverse Gamma hyperprior for σ2, the conditional
posterior distribution of σ2 given the range and phase parameters is also
inverse Gamma distributed with new shape and scale parameters. Note that

p(λ, σ2, x1:T |a1, a2, y1:T ) = p(λ|a1, a2, y1:T )p(σ2|λ, a1, a2, y1:T )
×p(x1:T |λ, σ2, a1, a2, y1:T ), (41)

indicating that we can sample iteratively from the three conditional pos-
terior distributions on the right–hand–side of (41) to obtain samples from
p(λ, σ2, x1:T |a1, a2, y1:T ). However, p(λ|a1, a2, y1:T ) has no closed form, lead-
ing us to sample λ by a Metropolis–Hasting chain within a Gibbs sampling
cycle, an algorithm often referred to as Metropolis–within–Gibbs. The next
three subsections selectively present the details.

5.2 Sampling from p(λ, σ2, x1:T |a1, a2, y1:T )

To sample (λ, σ2, x1:T ) from p(λ, σ2, x1:T |a1, a2, y1:T ), we use the block MCMC
scheme. Because of (41), we could ideally iteratively sample λ from p(λ|a1, a2, y1:T ),
σ2 from p(σ2|λ, a1, a2, y1:T ) and x1:T from p(x1:T |λ, σ2, a1, a2, y1:T ). However,
because we do not have a closed form for the posterior density of p(λ|a1, a2, y1:T ),
we use instead the Metropolis–Hasting algorithm to sample λ, given the data,
from the following a quantity that is proportional to its posterior density, that
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is,

p(λ|a1, a2, y1:T ) ∝ p(λ)
T∏

t=1

|Qt|−
1
2

[
β +

1
2

T∑

t=1

et
′Q−1

t et

]−(nT/2+α)

. (42)

Appendix A.2 gives the details. Since we cannot compute the normalization
constant for p(λ|a1, a2, y1:T ), the Metropolis–Hasting algorithm is used here;
it is impossible to sample λ directly from its posterior distribution. The main
reason for developing the Metropolis–Hasting algorithm was the need for an
equilibrium distribution for the Markov Chain, since computation and sim-
ulation are easier for reversible chains where the transition probabilities and
stationary density of the chain satisfy the detailed balance equations. In the
Metropolis–Hasting algorithm, the transition kernel is a mixed distribution
for the new state of the chain: q(., .), the proposal density and α(., .), the
acceptance probability.

The proposal density, q(., .), is selected to be a lognormal distribution,
because the parameter space is bounded below by 0, making the Gaussian
distribution inappropriate. As Moller (2003) points out, this alternative to a
random walk Metropolis considers the proposal move to be a random multiple
of the current state. From the current state λ(j−1)(j > 1), the proposed
move is λ∗ = λ(j−1)eZ , where Z is drawn from a symmetric density, such
as normal. In other words, at iteration (j), we sample a new λ∗ from this
proposal distribution, centered at the previously sampled λ(j−1) with a tuning
parameter, τ2, as the variance for the distribution of Z. Gamerman (2006)
suggests the acceptance rate, that is, the ratio of accepted λ∗ to the total
number of iterations, be around 50%. We tune τ2 to attain that rate. If the
acceptance rate were too high, for example, 70% to 100%, we would increase
τ2. If too low, for example, 0 to 20%, we would decrease τ2, to narrow down
the search area for λ∗.

The Metropolis–Hasting algorithm proceeds as follows. Given λ(j−1), a
(j−1)
1 , a

(j−1)
2

and y
(j−1)
1:T , where j > 1 :

• Draw λ∗ from LN(λ(j−1), τ2).

• Compute the acceptance probability:

α(λ(j−1), λ∗) = min

{
1,

p(λ∗|a(j−1)
1 , a

(j−1)
2 , y

(j−1)
1:T )/q(λ(j), λ∗)

p(λ(j−1)|a(j−1)
1 , a

(j−1)
2 , y

(j−1)
1:T )/q(λ∗, λ(j−1))

}
.

• Accept λ∗ with probability α(λ(j−1), λ∗). In other words, sample u ∼
U [0, 1] and let λ(j) = λ∗ if λ∗ < u and λ(j) = λ(j−1) otherwise.

We run this algorithm iteratively until convergence is reached.
Next, we sample σ2 given the accepted λ’s, a1’s, a2’s and y1:T . The prior

for σ2 is chosen to be an inverse gamma distribution with shape parameter
α and scale parameter β. The posterior distribution for σ2 is also an inverse
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gamma distribution, but with a shape parameter α+ nT
2 and a scale parameter

β + 1
2

∑T
t=1 et

′Q−1
t et.

We now sample x1:T given the accepted λ’s, σ2’s, phase parameters and
y1:T , using the forward–filtering–backward–sampling (FFBS) method as de-
scribed in Section 2.3.

West and Harrison (1997) propose a general theorem for inference about
the parameters in the DLM framework. For time series data, the usual method
for updating and predicting is the Kalman filter. We present Theorem 2 in
Appendix A.3 as the forward–filtering–backward–sampling (FFBS) algorithm
(similar to the Kalman filter algorithm) to resample the state parameters
conditional on all the other parameters and observations. FFBS is used as
part of a MCMC method to sample x1:T = (x1, . . . ,xT) from the smoothing
distribution p(xt|λ, σ2, a1, a2, y1:T ). It is called FFBS because recent data are
used to update the state parameters, xt’s, recursively from t = 1, . . . , T, as
well as to sample each element of the {xt} using all the information recursively
from t = T, . . . , 1.

Theoretical results for models (14) and (15) are presented to give some
idea on how to resample x1:T conditionally on the other parameters and ob-
servations. One can also obtain it from Theorem 1 in Section 2.3, by letting
Gt = I, Vt = σ2Vλ and Wt = σ2W.

The initial state parameter is given by

(x0|y0, θ) ∼ N [m0, σ2C0], (43)

where y0 being the initial information, with m0 and C0 known. Later in
Section 7, we consider how to set them for Cluster 2 AIRS dataset (1995).
Let θ = (λ, σ2, a1, a2, γ). Assume all the prior information has been given and
θ’s coordinates are mutually independent. The details on this algorithm are
included in Appendix A.3.

5.3 Sampling from p(ym

1:T |λ, σ2, x1:T , a1, a2, y
o

1:T )

MCMC enjoys the advantage of being able to fill in missing values at each
iteration. In other words, missing values can be treated as if they were model
“parameters”. It then avoids using the roughly fitted missing values by period
means or spatial regression method, a possible reason leading to the inaccurate
interpolation results.

At any fixed time point t, after appropriately defining a scale matrix Rt,
we can rewrite the observation vector yt as follows:

Rtyt =
(

ym
t

yo
t

)
,

where ym
t : nt×1 denotes the missing response(s) at time t and yo

t : (n−nt)×1
the observed response(s) at t. Notice that “o” represents “observed” and “m”,
“missing”.
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Let Rt = (en1 , . . . , ent , ek1 , . . . , ekn−nt
)′, where {snj : j = 1, . . . , t} rep-

resents the set of gauged sites containing missing values at time point t,
{skj : j = 1, . . . , n − nt} the set of gauged sites containing observed val-
ues at time t, for all t = 1, . . . , T ; and ej = (ej1, . . . , ejn)′ : 1 × n such that
ejk = Ij=k for k = 1, . . . , j and j ∈ Z+.

We already know that

(yt|λ, σ2,xt,a) ∼ N [F ′
txt, σ

2 exp{−V/λ}],

so that Rtyt is also multivariate normally distributed that

(Rtyt|λ, σ2,xt,a) = ((ym
t ,yo

t )′|λ, σ2,xt,a) ∼ N [µ̃t, Σ̃t],

where

µ̃t = RtF
′
txt

Σ̃t = σ2Rt exp{−V/λ}R′
t.

We can also decompose µ̃t as

µ̃t =
(

µ̃m
t

µ̃o
t ,

)

where µ̃m
t : nt × 1 and µ̃o

t : (n− nt)× 1.
Similarly, we have

Σ̃t =
(

Σ̃mm
t Σ̃mo

t

Σ̃om
t Σ̃oo

t

)
,

where Σ̃mm
t : nt × nt, Σ̃mo

t : nt × (n− nt) and Σ̃oo
t : (n− nt)× (n− nt).

