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Zhong Liu1, Nhu D. Le2, James V. Zidek3

Abstract. In this technical report, we first review a two-step linear regression model

which can adjust the outputs from a deterministic model of a random field according to

measurements of that field. However this model does not incorporate spatial correlation

leading us to propose an ad-hoc spatial-temporal alternative based on Kriging to deal with

the spatial correlation. After demonstrating that alternative’s promise, we go on to refine

it through Bayesian hierarchical spatial-temporal model. The resulting Bayesian model

can provide forecasts and spatial predictions along with their credible intervals. As an

application, we analyze ozone data from the eastern and central USA. These predictions

and forecasts are compared with those from other approaches.

1 Introduction

Scientific researchers have developed numerical models to simulate ozone concentrations us-

ing their knowledge of physical and chemical processes. The resulting deterministic models

yield a single predetermined output which is always the same if the input is fixed. One

such deterministic model is the AQM (air quality model) which can generate regional-scale

ozone concentrations. It is the non-hydrostatic version of the MAQSIP (Multiscale Air

Quality Simulation Platform) model described in Odman and Ingram (1996). The AQM

can simulate hourly ozone concentrations based on a resolution of 6 × 6km2. One input

to the AQM is the output of another deterministic model MM5 described in Grell et al.

(1995). Another input is the output of an emission model.
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Hourly measurements of the ozone concentration level are available at the Air Quality

System (AQS) monitoring network. Both the measurements and modeling output are from

May 15 to September 11, 1995, a 120-day period over the eastern and central part of the

United States. The modeling output consists of the ozone concentration levels simulated

from the deterministic model AQM. In this report, we choose the 78 stations with the fewest

missing measurements. The modeling outputs from AQM are for grid cells of resolution

6 × 6 km2. Each of these 78 stations is inside one grid cell and each of these 78 grid cell

has only one station inside. If one grid cell has more than one stations inside then the

measurements from these stations are averaged. Macthing grid cells and monitoring sites in

this way enables an empirical assessment of the role of modeling - measurement similarities

in spatial prediction. Some of the 78 stations have measurements in the past and we want

to forecast the measurements into the future. The measurements at the rest are left as a

validation dataset, which are to be predicted for empirical comparison. For these stations,

we want to spatially predict their measurements. In the rest of this report, prediction means

spatially predicting the measurements at the stations without measurements.

The rest of the report is organized as follows. Section 2 reviews the two-stepp linear

regression model on which we base our approach. Section 3 extends this temporal model

to an ad-hoc spatial-temporal model in order to assess such a model’s potential. Based on

the favorable results seen in Section 3, Section 4 develops a more rigorous spatial-temporal

model in a Bayesian framework. Section 5 compares the prediction and forecast results

between different approaches. The final section includes some discussion.

2 Two-step linear regression

This section reviews the two-step linear regression model proposed by Guillas et al. (2006).

The strong linear correlation between the hourly measurements and modeling output at

each station makes such a model seem natural. That correlation is seen in Figure 1, a

histogram of the Pearson’s correlation coefficients at all the 78 stations considered in this
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report. Figure 1 shows those correlations to be bigger than 0.5 at most stations, pointing

to a linear relationship between the measurements and modeling outputs.

The first model in the two-step linear regression procedure proposed by Guillas et al.

(2006) relates the measurements, {O(t)}, to the model outputs {M(t)} by

O(t) = c + aM(t) + Nt, t = 1, 2, · · ·, T (1)

with autocorrelated residuals

Nt = ρNt−1 + et. (2)

Pearson’s correlation coefficients between measurements and modeling output
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Figure 1: Histogram of Pearson’s correlation coefficients between hourly measurements and
modeling output for the 78 stations.

The residuals for the autocorrelation model in turn satisfy the following linear regression

model:

et =
12∑

i=1

αimi(t) + εt, (3)
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mi(t) =





1 if t mod 12 = i;

0 if t mod 12 6= i.

i = 1, · · ·, 12.

