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SUMMARY

The use of Bayesian methods for model-selection and model-averaging has received consid-
erable attention in the literature, particularly in the context of choosing a subset of relevant
explanatory variables when modelling the distribution of a response variable given an initial
set of explanatory variables. However, similar approaches when modelling the distribution of
explanatory variables given a response variable have received less attention. Motivated by an
object-recognition problem we consider such techniques. The application, which we describe in
detail, involves assigning descriptive labels to parts (segments) of images. The training data have
labels at the level of an image, but not at the level of a segment. Thus the data are neither fully
labelled nor completely unlabelled, and we describe the learning problem as semi-supervised.
One emphasis is on a novel and intuitive model whereby the subset of the available explanatory
variables regarded as useful in identifying image segments matching label A can differ from the
subset used for another label B.

Keywords: Bayesian analysis; mixture models; object recognition; model averaging.
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1 Introduction

Consider the problem of classifying units as belonging to one of K + 1 categories or concepts,

based on measurements of p variables or features on each unit. For a given unit let X =

(X1, . . . , Xp) be the feature measurements and let Y ∈ {0, 1, . . . , k} denote the concept to which

the unit belongs. The goal is to infer the conditional distribution of (Y |X). If the available

training data consist of (Y,X) measurements for n units then we have a supervised-learning

problem of classification. If the available training data consist of X measurements alone then

we have a much harder unsupervised-learning or clustering problem, and it may not even be

reasonable to take the number of categories K as known. While some of the ideas in this article

may be useful in the supervised and unsupervised settings, our main focus is on an application

which is probably best described as semi-supervised. In this application Y is never observed at

the unit level, but there is some direct information about Y in the data.

2 Motivating Application

The motivating application is an object-recognition problem that can be framed as follows.

The training data arise from a series of I=68 images. The normalized cuts algorithm (Shi and

Malik 1997) is used to partition the i-th image into Ji contiguous segments or regions that seem

homogeneous in terms of properties such as colour and ‘texture.’ While there are statistical

issues surrounding segmentation algorithms, these are not the focus of the present article. For

our purposes the segmentation algorithm is viewed as a ‘black-box’ which defines the units to

be classified and the associated unit-level feature measurements. In particular, each segment is

a unit, and the features are segment attributes such as colour, texture, position of the segment

within the image, and so on. A complete list of the p = 16 features available in our dataset

appears in Table 1. Each feature is pre-scaled to have mean zero and unit variance across all I

images. As examples, the segmentations for three of the images appear in Figure 1. There are
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n = 728 segments in total across all the images, with an average (SD) of 10.7 (4.3) segments

per image, and a range of 5-23 segments per image.

In fact the series of images in our dataset are taken from a larger database in which each

image has been annotated with a few keywords describing the image content. The annotating

words for each image in Figure 1 appear below the image. The vast majority of images have

2-4 keywords, while a handful have either 1 keyword or 5 keywords. There are K = 17 distinct

keywords across all I images, as listed in Table 2. We hypothesize that every segment in an image

belongs to either one of the annotating keywords, or to a ‘garbage’ concept. We let concept zero

be the garbage category, while concepts 1 through K correspond to the K keywords. For the i-th

image we let Si ⊂ {0, . . . , K} be the union of zero and the indices of the keywords annotating

the image. Thus the semi-supervision arises through the partial labelling information: for a

segment in the i-th image we observe that Y ∈ Si.

The introduction of a garbage concept in this application is important for two reasons.

First, the annotating words may not comprise an exhaustive description of an image’s content.

Second, the segmentation procedure is imperfect, and it can produce segments which do not

clearly correspond to a well-defined concept in the image.

Computer scientists are interested in such applications because they offer the possibility

of automatically annotating images. Once the distribution of labels given features has been

estimated from training data, images without annotations could be segmented, and labels could

be estimated for these segments using the inferred distribution. Hence the image could be

annotated by machine, albeit with some error. Also, in terms of generating training data it

is more expedient to ask a human observer to supply some keywords for an image than to

ask for keywords on a segment by segment basis. Recent literature on this machine learning

problem and variants includes Barnard, Duygulu, de Freitas, Forsyth, Blei, and Jordan (2003),

Blei, Jordan, and Ng (2003), Carbonetto, de Freitas, Gustafson, and Thompson (2003), and
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Duygulu, Barnard, de Freitas, and Forsyth (2002).

Our present interest in this problem revolves around variable selection. There is no reason

to think a priori that all p features which are measured will be useful in classifying units, and

there is reason to suspect that removing unhelpful features might improve the performance

of a classification scheme. There is a large literature on how variable selection schemes can

improve regression analysis, but there is relatively little statistical literature on such schemes for

classification and clustering scenarios. This may arise because the regression problem is easier, as

removing a variable corresponds to simply setting the corresponding regression coefficient to zero.