By a standard property of multivariate normal distribution, we have

(ym
t |λ, σ2,xt,a,yo

t ) ∼ N [µ∗∗t , Σ∗∗t ], (44)

where
µ∗∗ = µ̃m

t + Σ̃mo
t (Σ̃oo

t )−1(yo
t − µ̃o

t ), (45)

and
Σ∗∗t = Σ̃mm

t − Σ̃mo
t (Σ̃oo

t )−1Σ̃om
t , (46)

for t = 1, . . . , T.
At each iteration, we draw ym

t from the corresponding distribution (44)
at each time point t and then we can write the response variables as y1:T =
(ym

1:T , yo
1:T ) without loss of generality, where ym

1:T = (ym
1 , . . . , ym

T ) and yo
1:T =

(yo
1, . . . , y

o
T ).
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5.4 Sampling from p(a1, a2|λ, σ2, x1:T , y1:T )

We now present our method for sampling the phase parameters a = (a1, a2)′

from its full conditional posterior distribution, that is, p(a|λ, σ2, x1:T , y1:T ),
by using the samples of λ, σ2 and x1:T as illustrated in Sections 5.2 and 5.3.
For simplicity, we use the notation for models (11)–(13) in this section.

We then sample the constant phase parameters conditional on all the other
parameters and observations. Suppose a = (a1, a2)′ has a conjugate bivariate
normal prior with mean vector µo = (µ1o, µ2o)′ and covariance matrix Σ0.
Then the posterior conditional distribution for a is normal with mean vector
µ∗ and covariance matrix Σ∗, where µ∗ and Σ∗ can be obtained from Equations
(60) and (61), respectively. This result is shown in Appendix A.4.

We will not use a non–informative prior for a such as p(a) ∝ 1, a prob-
lematic choice. It is due to the fact that we need to avoid non–identified
posterior means or posterior variances. To be more specific, assume p(a) ∝ 1.
Using the above approach, we find that the posterior conditional distribution
of a is normal with mean vector µ = (µ1, µ2)′ and covariance matrix Σ from
equations (49) and (50), respectively. The elements of Σ are also given in
Appendix A.4, where Σ can be singular for any t = 12k, where k is an integer.
Hence, we obtain the extreme values at times 12, 24, . . . , 2880, that invalidates
the assumption of constant phase parameters across all the time scales when
we sample from its full conditional posterior distribution.

For fixed values of λ, σ2 and x1:T , we sample a from N(µ∗,Σ∗) and then
obtain the median as the estimator for a for each fixed iteration due to the
assumption that (a1, a2) are constant phase parameters in the models (14)–
(15).

5.5 Summary

The MCMC methods we use here resembles that of Huerta et al. (2004), one
difference being that we unlike them, use all the samples after the burn–in
period, not just the chain containing the accepted samples. We believe the
Markov chains of only accepted results will lead to biased samples, thereby
changing the detailed balance equation of the Metropolis–Hasting algorithm.

The above algorithm we use for Cluster 2 AIRS dataset is summarized as
follows:
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---------------------------------------------------------------------------
Algorithm The Metropolis-within-Gibbs method

---------------------------------------------------------------------------

1. Initialization: sample

λ(1) ∼ IG(αλ, βλ)

σ2(1) ∼ IG(ασ2 , βσ2)

x
(1)
1:T ∼ N(m0, σ

2(1)
C0).

2. Given the (j − 1)th value λ(j−1), σ2(j−1)
, x

(j−1)
1:T , ym

1:T
(j−1), a

(j−1)
1 , a

(j−1)
2

and the observations yo
1:T :

(1) Sample (λ(j), σ2(j)
, x

(j)
1:T ) from p(λ, σ2, x1:T |a(j−1)

1 , a
(j−1)
2 , y

(j−1)
1:T ), where

y
(j−1)
1:T = (ym

1:T
(j−1), yo

1:T ).

(i) • Generate a candidate value λ∗ from a logarithm proposal dis-
tribution q(λ(j−1), λ), that is, LN(λ(j−1), τ2) for some suit-
able tuning parameter τ2.

• Compute the acceptance ratio α(λ(j−1), λ∗) where

α(λ(j−1), λ∗) = min

{
1,

p(λ∗|a(j−1)
1 , a

(j−1)
2 , y

(j−1)
1:T )λ∗

p(λ(j−1)|a(j−1)
1 , a

(j−1)
2 , y

(j−1)
1:T )λ(j−1)

.

}

• With probability α(λ(j−1), λ∗) accept the candidate value and
set λ(j) = λ∗; otherwise reject and set λ(j) = λ(j−1).

(ii) Sample σ2(j) from p(σ2|λ(j), a
(j−1)
1 , a

(j−1)
2 , y

(j−1)
1:T ).

(iii) Sample x
(j)
1:T from p(x1:T |λ(j), σ2(j)

, a
(j−1)
1 , a

(j−1)
2 , y

(j−1)
1:T ).

(2) Sample ym
1:T

(j) from p(ym
1:T |λ(j), σ2(j)

, x
(j)
1:T , a

(j−1)
1 , a

(j−1)
2 , yo

1:T ).

(3) Sample (a(j)
1 , a

(j)
2 ) from p(a1, a2|λ(j), σ2(j)

, x
(j)
1:T , y

(j)
1:T ), where y

(j)
1:T =

(ym
1:T

(j), yo
1:T ).

3. Repeat until convergence.

---------------------------------------------------------------------------

We develop the software into implementing the DLM approach illustrated
in this section. To carry out the Metropolis–within–Gibbs algorithm, this
software is written on R and C language to speed up the computation. Current
version, GDLM.1.0, is available for free download at http://enviro.stat.ubc.ca
for different platforms such as Windows, Unix and Linux.
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6 Algorithms for interpolation and predic-

tion

This section describes how to interpolate hourly ozone concentrations at un-
gauged sites using the DLM and the simulated Markov chains for the model
parameters (see Section 5). In other words, suppose s1, . . . , su are u ungauged
sites of interest within the geographical region of Cluster 2 sites (excluding
the possibility of extrapolation). The objective is to draw samples from

p(ys
1:T |λ, σ2, x1:T , a1, a2, y1:T ),

where ys
1:T = (ys

1, . . . ,ys
T) : 1× T and ys

t denotes the unobserved square–root
of ozone concentrations at the ungauged site s and time t, for t = 1, . . . , T and
for s ∈ {s1, . . . , su}. Let (αs

1t, α
s
2t) denote the unobserved state parameters at

site s and time t. The DLM is given by

yt
new = 1n+1

′βt + S1t(a1)α1t
new + S2t(a2)α2t

new + νt
new, (47)

where yt
new = (ys

t ,yt
′)′, αt

new = (αs
1t, α1t

′, αs
2t, α2t

′)′, and νt
new ∼ N(0, σ2 exp(−V new/λ)).

In Section 6.1, we illustrate how to sample the unobserved state param-
eters {(αs

1t, α
s
2t) : t = 1, . . . , T} from the corresponding conditional posterior

distribution. Spatial interpolation at the ungauged site s is demonstrated in
Section 6.2.

6.1 Sampling the unobserved state parameters

We first sample αs
jt given αs

j,t−1, αjt and αj,t−1, j = 1, 2. From the state
equation (15) for αjt

new, we know that the joint density of αs
jt and αjt follows a

normal distribution, with covariance matrix σ2τ2
j exp (−V new/λj), where V new

denotes the distance matrix for the unobserved station and the monitoring
stations. The conditional posterior distribution,

p(αs
jt|αs

j,t−1, λ, σ2, βt, α1t, α2t, a1, a2, y1:T ),

is derived in Appendix A.5.