The models (1), (2) and (3) are the same for all stations, while the coefficients are station

specific. Both the measurements and modeling outputs are at the hourly level of temporal

resolution and thus they have a strong auto-regressive structure. Assuming the {Nt} have

an AR(1) autoregressive structure provides computational simplicity at the possible expense

of realism. We also have tried an AR(2) structure for the {Nt} but the forecast results do

not improve, leading us to use AR(1) throughout this report. Following Guillas et al. (2006),

we first fit Model (1) by using generalized least squares as proposed by Box et al. (1994),

N(t) being an AR(1) process. If the modeling output captures the temporal structure of

the measurements very well then Model (1) would be enough. However, most of the time,

the measurements will still have some temporal structure that the modeling output fails to

capture. That is to say, the residuals {et} will have non-zero means. So, the second step is

to fit Model (3). The covariates in this model are indicator functions of the 12 hours. We

also tried indicator functions of the 24 hours, but the forecast results do not improve. So, in

favor of fewer parameters, we choose indicator functions of the 12 hours. For the residuals

of the AR(1) process {Nt}, εt ∼ N(0, σ2
ε ) independently and identically.

Models (1) and (3) are fitted sequentially and independently. These two models can

then be used to forecast the measurements. Suppose at each station, the training data are

measurements and modeling output for times t = 1 to T . For times t = T + 1, · · ·, T + T
′
,

only the modeling output is available and the goal is to forecast the measurement during

that future time period. To do so, Models (1) and (3) are fitted to obtain estimators ĉ, â,

ρ̂, α̂i, i = 1, · · ·, 12. The forecast of Ôt is then the following

Ôt = ĉ + âMt + N̂t,
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where we have

N̂t = ρ̂N̂t−1 +
12∑

i=1

α̂imi(t) (4)

t = T + 1, · · ·, T + T
′
.

Although the two-step regression above is easy to implement, it has two disadvantages.

First, it does not include any spatial correlation between stations. We fit models (1) and

(3) at each station independently. Thus we can only forecast the measurement for stations

that have measurements in the past, after estimating the requisite coefficients. In other

words, it cannot borrow strength across space to forecast future values of stations without

past data by exploiting data from neighbors with a past. Second, the two-step regression

procedure only gives point forecasts without any indication of their uncertainties.

To address the first disadvantage of the two-step regression, we first consider a simple

but ad-hoc approach which Kriges parameter estimates (â, ĉ and α̂i) across space to get

values for them at stations without measurements. After affirming the value of our ad-hoc

approach, we address the second disadvantage by extending it to a Bayesian spatial-temporal

model. The credible intervals of the forecast and prediction can then be obtained from their

MCMC posterior samples at considerable computation cost.

3 Two-Step Linear Regression with Kriging

This section presents an ad-hoc approach which is able to not only forecast the measure-

ments but also spatially predict the measurements at those locations without historic mea-

surements. First, we fit models (1) and (3) at the stations with measurements. Then the

estimates of parameters a, c and αi, i = 1, · · ·, 12, are interpolated at locations without

measurements by Kriging, a celebrated geostatistical approach for spatially interpolating

point-referenced data. Given measurements of a random field Y = (Y (s1), ..., Y (sn))T , the

question is how to predict the random variable Y at a new site s0. The simplest Kriging

approach, ordinary Kriging, assumes E(Y s0) = E(Y si) = µ, i = 1, · · ·, n. The interpolated
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value at s0 is

Y ∗(s0) =
n∑

i=1

wiY (si),

wi being the weight of Y (si) subject to the constraint
∑n

i=1 wi = 1. Obviously, Y ∗(s0) is

an unbiased estimator of Y (s0). So, to minimize the MSE (mean square error) of Y ∗(s0),

we only need to minimize its variance,

σ2
E = E

[
(Y ∗(s0)− Y (s0))2

]

= −γ(s0 − s0)−
n∑

i=1

n∑

j=1

wiwjγ(si − sj) + 2
n∑

i=1

wiγ(si − s0).

γ(·), the so-called variogram function, is defined as

Var [Y (s + h)− Y (s)] = C(h) = 2γ(h).

For simplicity, this report uses the exponential function to model the spatial covariance

C(h) =





σ exp(−|h|/λ) if |h| > 0;

σ if |h| = 0.
(5)

where σ2 is the spatial variance and λ is the range parameter. More complex choices of

the spatial covariance function will be considered in future work. The weights {wi} are

determined through minimizing σ2
E . Comprehensive studies of Kriging can be found in

Cressie (1993) and Stein (1999).