Particularly, there is a substantial literature on the advantages of model selection and model

averaging using a Bayesian approach, typically with different possible models corresponding

to different subsets of predictor variables being included in a regression model (see Chipman,

George and McCulloch 2001 and Clyde and George 2004 for reviews). Also related is the notion

of ‘automatic relevance determination’ (Neal 1998). Liu et. al. (2003) pursue Bayesian model

selection in an unsupervised clustering context. Indeed, we adopt their approach as a starting

point for the present work. Other related recent work in an unsupervised context includes Hoff

(2006) and Raftery and Dean (2006) from a Bayesian perspective, and Friedman and Meulman

(2004) from a non-Bayesian perspective. We also note that there is more emphasis on variable

selection for clustering and classification in the Computer Science literature (for overviews see

Guyon and Elisseeff 2003; Guyon, Gunn, Nikravesh, and Zadeh, 2005), though the approaches

tend to be quite different than that taken here.

3 The Full Model

Starting with the supposition that all features are relevant for classification, a multivariate

normal model would be

X|Y ∼ Np(µY , ΣY ),
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where (µk, Σk) for k = 1, . . . , K are concept-specific means and variances. If λk = Pr(Y = k)

then, without further information on the unit-label Y , inference would be based on

Pr(Y = y|X = x) =
φp(x; µy, Σy)λy∑K

k=0 φp(x; µk, Σk)λk

,

where φp(·; µ, Σ) denotes the Np(µ, Σ) density function.

To adapt this to the structure of the data at hand, let Ji be the number of segments in the

i-th image, let Xij be the observed feature vector for the j-th segment in the i-th image, and

let Yij be the corresponding unobserved label. Recall that partial information about the label is

available in the form of Yij ∈ Si. We also assume that if the k-th word annotates the i-th image,

then at least one segment in that image must belong to concept k. We express this as Yi ∈ Ci,

where Yi = (Yi1, . . . , Yi,Ji
), and Ci is the set of all Yi values such that

∑Ji
j=1 I{Yij = k} > 0 for

all k ∈ Si.

Another peculiarity of our specialization to this problem is that we fix λ = (K+1)−1(1, . . . , 1)

rather than treating λ as an unknown parameter vector. This requires some explanation. If

we treat λ as unknown then an estimate of λk will reflect knowledge about the proportion of

segments (across all images) which belong to the k-th category. Presumably this will be driven

in large part by the proportion of images which have the k-th word as an annotation. Inference

about Yij would be based on

Pr(Yij = y|Xij = x) =
φp(x; µy, Σy)λy∑

k∈Si
φp(x; µk, Σk)λk

. (1)

Now say that both k1 and k2 are in Si. Then (1) supposes that if the k1-th word appears

in more images than the k2-th word, then a given segment in the i-th image is a priori more

likely to belong to concept k1 than concept k2. This seems unsatisfactory, since the annotating

information is simply that both words are represented somewhere in the image. Moreover, this

problem is exacerbated when we consider that ‘garbage’ (concept zero) is treated as annotating

every image. Presumably then a large estimate of λ0 can ensue, biasing upward the probability
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that a given segment belongs to the garbage concept. To avoid these problems we fix λ =

(K + 1)−1(1, . . . , 1), so that a uniform prior over Si is used when inferring labels for segments

in the i-th image via (1).

To complete the model specification we apply standard conjugate prior distributions for

(µk, Σk), namely

Σi ∼ IWa

(
V −1

)
,

µi|Σi ∼ N(µ0, b
−1Σi),

where IWa(V
−1) denotes the inverse Wishart distribution with degrees of freedom a and scale

V , leading to a prior mean of E(Σi) = (a− p− 1)−1V , provided a > p + 1. We take a = p + 2,

and b = 1, which are common choices when a relatively flat prior is desired (subject to having

a finite first moment for Σ). In light of the pre-scaling of the data we take µ0 = (0, . . . , 0).

Along these same lines initially we tried V = Ip, but found that this does not alway provide

sufficient ‘regularization’ if very few units are assigned to the concept in question. Thus we

take V = (p/2)Ip, so that the identity matrix gets more weight when combined with the sample

variance in constructing the posterior distribution for Σi.

Computation can proceed according to the joint posterior distribution of the unobserved

segment labels Y and the concept-specific means and covariances (µk, Σk) for k = 0, . . . , p. In

particular,

π(y, µ, Σ|data) ∝
K∏

k=0

 ∏
{(i,j):yij=k}

φp(xij; µk, Σk)

 π(µk|Σk)π(Σk) ×

I∏
i=1

I{yi ∈ Ci}
Ji∏

j=1

I{yij ∈ Si}

 . (2)

Computational aspects of inference under this model will be dealt with as special cases of the

more general models presented forthwith.