6.2 Spatial interpolation at the ungauged sites

We interpolate the square–root of ozone concentration at the ungauged sites
by conditioning on all the other parameters and observations at the gauged
sites. Similarly as above, ys

t and yt are jointly normally distributed from the
observation equation. The predictive conditional distribution for ys

t , that is,
p(ys

t |αs
1t, α

s
2t, λ, σ2, βt, α1t, α2t, a1, a2, y1:T ), is given in Appendix A.5.
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7 Application

−96 −94 −92 −90 −88

37
38

39
40

41

Longitude

La
tit

ud
e

+
+

+

+

+

++

++

+

+
+++

+

+

++

+

+

+

+ +

+
++

+

+

1

2

3
4

5

6

7
8

9

10

AB
C

D

E

F

Figure 4: Geographical locations of ten gauged sites in Cluster 2 and the randomly chosen
six ungauged sites. (Number = Cluster 2 sites and letter = ungauged sites.)

This section applies the model to the hourly ozone concentration field
described above. Within the range of Cluster 2, six additional monitoring
sites are randomly selected to play the role of “unmonitored sites” from those
available. They enable us to assess the spatial predictor based on our DLM
and hence the DLM itself. The geographical locations of these six ungauged
sites, represented by the alphabetic letters, A, . . . , F, are shown in Figure 4,
along with the sites in Cluster 2.

7.1 MCMC simulation

This subsection presents a MCMC simulation study in which we sample from
the posterior distributions of the model parameters in the DLM.

Initial settings

Following Huerta et al. (2004), we use the following initial settings for the
starting values, hyperpriors and fixed model parameters in the DLM:

• The hyperprior for λ is IG(1, 5) and for σ2, IG(2, 0.01). The expected
value of IG(1, 5) is ∞ and so are both of the variances of p(λ) and p(σ2).
These vague priors for λ and σ2 are selected to reflect our lack of prior
knowledge about their distributions.
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• The initial information for x0, the initial state parameter, is assumed to
be normally distributed with mean vector m0 = (2.85,−0.751′n,−0.081′n)′

and covariance matrix σ2
1C0, where σ2

1 ∼ IG(2, 0.01) and C0 is a block
diagonal matrix with diagonal entries 1, 0.011′n and 0.011′n.

• The hyperprior for a is a bivariate normal distribution with mean vector
µo = (2.5, 9.8)′ and a diagonal matrix Σo with diagonal entries 0.5 and
0.5.

• Some of the model parameters in the DLM are fixed as follows: τ2
y =

0.02, τ2
1 = 0.0002, τ2

2 = 0.0004, λ1 = 25 and λ2 = 25.

Monitoring the convergence of the Markov chains

0 500 1000 1500

0
20

40
60

80

(a)

Iterations

λ

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(b)

Iterations

σ2

0 500 1000 1500

2.
20

2.
30

2.
40

2.
50

(c)

Iterations

a1

0 500 1000 1500

9.
8

9.
9

10
.1

10
.3

(d)

Iterations

a2

Figure 5: Traces of model parameters with the number of iterations of the Markov chains.
The parameters are: (a) –λ, the range parameter; (b) –σ2, the variance parameter; (c)
–a1, the phase parameter with respect to the 24–hour periodicity; and (d) –a2, the phase
parameter with respect to the 12–hour periodicity.

Figure 5 shows the trace plots of model parameters λ, σ2, a1 and a2 with
the number of iterations of the simulated Markov chains where the total num-
ber of iterations is 4, 268. The burn–in period is chosen to be 2, 269 and all the
remaining Markov samples are collected for posterior inference. The accep-
tance rate is approximately 62%. We observe that the Markov Chain converges
after a run of less than five hundreds iterations.

Table 1 displays the median and 95% quantile from the simulated Markov
chains for the model parameters λ, σ2, a1 and a2.
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Quantile λ σ2 a1 a2

2.5% 69.29 1.19 2.42 9.77
Median 71.83 1.21 2.45 9.80
97.5% 75.37 1.24 2.48 9.84

Table 1: Posterior summaries for λ, σ2, a1 and a2.

7.2 Spatial interpolation

This subsection assesses the model’s performance by comparing the interpo-
lation values at the ungauged sites, A, . . . , F , with the measurements made
there. We use the entire data to assess the performance of the interpolation
results. Table 2 shows the coverage probabilities of the credibility intervals
(or “credible intervals” for short) for these six ungauged sites at various nom-
inal levels. In general, the coverage probabilities at the ungauged sites exceed
their nominal levels, indicating that the error bands are too wide.

Among these six ungauged sites, Site D has the highest coverage proba-
bility seen in Table 2. This may be because of D being in close proximity to
a “friend” among the gauged sites, namely, Site 1. That would be consistent
with our assumption that the spatial correlation is inversely proportional to
the intersite distance. At the same time, these unsatisfactorily large coverage
probabilities point to a deficiency of the DLM.

Nominal Credible Prob. (%)
Coverage Prob.s (%)

A B C D E F

95 94.9 96.9 96.5 99.7 96.1 98.1
90 91.9 93.7 93.5 99.4 93.6 96.8
80 84.8 88.5 88.2 97.7 89.6 94.3
70 78.7 83.5 83.3 94.0 85.8 90.6
60 73.0 78.5 77.1 89.7 81.6 86.6
50 65.2 71.5 70.4 85.6 76.1 81.4
40 55.2 61.4 61.0 79.2 67.9 74.7
30 42.2 47.6 47.5 69.6 54.9 64.4

Table 2: Comparisons between the empirical credible probability and the nominal levels
at the ungauged sites A, . . . , F.

To explore this issue further, Figures 6–10 show the interpolation results
at Ungauged Site D from May 14 to September 11, 1995, where the solid lines
represent the predicted median of the responses, the dashed lines represent the
95% predictive intervals for the predicted square–root of ozone concentrations
and the solid dots represent the observations at this “ungauged” site.

Furthermore, Table 3 shows for all the ungauged sites, the friends they
have among the Cluster 2 sites that lie within a radius of 100 km, the corre-
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Figure 6: Interpolation at Ungauged Site D from the 1st week to the 4th week. The
square–root of hourly ozone concentrations are plotted in the vertical axes, hours on the
horizontal axes.
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Figure 7: Interpolation at Ungauged Site D from the 5th week to the 8th week. The
square–root of hourly ozone concentrations are plotted in the vertical axes, hours on the
horizontal axes.

sponding Global Circle Distance (GCD) in km, and along with the average of
their correlations. This table confirms that indeed D does enjoy the highest
correlation with its friend. That relationship is further explored in Figure
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Figure 8: Interpolation at Ungauged Site D from the 9th week to the 12th week. The
square–root of hourly ozone concentrations are plotted in the vertical axes, hours on the
horizontal axes.

0 50 100 150

0
4

8

Hour

O
3(

pp
b)

0 50 100 150

0
4

8

Hour

O
3(

pp
b)

0 50 100 150

0
4

8

Hour

O
3(

pp
b)

0 50 100 150

0
4

8

Hour

O
3(

pp
b)

Figure 9: Interpolation at Ungauged Site D from the 13th week to the 16th week. The
square–root of hourly ozone concentrations are plotted in the vertical axes, hours on the
horizontal axes.

11 where we see a strong linear relationship between Sites D and 1 as our
coverage probability assessment had suggested.

In spite of its reliance on the friends, the DLM does not predict responses
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Figure 10: Interpolation at Ungauged Site D from the 17th week to the 120th day. The
square–root of hourly ozone concentrations are plotted in the vertical axes, hours on the
horizontal axes.

Ungauged Site Friend(s) GCD (km) Pearson’s r
A 2 66.6 0.73
B 2 62.5 0.74
C 2 35.5 0.84
D 1 11.0 0.95
E 2 38.0 0.70
F (7, 8) (18.6, 44.9) (0.84, 0.82)

Table 3: The “friends” of the ungauged sites, their GCDs in km, and the average of their
correlations with their associated gauged sites.

at the ungauged sites very accurately for instance as illustrated in Figure 10.
That points to problems with this model which will be discussed in the next
section.

8 Discussion

In general, the DLM is a remarkably powerful modelling tool that has been
made practical by advances in statistical computing. However, computational
burden limits its domain of applicability. Moreover, the very flexibility that
makes it so powerful also imposes an immense burden of choice on the mod-
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Figure 11: Scatterplot for the square-root of ozone concentrations at the ungauged site D
and its “friend”, gauged site 1. The square–root of hourly ozone concentrations are plotted
in both vertical and horizontal axes.

eller. This section summarizes critical issues and suggestions for improvement.