At the locations without measurements but with modeling output, we have the Kriging

interpolated values of the parameters a, c and αi, i = 1, · · ·, 12. Then we can plug these

parameters into Formula (4) to obtain spatial predictions of the measurements.
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4 A Bayesian hierarchical spatial-temporal model

The ad-hoc approach in the previous section is “self-contradictory” because it fits Models

(1) and (3) assuming the parameters a, c and αi, i = 1, · · ·, 12 are independent across

stations but then assumes parameters at different stations to be spatially correlated. That

ad-hoc approach then uses Kriging to interpolate the parameter values at the locations

without measurements assuming parameters at different stations are spatially correlated.

Another disadvantage of the ad-hoc approach is that it fails to provide measures of

the uncertainties associated with the forecasts or predictions. Kassteele et al. (2006) use a

similar two-step regression model to interpolate PM10 concentrations over western Europe.

In this paper, the authors first fit a linear regression model with PM10 as the response,

modeling output and other explanatory variables as covariates. Then the residuals are in-

terpolated using Kriging. The approach in Kassteele et al. (2006) has the same weakness

as the ad-hoc approach presented in the previous section. That is, it assumes the residuals

are spatially independent to fit the model by using ordinary least square method and then

uses Kriging to interpolate the residuals at other locations. Moreover, the model used in

Kassteele et al. (2006) does not include temporal correlation because the data are is yearly

averages of PM10 concentrations that do not have much temporal correlation. Hence,

strictly speaking, both the ad-hoc approach in the previous section and that of Kassteele

et al. (2006) do not yield spatial-temporal models. This section presents a Bayesian hierar-

chical spatial-temporal model that assumes parameters at different stations in Models (1)

and (3) are spatially correlated Gaussian processes.
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For the Bayesian spatial-temporal model has the following mathematical form:

Os,t = as + csMs,t + Ns,t

Ns,t = ρNs,t−1 + γ1,sZ1,t + γ2,sZ2,t + γ3,sZ3,t + γ4,sZ4,t + εs,t

a = (a1, · · ·, an)t∼ MV N(µa,Σa)

c = (c1, · · ·, cn)t∼ MV N(µc,Σc)

γ1 = (γ1,1, · · ·, γ1,n)t∼ MV N(µγ1
,Σγ1)

· · ·

γ4 = (γ4,1, · · ·, γ4,n)t∼ MV N(µγ4
,Σγ4)

times t = 1, · · ·, T, and

sites s = s1, · · ·, sn

µa = (µa, · · ·, µa)t

µc = (µc, · · ·, µc)t

µγi
= (µγi , · · ·, µγi)

t

Σa = σ2
a exp(−D/λa)

Σc = σ2
c exp(−D/λc)

Σγi = σ2
γi

exp(−D/λγi)

εs,t independently and identically distributed as N(0, σ2
ε ), (6)

n being the number of monitoring sites, T , the number of hours and D, the Euclidean

distance matrix between stations. Vectors µa, µc and Σγi have dimension n. In Model (6),

s denotes location and t, time. The time-related covariates at time t are Z1,t = cos(πt/6),

Z2,t = sin(πt/6), Z3,t = cos(πt/12), and Z4,t = sin(πt/12), instead of the indicator functions

in (3) to reduce the number of parameters in the model. The parameter vectors a, c

γ1, · · ·γ4 at different locations are spatially correlated, that correlation being specified

by an exponential function as shown in model (6). Given a, c and γi, i = 1, · · ·4, the
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measurements Os,t at each station s are spatially independent AR(1) processes. We make

the following assumptions for this Bayesian spatial-temporal model.

• The measurements and modeling output are linearly related.

• The autoregressive parameter ρ is constant across stations.

• The residuals {N(t)} follow an AR(1) process.

• The spatial correlation between measurements at different stations can be explained

by the modeling output and the spatial correlation between the coefficients.

We use the Gibbs sampling algorithm proposed by Gelfand and Smith (1990) to fit the

Bayesian spatial-temporal Model (6). The key to making Gibbs sampling work is writing

Model (6) in matrix form, that is

O = Aa + Mc + N

RN = γ1Z1 + γ2Z2 + γ3Z3 + γ4Z4 + ε

a ∼ MV N(µa,Σa)

c ∼ MV N(µc,Σc)

γi ∼ MV N(µγi
,Σγi) i = 1, · · ·, 4. (7)

The measurement vector is denoted as O = (O1,1, · · ·, O1,T , · · ·, On,1, · · ·, On,T )t and

the residual vector, as N = (N1,1, · · ·, N1,T , · · ·, Nn,1, · · ·, Nn,T )t. The matrix form of the
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modeling output is

M =




M1,1 0 . . . 0 . . . 0
...