One point to emphasize is that without the constraints on y, (2) would correspond to a

standard Bayesian mixture model for unsupervised learning. As such, it would be prone to
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the well-documented difficulties associated with fitting such models (Celeux, Hurn and Robert

2000; Stephens 2000), most notably label-switching. However, the constraints arising from the

semi-supervision should largely obviate this problem. In particular, the labels for two concepts

would be formally nonidentified (and could be switched without changing the likelihood) only

if the two concepts appear as labels for precisely the same images. To elaborate, say that a pair

of concepts is discordant for an image if exactly one concept from the pair annotates the image.

Thus label-switching is formally a problem if a pair of concepts is not discordant for any of the

images. Moreover, presumably having more pairs which are discordant for more images will be

helpful in terms of MCMC mixing and the avoidance of local maxima.

In the present data, every pair of concepts is discordant for at least two images, with a large

majority (100 out of 17×6/2 = 136) being discordant for at least 10 of the 68 images, and about

half the pairs (64 out of 136) being discordant for at least 20 of the images. Also, it should be

noted that the few pairs of concepts which are rarely discordant arise from concepts which in

fact rarely appear at all. For instance, the three pairs of concepts which are discordant on only

two images are (church, horse), (church, snow), and (horse, snow). From Table 2 we see that

the constituent concepts are precisely those which appear as annotations in only a single image

(and in fact these pairs don’t appear simultaneously in any images).

4 Feature Selection

To introduce variable or feature selection, let M = (M1, . . . ,Mp) where Mj is a binary indicator

taking the value 1 to indicate that the j-th feature is relevant for inferring the label, and zero

otherwise. Loosely we will also write M ⊂ {1, . . . , p} to denote the relevant features and MC

to denote the irrelevant features. Further, let d(M) =
∑p

j=1 Mj be the number of relevant

features. The postulated structure is now that the distribution of the relevant features varies

across categories, while the conditional distribution of the irrelevant features given the relevant
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features does not. That is,

(XMC |XM , Y, M) ∼ Np−d(M)

{
µ̃
(
XM , MC , M, δ, Ω

)
, Σ̃
(
MC , M, Ω

)}
,

(XM |Y,M) ∼ Nd(M)(µY , ΣY ), (3)

where µ̃() and Σ̃() are the conditional mean and variance arising from the Np(δ, Ω) distribution.

That is, if A and B index disjoint subsets of {1, . . . , p}, then

µ̃(z, A, B, δ, Ω) = δA − ΩABΩ−1
BB(z − δB),

Σ̃(A, B, Ω) = ΩAA − ΩABΩ−1
BBΩBA.

Thus the model structure says that given M and Y , the distribution of irrelevant features

given relevant features is the appropriate conditional distribution of the Np(δ, Ω) distribution,

regardless of Y .

Note that this model structure is motivated by the observation that the distribution of (Y |X)

will not depend on XMC if and only if the distribution of (XMC |XM , Y ) does not depend on Y .

Thus there is a direct interpretation that Xj does (does not) contribute information about Y

if Mj = 1 (Mj = 0). Note also that XM and XMC are not assumed to be independent given

Y . That is, at the cost of increased computation we allow that two features could be correlated

while only one of them is useful in inferring unit labels. This differs from Liu et. al. (2003),

who do make such an independence assumption. We call the model defined by (3) the Feature

Selection (FS) model.

Note that now the dimension of (µi, Σi) depends on M , hence we take prior distributions of

the form

π(µ, Σ, M) =

{
m∏

i=1

π(µi|Σi, M)π(Σi|M)

}
π(M).

The normal and inverse-Wishart prior structure from Section 3 is retained, except now the

degrees of freedom for the IW prior on each Σi is taken to be d(M) + 2. A uniform prior is

assigned over the 2p possible values for M .
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It should be noted that for several reasons we treat (δ, Ω), the parameters governing the

distribution of irrelevant features given relevant features, as fixed and known. Particularly we

fix these quantities to be the sample mean and variance of all n feature vectors (so, in light of

the pre-scaling of the features, δ = 0 and Ωjj = 1 for j = 1, . . . , p). Thus given M we assume

the distribution of XMC |XM , which is postulated to not vary Y , is identical to the conditional

distribution estimated from all the data under a normality assumption. We are reasonably

confident in making this assumption, as the uncertainty about this conditional distribution

associated with all the data should be small relative to the combined uncertainty about (i)

which features are relevant (M), and (ii) the unit labels (Y ). Also, inference about (δ, Ω) would

be complicated by the trans-dimensional aspect of the structure: given M the data are only

informative about the part of (δ, Ω) corresponding to the MC given M conditional.

Following Liu et. al. (2003) we can analytically integrate out (µ, Σ) from the joint posterior

density π(Y,M, µ, Σ|data), leaving an expression for π(Y,M |data). This is particularly nice, as

it takes us from a posterior distribution of varying dimension to one of fixed dimension. Some

details on this, and on MCMC updates for Y and M , are given in the Appendix.

5 Concept-Varying Feature Selection

A further refinement of the FS model is motivated by several observations. First, the FS model

space is arguably rather coarse, and this does tend to be manifested empirically in the sense

that small changes in M (i.e., flipping one component from zero to one or vice-versa) given

Y can cause very large changes in posterior density, and consequently poor MCMC mixing.