Monitoring MCMC convergence

Figure 12 represents the trace plots of model parameters λ, σ2, a1 and a2

of two chains from the initial settings in Section 7.1. These two chains seem
to mix well after several hundreds iterations, suggesting at the first glance the
convergence of the Markov chains.

Autocorrelation and partial autocorrelation of the simulated Markov
chains

However, we know that the autocorrelation, which is measured by the
autocorrelation function (ACF), is very important when considering the length
of the chain. A highly auto–correlated chain needs a long run to yield accurate
estimates. Moreover, the partial autocorrelation function (PACF) is also an
important measure in assessing the Markov chain since large values of the
PACF at lag h indicate that the next value in the chain is dependent on past
values but not only the most recent one.

Figure 13 shows the histogram, ACF and PACF plots for the Markov
chains used in Section 7.2, after a burn–in period of 1, 000. It shows the λs to
be highly autocorrelated, judging from its ACF plots. In fact, it reveals that
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Figure 12: Traces of model parameters for a number of iterations of two chains. The
parameters are: (a) –λ, the range parameter; (b) –σ2, the variance parameter; (c) –a1, the
phase parameter with respect to the 24–hour periodicity; and (d) –a2, the phase parameter
with respect to the 12–hour periodicity.

the chain for λ is not mixing very well, leading to biased estimates in Section
7.2. A possible way to reduce the autocorrelation between these λs is to thin
the Markov chain. That is, we can use every kth (k > 1, k ∈ Z+) λ generated
by the chain to obtain the estimates. However, computational limitations
have forced us to use the whole chain for estimation and interpolation without
thinning.

Relationship between pairs of λ, σ2, a1 and a2

Our prior assumptions make the model parameters λ, σ2, a1 and a2 un-
correlated. Figure 14 investigates the relationship between the pairs of these
parameters to explore that assumption. It seems valid except for the λ–σ2

pair in graph (a). That graph shows a weak linear association between λ and
σ2, thus pointing to a failure of that assumption for that pair. Since σ2 de-
termines spatial variability while λ determines correlation this relationship
seems intriguing. Larger values of σ2 tend to go with larger λs, i.e., dimin-
ished spatial correlation. Why they are coupled in this way is unknown but
it should be accounted for in future applications of this model.
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Figure 13: Histogram (left panel), ACF (middle panel) and PACF (right panel) of model
parameters of the Markov chains after a burn–in period of 1, 000. The parameters are:
(i) first row: –λ, the range parameter; (ii) second row: –σ2, the variance parameter; (iii)
third row: –a1, the phase parameter with respect to the 24–hour periodicity; and (iv) last
row: –a2, the phase parameter with respect to the 12–hour periodicity.

Time varying effect of λ–σ2: empirical coverage probabilities ver-
sus nominal credible probabilities

Although we follow Huerta et al. (2004) in assuming the temporal con-
stancy of λ and σ2, it is natural to ask if those generated by the MCMC
method change over time. A variant of this issue concerns the time domain of
the application. Would the results for these parameters change if we switched
from one time span to a longer one containing it? A “yes” to this question
would pose a challenge to anyone intending to apply the model knowing that
the choice would have implications for the size of σ2 and λ with the freedom
to choose the time span.

To answer these questions we carried out the following studies:

(i) Study Ã : Implement the DLM at ungauged sites using weekly data
(Wk : k = 1, . . . , 17). Generate Markov chains for λ, σ2, a1 and a2.
Obtain the coverage probabilities at each ungauged site and week for
fixed credibility interval probabilities.
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Figure 14: Scatterplots for the pairs of model parameters: (a) λ v.s. σ2; (b) λ v.s. a1;
(c) λ v.s. a2; (d) σ2 v.s. a1; (e) σ2 v.s. a2; and (f) a1 v.s. a2.

*

**
**
*
*
*
****

****
****
*
**
*
*
**
***
**
***
*
* ** *

*
*

*
* *

** *
*

****
* *

*
*
* * *

**
*

***** * * *
**

* * *
*

*

* *

*
*

*
*

**

*
*

*

* *
*

*

***
**

**
*

****
* *
**

*

*
*
*

* * *
* *

**
*

*
*

*

***
* *

**
*

* *

*
*

*
*

*

*

*
*

*
*

*** * *

*

*
*

*

**

**
*

*
**
*

*
*

*

***
*

* *

*
*

*

*
* *

**
*

*

*

*
*

**
**

*
**
*

* *
*
*
*

**
*
*

*
* *

****
*

*

**

*
** *

*
* *

*

*
*
*

*
***

*

*

*
*

*

*

*

*
*

*

*

**
**

*

*
*

**
*

*
*

*
*

*

*
*
*

*
**

***** ***
* *

*
*

*

*
*

* *

* *

*
*

*
* ***

*
*

* ***
**

* *
*
*

* *
*

*
*

*
*

* ***

*

*

*

*****
**

*
*

*
** *

**

*
*

* *
* *

*
*

* *
*

*
*

*

*

*

*
**

*
*

*
*
*

*
*

*
*
***

**
*
**
*

*

*
*

*

*

**

* *
**

*
*
*

**

*

**
*
*

*
*

*
*

*

*
**

*
* *

**
*

*
*

***
*

* **
**

*

*

**

*
*

**

*
***

*
*

* ***

* ***
*

* *

***
* **

*
*

***
*

* **
**

*

**
*

*
*

*

*

*

**
*

*

*

**

***

* *

**
*

*

**
*

*

*
*
*

*

*

*

*
*

* *
*
*

* *
*

***
*

*

*
*

*

*

*
*** *
*

**

* ***

*

*

*
*

**** *
*

* *

*

***
*
*

**

* **
*
*
*
*

*

*
*

*
*

*

**

*
* ***

**
*

*

*
*
*
** **

** ****

*

**
*

*
*

*

*
*

***
*

*

*
*

* * *
*

**
*
*

* *

*

*
*

*

* * **

**
*

*

** *
**

*
*
**

*

* *

**

* *
*

* *

* *
*

**

*
**

**

**
**

*
**

*

*
*****

*
**

*
**

**
*

*
*
*

*
*

*

*
*

*
* *

*
* *

*

***

*

* **
*

*
*
*

*
*

*

*
*

**** * *
*
** *

*

* * *
*

*
*

*
*

*
*

***
*

*
*

*
* **

*
*

*
***

* *
*

*
*

* *
*

**
*

*
*
*

*
*

*
**

**
* * *

**
* *

*

**

*

*

*
**

*
**

*

*

*
**

*
****

**
*

*
*
* *

**
**

* **
*

**
*
*

*
*

*

*

*
*

**
**

*
*

* *
*

**

** *
*

*
***

*
*

*

*

*
*

**

*
* *

*

*
*

***** **

*

*
*

*

*

*
**

*
**

*

*
*

*

***

*

*
**

** * **

*
*

*
**

*

*

*
*
*

*
*
*
* **

*

*
**

*
** ** * *

**

**

*

*

*
*

**

*
*

*
**

* ***
*

**
*

*
*
**
* ****

*
*

*
*

* **
*

**
*** * **

**
*

*

*

*

*
*

* *
**

*
*

*
* *

* *
*

*

**
**

**
*

**** ** **

*
*

*
*
**

*
***** *

**
*
*
*

**
** **

*

*

**
*
**

*

*
***

**

*
*

*

* *
*

*

*

*

*

*** *
*
*

*
*
**

*

*

*
* *

*

*
*

*
**

* *
*

*
*

*
**

*
*
*

* **

*

*
*

*
* **

*
*

* *
*
**

*
**

*
** * *

*
* **
** *

* *

*

*

*

*

*

*

* *

*
* *

*
*

*
*

*

***

*
* *

*
*

***

*

*

**
* ***

*
***

***
*

*
*

**
*

* **

*

*
*

* **
*

*

*
*

* *
**

***

*
* *

*
*
*

**
* *

*
*

**
*

*
* *

*
**

* *
*

** **
*

*
*

***
*

*
*

**
*

*
*

*

* ***

*
*

*

* * **
*

*
*

*

*

*
**

* *

*

*

* **

*

*
*

***
*

*

*
*

**

*

*

*
**
*

*

*

*
**

* *
*

* *

*

*

**
*

*

*
*

*

*

*

*
*

*
*

*

*
*
**

*

*
**

*
**

**
*

*
**

** *
**

**
*

*
* *

* **
*

*

*

* *
*

*
*

*

*

*

*
*

*
* **

*

* **
*

*
*
*

*
*

* *

*

*

** *
*

*

* **

*

*
*

*

*

*

* *
*

*

** * *

*
*

*

***
**

*
*

*
*

* **

*

*
*

**

*
**

*

*

* ** **
*

*
*

*

*
*

*
**
*

** *

*
*

*

*

*

*
**

*
*

*
***

*

*
*
*

*

** * **
***

*
*

*
* ***

*
* *

*
*****
*
**

*
* *

*

*

*

*

*
* *

*
*

*
*

*
* *

*

*

***
*
* *

*

*
*

*
*

*

*

***

*
*

*
* * **

*
**

**

* **

0 100 200 300 400 500 600 700

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

λ

σ2

−

−

−
−

−
−−−−−

−−
−
−
−
−
−
−−

−

−

−

−−
−
−
−

−

−−

− −
−

−

−−
−
−−

−

− −
−−

−

−

−
− −−

−
− −

−−
−

−

−−
−
−

−−−
−
−

−

−

−

−
−

−−

−
−

−
− −

−
−
−

−
−
−

−

−

−
−

−

− −

−

−
−

−
−
−

−

−

−

−

−

−
−

−

−
−

−
−

−

−−
−

−

−−
−

−

−

−

−

−

−
−

−− −

−

−

−

−

−

−−

−
− −

−
−

−

−

− −

−

−−−

−−
−

−

−

−
−−

−
−

−
− −

−
−

−

−

−−
−

−

−
−

− −−
−

−
−

−

−
−

−

−

−−
−−

−

−
−

−
−

−
−

−−
−

−

−

−

−
−

−

−

−−−
−

−

−

−
−

−

−

−

−

− −

−
−

−−
−

−
−−

−−

−

−

−
−

−−−

−

− − −−

−

−

− −
−

−

−

−

−

−
−
−−−−

−

−−
−
−

−
−

−

−

−

−

−−
−

−

−
− −−−

− −
−

−

− −

−

−

−

−

−

−

−

−−

−
−

−

−

−
−

−

−

−−
−

−

−−

−

−−

−

−

− −

−

−

−−−
−

− −−

−
−

−− −−
−−

−−− −−−

−
−
−

−
−

−− −−−
−−−

−−
−−

−

−

−

−

−
−

−

−−

−

−
−− −−

−
−

−
−

−

−− −

−

−

−
−

− −

−
−

−−
−

−

−
−

−−
−

−−

−

− −−−

− −−−

−−
−

−
−

−
−

−
−−

−

−
−−

−

− −

−
−

−

−
−−− −−

−

−

−

−
− −

−

−

−
−

−

−
−

−

−−
−
−

−

−− −

−

−
−

−

−
−−

− −
−

−

−
−

−−−

−

−

−−
−−

−−

−
−

−−
− −

−

−−

−
−−−

− −

−

−

−
−

−

−

−

−
−

−

−

−−−

−
−−

−
−

−
− −

−

−−

−−
−

−

−−
−

−

−

−

−

−
−

−

−
−

− −

−

−

−

−

−

−

− −−

−

−

−

−

−

−
−−

−−

−

−
−

−
−

−

− −

−

−

−−−
−−
−
−

−

−
−

−
−

−

−

−
−

−−
−

−
−

−

−

−
−

−− −−
−

−−

−
−

− −
−

−

−
−−
−

−
−

−
−

−

−

−

−

−
−

−

−

−−−

−

− −

−−− −
−

− −

−

−

−
−

−−
− − −
−−

− −

−
−

−

−

−
−

−
−

−
−

−

−
−
−

− −

−−

−

−

−

−−
−

−
−

−

−

−−

−
−
−

−
−

−

−

−
−

−
−

−

−

−−
−

−

− −
−
−

−−−

−

−
−

−

−
−

−

−

−
−

−
−

− −

−
−
−
−

−

−

−

−

−
−

−

−

−

−

−
−

−
−

−
−−

−

−−
−−

−
−
−−−

−

−

−−−−−−

−−
−

−

−
−

−−
−

−

−
−
−

−
−

−
−

−

−

−

−

−
−

−−

− −

−

−
−

−

−
−− −

−

−

−
−
−−−

−
−

− −

−
−
−−−

−

−

−

−

−
−−

−

−

−

−

−

−
−

−

−

−

−

− −−

−
−−

−

−

−
−−−

−
−

−
−

−−
− −

−
−
−

−
−−

−

−

−

−−
−

−
−

−−

− − −

− −

−

−

−
−−

−

−

− − −
− −

−
−

−−
−

−− −

−

−

−

−

−

−
−−

−−

−−

−

−

−

−−−

−−

−

−

−
−−

−−−
− −

−−−

−

−

−−

−−

−

−−

−
−−

−
−

−
− −

−

−
−

−

−

−−
−

−
−

− −

−
−

−
−

−

−
−

−
−

−
−

−
−

−−
−

−
−

−
−

−

−−−

−−−

−

−

− −
−

−

−
−

−
−

−−
−

−−

−
−

−−

−

−
−−

−−
−

−
−

−

−−

−−

− −

−
−−

−−
−

− −
− −

−

−

−

−

−
−

−−−

−
−

−

−
−−

−−

−−−−
−

−

−

−

−

−

−
−
−

−

−−
−

−−

−
−

−
−
−

−

−−
−

−
−−

−

−
−−

−

−
−−

−
−−

−

−

−
−−

− −

−−−

−

−

−

−−

−

−

−−
−

−

−

−

−

− −
−−

−
−−−

−

−
−

−
−

−

−−
−−

− −
−−

−

−

−

−
−

−

−−

−

−

−
−−

−

−

−

−
−

−

−−

−
−−

−−−

−

− −

−

−−−

−
−

−

−

−−

−

−−
− −

− −

−−
−

−
−

−
−

−−−

−−

−

−

−
−

−

−

−

−

−
−
−

−

−
−

−

−

−

−
− −

−−

−

−
−
−

−

−

−

−
−

−

−

−
−

−

−

−
−−
−
−

− −

−

−

−

−

−
−
−
−

−

−
−

−
−

−

−

−

−
−

−

−

−
−

−

−

−

−
−

−
−

−−

−

−

−

−

−
−

−
−

−
−

−
−

−
− −−−

−−−

−
−
−

−

−
−

−

−−
−

−

−

−

−− −

−

−
−

−

− −−

− −
−

−
−

−

−

−
−
−

−
−

−

−
−

−

−

− −

−

− −
−

−
−

−

−

−

−
−

−

−

−

−

−

−
−

−

− −

−
− −

−
−−−

−

−

−−

−
− −

−
− − −

−
−− −

−
−

−

−
−

−
−

− −
−−

−

−−−
−−

−
−
−−−

−
−

−−

−
−

−

−

−

−

−−
−

−

−

−

−

−
−−

−−
−

−

−

−

−

− − −

−

−

−
−

−−

−
−−

−
−−−

−
−

−
−

−

−

−

−

−−
−

−

−

−−−

−
−

−

−

−

−−
−

−

−

−

−

−
−

−

−

−
−

−
−

−

−

−

−−−
−

−
−

−

−

−
−

−

− −

−
−

−

−

−
−

− −
−

−
−

− −

−
−

−
−

−
−− −

−

−

−−

−

−

−

− −

*

−

week 4
week 6
week 9

Figure 15: Scatterplots for λ against σ2 for various weeks, based on the MCMC samples
using one week’s data, that is, week 4, 6 and 9, but starting from the same initial values
as those in Section 7.1.

(ii) Study B̃ : Implement the DLM at ungauged sites using week 1 to week
17 data (W1:17 = {W1, . . . , W17}). Estimate model parameters and in-
terpolate the results at those ungauged sites. Obtain the coverage prob-
abilities at each ungauged site and week for fixed credibility interval
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probabilities using each week’s data.