Indeed, in the unsupervised context Liu et. al. (2003) note that the addition of feature selection

worsens MCMC performance, and they consider tempering methods (Geyer 1991) in an effort

to alleviate this problem.

Moreover, in the present application and others it is easy to imagine that the features which
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are useful for identifying one concept could differ from the features which are useful for identifying

another concept. For instance, it is easy to imagine that the subset of features which are

helpful in identifying ‘sky’ might be quite different than the subset helpful for ‘lion.’ In part

for this reason, Kueck, Carbonetto and de Freitas (2004) tackle the object recognition problem

in what computer scientists would describe as a discriminative rather than generative manner.

Specifically, they define Ỹ (k) = I{Y = k} as a binary indicator taking the value 1 to indicate

that the segment belong to the k-th concept, and zero otherwise. Then they model (Ỹ (k)|X)

using a binary regression model with variable selection from a particular set of basis functions

b1(X), . . . , br(X). This is repeated for each k, yielding the advantage of selecting a potentially

different set of basis functions when trying to identify each different concept. A disadvantage,

however, is that in fitting the K + 1 models separately one obtains incompatible classification

probabilities. That is

K∑
k=0

P̂ r(Y = k|X) =
K∑

k=0

P̂ r(Ỹ (k) = 1|X)

6= 1. (4)

While an obvious classification scheme still exists, i.e., Ŷ = argmaxkPr(Ỹ (k) = 1|X), at best

(4) is unsettling, and at worst it speaks to a loss of information.

In light of this we consider an extension of the FS model which has a finer model space,

and which aims for the advantage but not the disadvantage of the discriminative approach.

Essentially we let each concept have its own choice of relevant features. To do so, let M be

a (K + 1) × p matrix of binary indicators, with Mki taking the value 1 if the i-th feature is

relevant for the k-th concept, and 0 otherwise. Also, let Mk = (Mk1, . . . ,Mkp) be the row of M

corresponding to the k-th concept, and let dk(M) =
∑p

i=1 Mki be the number of features which

are relevant for the k-th concept.

Armed with this notation we generalize (3) to

(XMC
Y
|XMY

, Y, M) ∼ Np−dY (M)

{
µ̃
(
XMY

, MC
Y , MY , δ, Ω

)
, Σ̃
(
MC

Y , MY , Ω
)}

,
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(XMY
|Y,M) ∼ NdY (M)(µY , ΣY ). (5)

Thus we still assume that the N(δ, Ω) distribution describes the parts of the distribution of X

which are not relevant for classifying units, i.e., the distribution of (XMC
Y
|XMY

, Y ) for each Y .

In the present application the ‘garbage’ concept is thought of as all segments not belonging

to any keyword. Thus it does not seem sensible to think of particular features as being useful

for detecting ‘garbage’. Consequently we add the constraint that no features are relevant for

the ‘garbage’ concept, i.e., M0i = 0 for i = 1, . . . , p.

We can still apply the conjugate prior structure for π(µk|Σk, M) and π(Σk|M), as before. We

simply adapt the degrees of freedom in the inverse Wishart prior for Σk to be dk(M) + 2. It is

less clear however, whether a uniform prior distribution for M is still appropriate. Particularly

we are concerned that unfettered flexibility for M may promote overfitting, so we adopt a prior

for M which gives some favouritism to ‘simpler’ values of M which are closer to the earlier FS

model. In particular we take a hierarchically structured prior of the form

π(M |α) =
p∏

j=1

α
M·j
j (1− αj)

K+1−M·j ,

where M·j =
∑K

k=0 Mkj. The hierarchy is completed by specifying π(α) according to

α1, . . . , αp
iid∼ ωBeta(1, γ) + (1− ω)Beta(γ, 1).

Thus the elements of the j-th column of M are conditionally independent given αj, with the

prior distribution on αj thereby inducing positive dependence for the column elements. This

reflects some tendency for a feature to be generally useful or generally not useful, without the

rigidity of making the column elements identical, i.e., reverting back to the FS model. The

U-shaped nature of the prior on αj encourages the dependence by encouraging either a low or

high proportion of concepts for which the j-th feature is relevant. We take ω = 0.5 and γ = 10

in the analysis of the next section.
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In Section 4 we argued that treating (δ, Ω) as known and equal to an overall sample mean and

variance is reasonable in the context of the FS model. The same approach seems more dubious in

the present context, since (δ, Ω) no longer encode a conditional distribution of irrelevant features

given relevant ones across all concepts. Thus we now treat these parameters as unknown. As

formulated there is not an obvious MCMC updating scheme for (δ, Ω), since observations which

are currently assigned to one concept contribute information about a different part of (δ, Ω)

than do observations which are currently assigned to another concept. We circumvent this

problem with a data-augmentation scheme described in the Appendix. Under this scheme, the

augmented data are such that every observation contributes information about all of (δ, Ω), so

that a standard Gibbs sampling update can be implemented.