(iii) Study C̃ : Fix λ∗k at week k (k = 1, . . . , 17) using values suggested by the
Markov chains generated in Study Ã. Then use these λ∗ = {λ∗1, . . . , λ∗17}
as fixed values in the DLM to reduce computation time. In other words,
go through all the steps in the algorithm of Section 5.5 but now us-
ing only fixed λ∗s instead of generating them by a Metropolis–Hasting
step. (Note that we are then only using Gibbs sampling and an MCMC
blocking scheme.) Compute the corresponding coverage probabilities us-
ing W1:17 at each ungauged site and week for fixed credibility interval
probabilities.

Studies Ã and B̃ are intended to explore the effect of data and time prop-
agation on the interpolation results. Study C̃ aims to pick out any significant
differences in the interpolation results when using the fixed λ∗ rather than
using the Markov samples of λs. It is also aimed at finding how much time
would be saved by avoiding the inefficient Metropolis step. Table 4 shows
these fixed λ∗s used in Study C̃. Table 5 shows the time saved using fixed λ∗s
against the one using the Metropolis–Hasting algorithm.

Week 1 2 3 4 5 6 7 8 9
λ∗ 54.2 178.5 83.7 405.4 86.6 59.7 199.3 144.1 322.7

Week 10 11 12 13 14 15 16 17
λ∗ 142.2 172.7 187.9 315.8 419.0 99.8 260.3 284.8

Table 4: Fixed values of λ∗ in Study C̃.

Time (seconds)
Study Data Iteration total Accept(%) Total /Iteration

Ã Wk 1,500 0.82 17018 13.8

B̃ W1:17 1,000 0.35 326782 932.3

C̃ W1:17 1,000 1.00 329349 329.3

Table 5: Summary for the computational time in Studies Ã, B̃ and C̃. Time is measured
in seconds. The total is for a complete summer run without spatial prediction.

Figure 15 illustrates the MCMC estimation results obtained in Study Ã.
It plots the Markov chains of λ and σ2 using weekly data. Obviously, λ and
σ2 vary from week to week, which implies that the constant λ–σ2 model is
not tenable over a whole summer for this dataset.

Figures 16–22 depict the coverage probabilities for various predictive in-
tervals associated with the interpolators in these three studies. The solid
line with bullets represents the results for Study Ã, the dotted line with up–
triangles for Study B̃, and the dashed line with squares for Study C̃. These
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Figure 16: Coverage probability versus 95% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

graphs show that the coverage probabilities of Study B̃ are similar to that of
Study C̃. This suggests that we could use the entries in Table 4 as fixed λ∗s
in the DLM to obtain similarly interpolating results as using the Metropolis–
within–Gibbs algorithm.

We have studied the prediction accuracy of the simplest DLM, namely,
the first–order polynomial model, in Section 4. As a result, the predictive
variances should increase monotonically at successive time points conditional
on all the 17 weeks’ data, in the general DLM setting (see Section 4). The
plots exhibit a monotonic increasing trend in the coverage probabilities of
both Studies B̃ and C̃. This trend agrees with the graphs of the coverage
probabilities in Figures 16–22. Nevertheless, those coverage probabilities of
both studies deviate slightly from the expected monotonically increasing trend
at some time points because of the time varying effect of λ–σ2 monitored in
Figure 15.

On the other hand, Study C̃ involves significant computational time sav-
ings as compared with B̃. Table 5 suggests that the computation time–saving
of the former study is almost 2.8 times faster than the latter.

Study B̃ shows an intuitively unappealing increase in the uncertainty of
interpolation results as time increases; coverage probabilities get larger over
time as we see in Table 6. This increase may be interpreted as saying that
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Figure 17: Coverage probability versus 90% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

for the DLM models, the λs and σ2s collected from the data should vary over
the entire time span of the study, while the prior postulates that they do
not vary over that time span. The observed phenomenon may also be due to
mis–specification of the model parameter values γ = (τ2

y , τ2
1 , . . . , λ2). (See the

initial settings for γ in Section 7.1.)
Comparing the results of these studies, we find that sometimes, paradox-

ically, the model gives better results using only one week’s data rather than
all. However, Result 4 in Section 4 predicts this finding. Because the prior
for σ2

1 is IG(2, 0.01) the expectation of σ2
1 is 0.01, implying that σ2

β ' 0.01

and σ2
δ ' 0.01 × 0.02. Hence, σ2

β

(
1 +

σ2
β

σ2
δ

)
' 0.51, which is less than σ2

ε (for

example, the median of σ2 is around 1.21 in Study B̃ and even larger in Study
Ã). By the sufficient and necessary condition in Result 4, the predictive vari-
ance of Study Ã is less than that of Study B̃. However, notice that σ2 and λ
vary from week to week in Ã, which may also lead to the paradox observed
in the empirical findings of this section. For example, in (d) of Figure 18, the
coverage probability of B̃ at the 4th week is larger than that of Ã. From the
above discussion, we know that the predictive variance of Ã should be less
than that of B̃. However, σ2 of Ã is larger than that of B̃, leading an inflated
predictive variance of Ã. This produces the difficulty to compare these two
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Figure 18: Coverage probability versus 80% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

predictive variances, but explains that paradox we saw in those figures.

9 Summary and Conclusions

To assess the dynamic linear modelling approach to modelling space–time
fields, we have applied it to an hourly ozone concentration field over a geo-
graphical spatial domain covering most of the eastern United States. To focus
that assessment we consider just one cluster of spatial sites we call Cluster
2 during a single ozone season. Moreover, we have used a variant of the dy-
namic linear modelling approach of Huerta et al. (2004) implemented through
MCMC sampling.

Our assessment reveals some difficulties with that very flexible approach
and practical challenges that it presents. We also have made some recommen-
dations on improvement.

A curious finding is the posterior dependence of λ and σ2, in contradiction
to our prior assumption. Although the very efficient method Huerta et al.
(2004) propose to sampling these parameters is biased, that bias does not
appear large enough to account for that phenomenon. We also discovered
that the assumption of their constancy over time is untenable.

The coverage probabilities of the model’s posterior predictive credibility
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Figure 19: Coverage probability versus 70% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

intervals over successive weeks, conditional on all 17 week of data, increase
monotonically. Counter to intuition, that would imply more and more uncer-
tainty as time evolves, an artifact of the modelling that seems hard to explain.
A pragmatic way around this undesirable property involves incorporating the
length of the time span of the temporal domain T into the selection of the
values of the model parameters, such as τ2

y , τ2
1 and τ2

2 . Section 4 studies the
correlation structure of the simplest first–order polynomial DLM and finds
reasonable conditions to impose on those parameters.

One further Study D̃ tests the proposed constraints on the data. The
settings are identical with those in Study C̃ except that τ2

y , τ2
1 and τ2

2 are
replaced by τ2

y /17, τ2
1 /17 and τ2

2 /17, respectively, to take account of the longer
17 week time span of our study compared to the one week time span of the
application in Huerta et al. (2004). Figures 16–22 compare Study D̃ with the
others. Observe that its coverage probabilities behave like those of Study Ã.
This adjustment does seem to eliminate the undesirable property of increasing
credibility bands of Studies B̃ and C̃.

Another possible approach to dealing with the unsuitability of fixed model
parameters uses the composition of Metropolis–Hasting kernels. In other
words, we could include these parameters in the Metropolis–Hasting algo-
rithm as in Section 5.2. Suppose γ = (λ, τ2

y , τ2
1 , λ1, τ

2
2 , λ2). We can use six
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Figure 20: Coverage probability versus 60% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

Metropolis–Hasting kernels to sample from the target distribution π(γ|y1:T ),
updating each component of γ iteratively. But, not surprisingly that approach
fails because of the extreme computational burden it entails. However, that
alternative is the subject of current work along with an approach that admits
time varying λs and σ2s.

The greatest difficulty involved in the use of the DLM in modelling air
pollution space–time fields lies in the computational burden it use entails.
For that reason, we have not been able to address the geographical domain of
real interest, one that embraces 274 sites in the eastern United States, with
120 days of hourly ozone concentrations. In a manuscript under preparation,
an alternative hierarchical Bayesian method that can cope with that larger
domain will be compared with the DLM where the latter can practically be
applied.