6 Synthetic Data Results

Before presenting results for the image data, we consider a much simplified synthetic data

problem as ‘proof of concept’ for the feature selection techniques. Data are generated on p = 5

features for K = 3 concepts. The k-th concept is taken as characterized by elevated values of the

k-th feature, while the fourth and fifth features are noise features which are correlated with the

other features. Particularly, equi-correlated data are generated, i.e., Cor(Xi, Xj|Y = y) = ρ for

all y, with mean vectors E(X|Y = 1) = ∆(1,−.5,−.5, 0, 0)′, E(X|Y = 2) = ∆(−.5, 1,−.5, 0, 0)′,

and E(X|Y = 3) = ∆(−.5,−.5, 1, 0, 0)′. The within-concept variances are set as V ar(Xi|Y ) =

1−∆2/2 for i = 1, 2, 3, and V ar(Xi|Y ) = 1 for i = 4, 5. It is easy to check that with a uniform

distribution on Y ∈ {1, 2, 3} this leads to standardized data, i.e., unconditionally E(Xi) = 0

and V ar(Xi) = 1 for i = 1, . . . , 5. A synthetic dataset is generated with 100 observations for

each concept, using ρ = 0.5 and ∆ = 0.47. We treat the labels as fully known (i.e., we are doing

supervised learning), and investigate the FS and CVFS schemes for feature selection.

A MCMC run of length 2500 for the FS model gives Pr(Mi = 1|data) = (1, 1, 0.23, 0, 0).
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That is, the MCMC sampler stays at M1 = M2 = 1 and M4 = M5 = 0, and only mixes on M3.

In the present context this seems good, given that the non-mixing components of M are fixed

at correct values, i.e., features 1 and 2 are indeed relevant while features 4 and 5 are not. It

seems unlikely, however, that the posterior distribution is really putting all its mass on these

points, given the modest sample size and the correlated features. A more plausible conclusion

is that the MCMC scheme has difficulty moving ‘through’ the posterior distribution over M .

A MCMC run of the same length for the CVFS model gives the values of Pr(Mki = 1|data)

appearing in Table 3. The ‘finer’ structure in the real data-generating mechanism is indeed

reflected in these inferences, i.e., for k = 1, 2, 3, Pr(Mki = 1|data) is much higher for i = k than

for i 6= k. Also, in contrast to the FS model, there is some MCMC mixing for all components

of M . For instance, this results in low (but non-zero) posterior probabilities of relevance for

the indicators associated with the fourth and fifth features. The extent to which mixing over

M in the ‘finer’ CVFS model space improves upon mixing in the ‘coarser’ FS model space is

examined in more detail for our main example in the next section.

For these synthetic data we also computed predictive label distributions for a validation

data set, using the the FULL, FS, and CVFS models. In fact these predictive distributions

are very similar under the three models, and we do not see improved predictive performance as

sometimes arises from model selection or model averaging. For these data at least, the feature

selection schemes do provide qualitative insight into the X−Y relationship, but they do not offer

improved prediction. Again we consider this issue in more detail for the image data analysis.

7 Image Data Results

We fit the three models (FULL, FS, CVFS) to the image data in the following manner. The

I=68 images are randomly split into IT = 50 images for training data and IV = 18 images for

validation data, subject to the constraint that each of the K = 17 keywords must annotate at
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least one of the training data images. The particular split obtained yields nT = 529 segments

in the training data and nV = 199 segments in the validation data. Each model is fit using

2200 MCMC iterations, with the first 200 of these used as burn-in. As discussed in Section 8,

computational concerns do necessitate quite short MCMC runs. However, as discussed in the

Appendix, the use of a Rao-Blackwellized estimator for (Y |X) makes it feasible to use short

runs.

For the purposes of performance assessment, all the segments in the present data have in fact

been labelled by eye. We emphasize that these ‘true’ segment labels are not used in any of the

model fitting procedures, as the goal is to assess how well we can learn the X − Y relationship

at the segment level from data comprised of image labels rather than segment labels. We also

note that for most (79%) of the segments the human raters assigned a single true label from

amongst the keywords annotating the encompassing image. But in some instances (11%) the

raters assigned two or more true labels to a segment, since the segment cuts across two or more

concepts in the image. And in some instances (10%) the raters assign no labels to a segment,

since the segment simply does not match with any of the annotating keywords. Thus we carry out

performance assessment as follows. For each segment in the training data we take the posterior

mode of Yij as the estimated label (which will necessarily belong to Si). The validation images

are treated as unannotated (i.e., we pretend we have no image annotations), and Yij is estimated

as the concept with the largest predictive probability (which will not necessarily belong to Si). In

either case, the estimate is judged to be correct if either (i) the estimate matches the segment’s

single true label, (ii) the estimate matches one of the segment’s multiple true labels, or (iii) the

estimate is zero (the garbage concept) and the segment has no true labels.