A Supplementary results

A.1 Results for Section 4

Only the results about the predictive variances of y01|y11 and y01|y11, y12 are
shown in this appendix. The other two cases can be obtained by the same

38



0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(a)

Week

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

A
~

B
~

C
~

D
~

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(b)

Week

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

A
~

B
~

C
~

D
~

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(c)

Week

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

A
~

B
~

C
~

D
~

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(d)

Week

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

A
~

B
~

C
~

D
~

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(e)

Week

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

A
~

B
~

C
~

D
~

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(f)

Week

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

A
~

B
~

C
~

D
~

Figure 21: Coverage probability versus 50% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

method. Refer to Result 1, the predictive variance of y01|y11 can also be
written as follows:

V ar(y01|y11) = (1− exp(−d01

λ
))σ2

ε



2− 1− exp(−d01

λ )

1 +
σ2

β+σ2
δ

σ2
ε



 .

The first partial derivatives of this predictive variances regarding to d01,
λ and σ2

ε are given by:

(i)

∂

∂d01
V ar(y01|y11) =

2d01

λ
exp(−d01

λ
)σ2

ε

σ2
β + σ2

δ + σ2
ε exp(−d01

λ )

σ2
β + σ2

δ + σ2
ε

,

(ii)

∂

∂λ
V ar(y01|y11) = −2d01

λ2
exp(−d01

λ
)σ2

ε

σ2
β + σ2

δ + σ2
ε exp(−d01

λ )

σ2
β + σ2

δ + σ2
ε

,

and
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Figure 22: Coverage probability versus 40% norminal level for ungauged sites: (a) – site
A; (b) – site B; (c) – site C; (d) – site D; (e) – site E; and (f) – site F. These coverage
probabilities are computed for Study Ã: weekly data (solid bullet with solid line); Study
B̃: W1:17 (up-triangle with dotted line); Study C̃: W1:17 but with fixed λ∗ (square with
dashed line); and Study D̃: W1:17 but with fixed λ∗ and modified τ2

y , τ2
1 and τ2

2 (empty
circle with solid line).

(iii)

∂

∂σ2
ε

V ar(y01|y11) = (1− exp(−d01

λ
))

{
2− (1− exp(−d01

λ
))σ2

ε

σ2
ε + 2σ2

β + 2σ2
δ

(σ2
ε + σ2

β + σ2
δ )

2

}

> (1− exp(−d01

λ
))

{
2− σ2

ε(2σ
2
β + 2σ2

δ + σ2
ε)

(σ2
β + σ2

δ + σ2
ε)2

}

=
1− exp(−d01

λ )
(σ2

β + σ2
δ + σ2

ε)2
{2(σ2

β + σ2
δ )

2 + σ4
ε + 2σ2

ε(σ
2
β + σ2

δ )},

respectively. It is straightforward to obtain that V ar(y01|y11) is increasing
when d01 increases, or λ decreases, or σ2

ε increases. We next show these
properties also hold for V ar(y01|y11, y12). By Result 1, V ar(y01|y11, y12) can
also be written as:

V ar(y01|y11, y12) = (1− exp(−d01

λ
))σ2

ε





2− 1− exp(−d01
λ )

1 +
(σ2

β+σ2
δ )(σ2

δ+σ2
ε)

σ2
ε(σ2

β+2σ2
δ+σ2

ε)





.

The corresponding first partial derivatives are given as follows:
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Ungauged Site A B C

Study Ã B̃ C̃ Ã B̃ C̃ Ã B̃ C̃
Week 1 66 65 72 80 78 89 82 80 84
Week 2 73 71 80 76 78 83 79 81 85
Week 3 63 73 82 82 86 91 80 87 93
Week 4 57 74 81 66 83 88 75 87 89
Week 5 53 70 82 68 83 90 59 83 88
Week 6 73 80 88 75 83 89 83 89 93
Week 7 69 88 90 80 92 94 80 93 97
Week 8 66 89 93 66 90 93 71 92 95
Week 9 63 82 88 84 90 94 77 91 96
Week 10 61 87 92 75 93 96 74 94 98
Week 11 58 86 89 77 93 94 68 91 95
Week 12 69 90 92 69 97 96 73 93 98
Week 13 60 87 90 74 91 94 77 94 96
Week 14 67 87 89 81 92 95 69 89 94
Week 15 66 91 95 65 93 96 63 93 97
Week 16 65 91 93 79 94 97 62 91 96
Week 17 68 90 95 81 93 98 71 95 98

Table 6: Coverage probabilities (%) for studies Ã, B̃ and C̃ at Ungauged Sites A, B, and
C, at 80% norminal level.

(i)

∂

∂d01
V ar(y01|y11, y12) =

2
λ

exp(−d01

λ
)σ2

ε

A + exp(−d01
λ )

1 + A
,

(ii)

∂

∂λ
V ar(y01|y11, y12) = −2d01

λ2
exp(−d01

λ
)σ2

ε

A + exp(−d01
λ )

1 + A
,

and

(iii)

∂

∂σ2
ε

V ar(y01|y11, y12) = (1− exp(−d01

λ
))

{
2− (1− exp(−d01

λ
))

σ2
ε

A2
(c1A− c2c3)

}

>
1− exp(−d01

λ )
A2

c4,

respectively, where A =
(σ2

β+σ2
δ )(σ2

δ+σ2
ε)

σ2
ε(σ2

β+2σ2
δ+σ2

ε)
, c1 = σ2

β + 2σ2
δ + σ2

ε , c2 = σ2
β + σ2

δ ,

c3 = σ2
δc1 +σ2

ε(σ
2
δ +σ2

ε) and c4 = σ2
εc1(2σ2

β +3σ2
δ +σ2

ε)+σ2
εc2(σ2

δ +σ2
ε)(3σ2

β +
6σ2

δ + 4σ2
ε) + c2

2(σ
2
δ + σ2

ε)
2.
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A.2 Results for Section 5.1

The joint posterior distribution for x1:T , λ and σ2 is given by

p(x1:T , λ, σ2|y1:T ) = p(λ, σ2)p(xT|λ, σ2, y1:T )
T∏

t=1

p(xT−t|xT−t+1, λ, σ2, y1:T )

T∏

t=1

p(yt|λ, σ2, y1:t−1)

= p(x1:T |λ, σ2, y1:T )p(σ2|λ, y1:T )p(λ|yT).

Suppose p(λ, σ2) = p(λ)p(σ2), that is, the priors for λ and σ2 are independent
with each other.

The joint posterior distribution for λ and σ2 can be written as follows:

p(λ, σ2|y1:T ) ∝ p(λ)p(σ2)(σ2)−nT/2
T∏

t=1

|Qt|−1/2 exp

{
− 1

2σ2

T∑

t=1

et
′Q−1

t et

}
.

If the prior for σ2 is an inverse gamma distribution with shape parameter
α and scale parameter β, then the posterior distribution for σ2 is also an
inverse gamma distribution with shape parameter α+ nT

2 and scale parameter
β + 1

2

∑T
t=1 et

′Q−1
t et.

Hence, the posterior density for λ can be written as follows:

p(λ|y1:T ) =
p(λ, σ2|y1:T )
p(σ2|λ, y1:T )

∝ p(λ)
T∏

t=1

|Qt|−1/2

[
β +

1
2

T∑

t=1

et
′Q−1

t et

]−(α+nT/2)

.

Therefore, the posterior density for x1:T is given by

p(x1:T |λ, σ2, y1:T ) = p(xT|λ, σ2, y1:T )
T∏

t=1

p(xT−t|xT−t+1, λ, σ2, y1:T ).

A.3 Results for Section 5.2

Theorem 2 Under Models (14)–(15) and initial prior (43), for any 1 ≤ t ≤
T, conditional on θ, we have

(i)

(xt−1|y1:t−1, θ) ∼ N [mt−1, σ2Ct−1]
(xt|y1:t−1, θ) ∼ N [at, σ

2Rt]
(yt|y1:t−1, θ) ∼ N [ft, σ2Qt]

(xt|y1:t, θ) ∼ N [mt, σ
2Ct],
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where

at = mt−1 Rt = Ct−1 + W
ft = F ′

tat Qt = F ′
tRtFt + Vλ

et = yt − ft At = RtFtQ
−1
t

mt = at + Atet Ct = Rt −AtQtA
′
t.