This performance assessment yields both a correct classification rate on the training data,

which reflects how well we can learn segment labels given the corresponding image labels, and a

correct classification rate on the validation data, which reflects how well we can learn segment
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labels in unannotated images given a series of annotated images. Of course the latter is a much

harder learning task than the former. Random guessing in the former case would yield say a

25% correct classification rate in images with |Si| = 4 (three annotating words plus ‘garbage’),

but a (K + 1)−1 ≈ 6% correct classification rate in the latter situation. In interpreting results

we emphasize that since the training data involve image labels rather than segment labels, it

is not the case that we can make the training data classification rate arbitrarily good by using

more complex models.

We obtain correct classification rates for the training segments of 45% under the FULL

model, 43% under the FS model, and 40% under the CVFS model. The corresponding rates

for the validation segments are 30% (FULL), 25% (FS), and 29% (CVFS). Thus neither feature

selection scheme appears to offer a predictive benefit, though the relatively small sample sizes

nT and nV indicate that the variation in classification rates ought not to be over-interpreted. We

return to the stability of our results across different training/validation data splits and different

MCMC runs presently.

To glean some sense of the classification results, Figure 2 plots the number of segments

(training and validation combined) with true concept j against the proportion of these segments

that are correctly classified using the CVFS model. Focussing on concepts with more than a

handful of segments, some of the worst and best cases are marked on the plot.

Upon examining the MCMC output for the FS model we see that in fact there is no mixing

of M beyond the burn-in period. That is, the sampler is ‘stuck’ at a single value of M which

corresponds to features (1,4,6,12,13) being relevant. (More precisely, 15 of the 16 feature indica-

tors are completely frozen, the indicator M13 makes a single switch from zero to one during the

run). An obvious concern is that this may be a local maxima of the posterior density from which

the sampler cannot escape, rather than a situation where the posterior distribution really puts

all its mass on a single value of M . Conversely, the components of M under the CVFS model

16



do seem to mix tolerably well. For each of the K × p elements of M (feature indicators) in the

CVFS model, a thinned switch rate (TSR) is plotted in the upper-left panel of Figure 3. The

TSR is based on the value of the indicator Mki at every 4-th MCMC iteration (i.e., the output

is thinned to conserve storage space); particularly, TSR is taken to be the proportion of times

that the indicator changes from zero to one or vice-versa in the thinned output. We compare

this to the estimated independence switch rate (ISR) which would arise under iid sampling from

the posterior distribution, i.e., ISR = 2q(1 − q), where q = Pr(Mki = 1|data). Thus we plot

TSR against ISR to glean a sense of how well the MCMC scheme mixes for M relative to iid

sampling (which corresponds to the identity line indicated on the plots). Clearly the sampling

is much less efficient than iid sampling, but most of the indicators are mixing to some extent,

in contrast to the FS model.

To assess whether the FS and CVFS models are in rough agreement about which features

are important, let ri = E
(
K−1∑K

k=1 I{Mki = 1}|data
)
, be the estimated proportion of concepts

for which the i-th feature is relevant under the CVFS model. The upper-right panel of Figure 2

plots Pr(Mi = 1|data) under the FS model against ri for the CVFS model. Above and beyond

the discreteness that arise because all but one of the estimated posterior probabilities under the

FS model is zero or one, there is apparently no agreement between the two models concerning

which features are important.

The posterior distribution on M under the CVFS model is displayed via a greyscale plot in

the bottom-left panel of Figure 3. As favoured by the prior distribution on M , there is some

tendency for features to be generally useful or not useful across concepts.

Figure 4 examines the MCMC mixing of the segment labels Yij for the training data, again

using plots of thinned switching rates against estimated switching rates under iid sampling. Note

that now the ISR is given as
∑K

k=0 qk(1 − qk), where qk = Pr(Yij = k|data). Not surprisingly

the mixing for some labels is substantially worse than under iid sampling, though there is not an
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indication of pathological mixing problems. The label-mixing performance seems comparable

under the three models, with a suggestion of slightly worse mixing under the CVFS model.

7.1 Stability Study

To assess the extent to which the results in the previous section are typical, we re-do the analysis

for three different random training/validation divisions of the data. For each data split we use

three MCMC runs of 1000 iterations after 200 burn-in iterations for each model. In particular,

each of the three runs uses a different random initialization of the segment labels Yij.

Figure 5 compares the feature relevance under the FS model to that under the CVFS model,

for each data split and each MCMC run separately, in the same format used in Figure 3. Again

there is virtually no mixing of M under the FS model, so that Pr(Mi = 1|data) is estimated

to be zero or one in most instances. Moreover, these estimates are not stable across different

MCMC runs (with the same data split), indicating that the FS model is indeed prone to a

problem of local maxima. Conversely, the estimated feature relevances under the CVFS model

are rather stable across MCMC runs and even somewhat stable across data splits. This stability

certainly appears to be a strength of the CVFS model over the FS model. We also consider

combining the three MCMC runs for each data split, i.e., forming a larger posterior sample over

(Y,M) by concatenating the three individual samples. The last column of Figure 5 compares

feature relevance under the two models using the combined MCMC runs. Here we do start to

see some agreement between the two models about which features are most helpful. Of course

under the FS model we are presumably averaging three local maxima for M , so we cannot regard

this as posterior sampling in a meaningful sense.

Figure 6 compares correct classification rates across for the three data splits and three MCMC

runs. The dashed lines give rates for training and validation segments as computed under the

three MCMC runs separately. The solid lines give rates based on combining the three runs.
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Combining the runs seems most beneficial for the classification rates under the FS model. It

is not surprising that averaging results based on three local maxima might be particularly

helpful, given the extensive literature on improvements to classification schemes by combining

different classifiers (see, for example, Hastie, Tibshirani, and Friedman 2001, Ch. 10). The

overall impression from Figure 6 is that the results are very mixed. There is not clear evidence

on the question of whether feature selection is helpful in the present application, nor is there

clear evidence on whether the FS or CVFS model tends to produce better classification rates.

The small validation sample size coupled with the presumably small impact (either positive or

negative) of feature selection does not yield clear conclusions about this impact.

8 Discussion

Certainly there are limitations associated with the methods we have described. First, we have

not been able to demonstrate a clear benefit (nor a clear detriment) to Bayesian feature selection

in a semi-supervised context for the particular data at hand. Second, the approaches described

are rather computationally intensive. Consequently we have limits on the length of MCMC runs

that can be employed, and particularly we do not have an attractive scaling of the computa-

tional requirements with the number of available features. The latter is obviously a limitation

when considering the classification and clustering efforts are focussed on bioinformatics where

enormous numbers of features may be available.

More positively, the CVFS model seems to be quite promising in several regards. First, by

providing a much ‘finer’ collection of models whose elements are closer together than in the FS

model we make MCMC sampling from the posterior distribution over the model space feasible.

Second, the CVFS model has the conceptual appeal of being consistent with human classification

processes whereby the features of an object that lead to its identification as X may be quite

different from the features that reveal an object to be Y. In light of this it seems worthwhile to
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consider variants of the CVFS model in a range of classification and clustering contexts.
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Appendix

Following Liu et. al. (2003), the analytic integration of means and variances can be expressed

as follows. If

W1, . . . ,Wn|µ, Σ
iid∼ Np(µ, Σ)

while (µ|Σ) ∼ N(µ0, ρ
−1
0 Σ) and Σ ∼ IWν0(S

−1
0 ), then the marginal density of W is given as

f(w) = g(p, ν0, ρ0, S0, n, SS), where

gp(ν0, ρ0, µ0, S0, n, SS) =
Z(ν0, S0, p)

Z(ν0 + n, S0 + SS, p)
(2π)−np/2

(
n + ρ0

ρ0

)−p/2

, (6)

with

SS =
n∑

i=1

(wi − w̄)′(wi − w̄) +
nρ0

n + ρ0

(w̄ − µ0)
′(w̄ − µ0), (7)

and

Z(ν, S, p) = |S|ν/2

{
2νp/2πp(p−1)/4

p∏
i=1

Γ
(

ν + 1− i

2

)}−1

.

Also, it follow that

Σ|W ∼ IWν0+n{(S0 + SS)−1}, (8)

and

µ|Σ, W ∼ N

(
ρ0

n + ρ0

µ0 +
n

n + ρ0

w̄, (n + ρ0)
−1Σ

)
. (9)
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Based on (6), the posterior distribution for the CVFS model with the concept-specific means

and variances integrated out can be written as

π(Y,M, δ, Ω, α|X, S) ∝
K∏

k=0

gd(Mk)(d(Mk) + 2, {d(Mk)/2}Id(Mk), 1, n
∗
k(Y ), SSY =k,Mk

) ×

K∏
k=0

φ(Xij,MC
k
|Xij,Mk

; δ, Ω)×

p∏
j=1

α
M·j
j (1− αj)

K+1−M·jπ(αj)×

π(δ|Ω)π(Ω)×
I∏

i=1

I{yi ∈ Ci}
ni∏

j=1

I{yij ∈ Si}

 . (10)

Notationally here SSY =k,M denotes the sum-of-squares term (7) for the n∗
k =

∑n
i=1 I{Yi = k}

units in the k-th group and the Mk subset of the feature vectors. Also φ(xA|xB; µ, Σ) is taken

to be normal density of XA given XB arising from X ∼ N(µ, Σ).

We now describe how MCMC updating with (10) as the target distribution is obtained.

Updating schemes for the simpler FS and FULL models are special cases of what follows.

To update the vector Mk of feature indicators for the k-th concept we simply use a Metropolis-

Hastings update with a proposal obtained by flipping a randomly selected element of the current

value.