(ii) Define Bt = CtR
−1
t+1. For 0 ≤ k ≤ T − 1,

(xT−k|y1:T , θ) ∼ N [aT(−k), σ2RT (−k)], (48)

where

aT(−k) = mT−k + BT−k[aT(−k + 1)− aT−k+1]
RT (−k) = CT−k + BT−k[RT (−k + 1)−RT−k+1]B′

T−k,

with aT(0) = mT, RT (0) = CT , aT−k(1) = aT−k+1, and RT−k(1) =
RT−k+1.

A.4 Results for Section 5.4

The observation equation is given by

yt = 1′nβt + S1t(a1)α1t + S2t(a2)α2t + νt, νt ∼ N [0, σ2Σ(λ)],

where Σ(λ) = exp(−V/λ) and V denotes the distance matrix for the moni-
toring sites s1, . . . , sn.

Given λ, σ2, xt (that is, βt, α1t and α2t) and yt, the posterior conditional
distribution for the constant phase parameters, a1 and a2, is given by

p(a1, a2|λ, σ2,xt,yt) ∝ p(yt|λ, σ2,xt, a1, a2)p(a1, a2)
∝ p(Mt|λ, σ2, βt, α1t, α2t, a1, a2)p(a1, a2),

where Mt = yt − 1′nβt − cos(πt
12)α1t − cos(πt

6 )α2t for t = 1, . . . , T.
We consider the following two cases for the prior of a = (a1, a2)′ :

• Case (i) a standard reference prior: p(a) ∝ 1;

• Case (ii) a bivariate normal prior: a ∼ N(µ,Σ), where µ = (µ1, µ2)′ and
Σ is a 2 by 2 covariance matrix.

For a fixed t = 1, . . . , T, in Case (i), let l1 = sin(πt
12)α1t, l2 = sin(πt

6 )α2t,
m = Mt and S = σ2Σ(λ). Given λ, σ2,xt,yt, the posterior conditional dis-
tribution for the phase parameter vector a is now given by the following
expression where for simplicity we have deleted the conditioning values:
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p(a1, a2|λ, σ2,xt,yt) ∝ p(Mt|λ, σ2,xt, a1, a2, xt, λ, σ2)p(a1, a2)

∝ exp{−1/2[Mt − a1 sin(
πt

12
)α1t − a2 sin(

πt

6
)α2t]′

× (σ2Σ(λ))−1[Mt − a1 sin(
πt

12
)α1t − a2 sin(

πt

6
)α2t]}

= exp{−1
2
(m− a1l1 − a2l2)′S−1(m− a1l1 − a2l2)}

∝ exp{−1
2
(aΣ−1a′ − 2aΣ−1µ′)}

∝ exp{−1
2
[a′(l1, l2)′S−1(l1, l2)a− a′(l1, l2)′S−1m−mS−1(l1, l2)a]}

∝ exp{−1
2
(a− µ)′Σ−1(a− µ)},

where

Σ−1 = (l1, l2)′S−1(l1, l2), (49)
µ = Σ(l1, l2)′S−1m. (50)

Note that equation (50) is equivalent to

Σ−1µ = (l1, l2)′S−1m. (51)

More specifically, we obtain the following elements of the mean vector
and covariance matrix for the posterior conditional distribution of the phase
parameter vector a:

Σ =
[

σ11 σ12

σ12 σ22

]
, (52)

∆−1 = (σ11σ22 − σ2
12)

−1 (53)
= (l1′S−1l1)(l2′S−1l2)− (l1′S−1l2)2 (54)

σ11 = ∆(l2′S−1l2) (55)
σ12 = −∆(l1′S−1l2) (56)
σ22 = ∆(l1′S−1l1) (57)
µ1 = σ11(l1′S−1m) + σ12(l2′S−1m) (58)
µ2 = σ12(l1′S−1m) + σ22(l2′S−1m) (59)

Therefore, we have the following results for the conditional posterior dis-
tribution of the phase parameter vector a:

(i) If the prior for a is the standard reference prior, that is, p(a1, a2) ∝ 1,
we have (

a1

a2
|xt, yt, λ, σ2

)
∼ N

[(
µ1

µ2

)
, Σ

]
,

where µ1, µ2 and Σ are given in Equations (52)–(59) or equations (49)–
(50).
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(ii) If the prior for a is a bivariate normal distribution with mean vector
µ0 = (µ0

1, µ
0
2)
′ and covariance matrix

Σ0 =
(

σ0
11 σ0

12

σ0
12 σ0

22

)
,

we then have

p(a1, a2|λ, σ2,xt,yt) ∝ exp{−1
2
(a1 − µ1, a2 − µ2)′Σ−1(a1 − µ1, a2 − µ2)}

× exp{−1
2
(a1 − µ0

1, a2 − µ0
2)
′Σ0−1(a1 − µ0

1, a2 − µ0
2)}

∝ exp{−1
2
(a1 − µ∗1, a2 − µ∗2)

′Σ∗−1(a1 − µ∗1, a2 − µ∗2)},

where

Σ∗ = (Σ−1 + Σ0−1)−1 (60)

µ∗ = Σ∗(Σ−1µ + Σ0−1
µ0). (61)

From (60) and (61), we have

Σ∗ = Σ− Σ(Σ + Σ0)−1Σ = Σ0(Σ + Σ0)−1Σ, (62)

and
µ∗ = Σ0(Σ + Σ0)−1µ + Σ(Σ + Σ0)−1µ0. (63)

Hence, the posterior conditional distribution for the phase parameters
is given by (

a|λ, σ2,xt,yt

) ∼ N [µ∗,Σ∗] ,

where µ∗ and Σ∗ can be referred to equations (60)–(61), or (62)–(63).

A.5 Results for Section 6

Given the values of the phase parameters, range and variance parameters and
the observations until time t, the joint distribution of αs

1t, α1t is
(

αs
t

α1t

)
∼N

[(
αs

1,t−1

α1,t−1

)
, σ2τ2

1 Σ∗(λ1),
]

where

Σ∗(θ) = exp{−V ∗/θ} =
[

Σ∗11(θ) Σ∗12(θ)
Σ∗21(θ) Σ∗22(θ)

]
,

with Σ∗11(θ) a scalar, Σ∗12(θ) a 1 by n vector, and Σ∗22(θ) a n by n matrix.
We use V ∗ to denote the new distance matrix for the unknown site s and the
monitoring stations s1, . . . , sn.
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We then have the conditional posterior distribution of αs
1t as follows:

(αs
1t|αs

1,t−1, α1t, α1,t−1,yt, λ, σ2) ∼ N [αs
1,t−1 + Σ∗12(λ1)Σ∗22(λ1)−1(α1t − α1,t−1),
σ2τ2

1 (Σ∗11(λ1)− Σ∗22(λ1)−1Σ∗21(λ1))].
(64)

Similarly, the conditional posterior distribution for αs
2t is

(αs
2t|αs

2,t−1, α2t, α2,t−1,yt, λ, σ2) ∼ N [αs
2,t−1 + Σ∗12(λ2)Σ∗22(λ2)−1(α2t − α2,t−1),
σ2τ2

2 (Σ∗11(λ2)− Σ∗22(λ2)−1Σ∗21(λ2))].
(65)

Using the observation equation as in Model (11), we have the conditional
predictive distribution for ys

t as follows:

(ys
t |yt, α

s
1t, α

s
2t, α1t, α2t, βt, λ, σ2) ∼ N [βt + S1t(a1)αs

1t + S2t(a2)αs
2t + Σ∗12(λ)Σ∗22(λ)−1

×(yt − 1nβt − S1t(a1)α1t − S2t(a2)α2t),
σ2(Σ∗11(λ)− Σ∗12(λ)Σ∗22(λ)−1Σ∗12(λ))].

(66)

B Computational codes

The software is in http://enviro.stat.ubc.ca.
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