To update the unit labels Yij we generate a ‘temporary’ set of means and variances (µk, Σk)

for k ∈ Si using (8) and (9), and based on the current value of M . These are deterministically

extended to dimension p based on the current values of (δ, Ω). Then Yij can be sampled from (1).

After all elements of Y have been updated, the temporary means and variances are discarded.

That is, they are not part of the state-space for MCMC simulation of (10). It is straightforward

to verify that this update does leave (10) as its stationary distribution. Note that this approach

differs from that used by Liu et. al. (2003). One advantage of the present approach is that the

distribution (1), which is calculated at every iteration, can be averaged across iterations as a Rao-

Blackwellized estimate of the posterior distribution of Yij. That is, we estimate Pr(Yij = y|X)
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as a Monte Carlo average of Pr(Yij = y|µ, Σ, X) rather than as an average of I{Yij = y}. This

makes it possible to utilize much shorter MCMC runs than might otherwise be contemplated.

This approach also improves the computation of predictive distributions for the labels validation

segments.

The MCMC updating of αj involves straightforward Gibbs sampling, as its conditional dis-

tribution given all other quantities is a mixture of two beta distributions. Updating of (δ, Ω)

is less obvious, since Xij belonging to different concepts (according to the current Y ) con-

tribute information about different parts (according to the current M) of (δ, Ω). However, a

data-augmentation trick makes the updating feasible. The trick is most easily explained in a

‘stripped-down’ setting. The contribution of a single feature vector to the posterior density is

φ(xMc |xM ; δ, Ω)φ(xM ; µk, Σk).

With the addition of x∗
M this can be augmented to

φ(xMc |xM ; δ, Ω)φ(x∗
M ; δ, Ω)φ(xM ; µk, Σk).

Now consider reparameterizing from (xM , x∗
M , xMC , δ, Ω) to (xM , x∗

M , x∗
MC , δ, Ω), where

x∗
MC = xMC + ΩMCMΩ−1

MM(x∗
M − xM). (11)

The Jacobian of the transformation is one, and the contribution to the posterior density under

the new parameterization is simply

φ(x∗
Mc |x∗

M ; δ, Ω)φ(x∗
M ; δ, Ω)φ(xM ; µk, Σk),

such that (x∗
M , x∗

Mc) given (δ, Ω) follow the Np(δ, Ω) distribution. Thus we have the following

steps for our data-augmentation scheme. First, sample the augmenting vector x∗
M for each unit,

from the appropriate marginal of the N(δ, Ω) distribution. Second, deterministically compute

x∗
MC for each unit according to (11), to yield complete x∗ vectors of length p for each unit.

Third, appealing to the alternate parameterization, carry out standard conjugate updating of

(δ, Ω) given the values of x∗ for each unit.
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X1 area
X2 −X3 mean horizontal and vertical position in image
X4 −X5 standard deviation of horizontal and vertical position in image

X6 perimeter divided by area
X7 convexity

X8 −X10 average (lab) color
X11 −X13 standard deviation of (lab) color
X14 −X16 skewness of (lab) color

Table 1: The p = 16 features in the dataset

airplane (8) bird (5) church (1) elephant (15)
grass (34) ground (7) horse (1) house (2)
lion (12) mountains (8) road (2) rock (11)

sand (2) sky (44) snow (1) trees (38)
water (19)

Table 2: The K = 17 annotating keywords. The number of images in which the word appears
is given in parentheses.

feature
1 2 3 4 5

concept 1 0.90 0.44 0.17 0.15 0.08
2 0.28 0.78 0.25 0.11 0.12
3 0.41 0.46 0.98 0.08 0.07

Table 3: Posterior probabilities that the i-th feature is relevant for the k-th concept, for the
synthetic data of Section 6. The k−th row and i-th column give Pr(Mki = 1|data), as computed
from 2500 MCMC iterations.
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Figure 1: Sample images, before and after segmentation.
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bottom-left panel plots Pr(Mki = 1|data) on a greyscale from zero (white) to one (black).
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Figure 4: MCMC mixing for the labels Y. The thinned switch rate (TSR) is plotted against the
estimated independence switch rate (ISR) for all 728 labels. The three panels correspond to the
FULL, FS, and CVFS models.
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Figure 5: Feature relevance in the stability study. Each panel plots feature relevance for the
FS and CVFS models as in Figure 3. The three rows correspond to the three data splits. The
first three columns correspond to the three MCMC runs, while the fourth column corresponds
to pooling the three runs.
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Figure 6: Classification rates in the stability study. Each panel plots the percentage of segments
classified correctly under the three models (FULL, FS, CVFS) and under the three MCMC runs.
The top (bottom) row plots correspond to classification of training (validation) segments. The
three columns of plots correspond to the three data splits. The open circles give rates based on
the three MCMC runs separately, while the closed circles correspond to pooling these runs.
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