...
...

...
...

...

M1,T 0 . . . 0 . . . 0

0 M2,1 . . . 0 . . . 0
...

...
...

...
...

...

0 M2,T . . . 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 . . . Mn,1

...
...

...
...

...
...

0 0 . . . 0 . . . Mn,T




nT×n

.

In the matrix M , only the elements from row (i − 1) × T + 1 to i × T are non-zero at

column i, i = 1, · · ·, n. We also define a matrix r as

r =




−ρ 1 0 0 . . . 0 0

0 −ρ 1 0 . . . 0 0

0 0 −ρ 1 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . −ρ 1




(T−1)×T

and a matrix R as a diagonal matrix with matrix r on the diagonal repeated n times.
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Define the matrix A as

A =




1 0 . . . 0 . . . 0
...

...
...

...
...

...

1 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0
...

...
...

...
...

...

0 1 . . . 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 . . . 1
...

...
...

...
...

...

0 0 . . . 0 . . . 1




nT×n

.

In matrix A, only the elements from row (i−1)×T +1 to i×T are 1 at column i, i = 1, ···, n
while all other elements in matrix A are zero.

Define the matrix Z1 as

Z1 =




cos(2π/6) 0 . . . 0 . . . 0
...

...
...

...
...

...

cos(Tπ/6) 0 . . . 0 . . . 0

0 cos(2π/6) . . . 0 . . . 0
...

...
...

...
...

...

0 cos(Tπ/6) . . . 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 . . . cos(2π/6)
...

...
...

...
...

...

0 0 . . . 0 . . . cos(Tπ/6)




n(T−1)×n

.

In that matrix, only the elements from rows (i− 1)× (T − 1)+1 to i× (T − 1) are non-zero
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at column i, i = 1, · · ·, n. The matrices Z2, Z3 and Z4 have the same structure as Z1.

In particular, the non-zero elements are replaced by sin(πt/6), cos(πt/12) and sin(πt/12),

t = 2, · · ·, T .

Let N = O − Aa − Mc and F = γ1Z1 + γ2Z2 + γ3Z3 + γ4Z4. Then ε = RN is

just a vector of independent and identically distributed normal variables with mean 0 and

variance σ2
ε . So, the density of O given the other parameters is

p(O|a, c, R, σ2
ε ) ∝

(
σ2

ε

)−n(T−1)
2 exp

(
− 1

2σ2
ε

[R(O −Aa−Mc)− F ]t[R(O −Aa−Mc)− F ]
)

. (8)

The inferences about the parameters, forecasts and predictions are based on their

Markov Chain Monte Carlo (MCMC) samples generated by the Gibbs sampling algorithm.

That algorithm as implemented is iterative. First, we choose some arbitrary initial values

for all the parameters. Then, in each iteration of the algorithm, the parameters are updated

by generating a random sample from their conditional distributions given the data and other

parameter values from the previous iteration. For computational efficiency, each of the pa-

rameter vectors a, c and γ1, · · ·, γ4 is updated as a block. The conditional distributions for

each of the parameters are listed below from (9) to (15) for completeness.

The prior and conditional distributions of a are

p(a|µa,Σa) ∼ MV N(µa,Σa)

p(a|µa,Σa,M , A, R, σ2
ε ) ∼ MV N(µ

′
a,Σ

′
a)

Σ
′
a =

[
Σ−1

a + At(
RtR

σ2
ε

)A
]−1

µ
′
a = Σ

′
a

[
At(

RtR

σ2
ε

)(O −Mc)− AtRtF

σ2
ε

+ Σ−1
a µa

]
. (9)
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The prior and conditional distributions of c are

p(c|µc,Σc) ∼ MV N(µc,Σc)

p(c|µc,Σc,M ,A, R, σ2
ε ) ∼ MV N(µ

′
c,Σ

′
c)

Σ
′
c =

[
Σ−1

c + Mt(
RtR

σ2
ε

)M
]−1

µ
′
c = Σ

′
c

[
Mt(

RtR

σ2
ε

)(O −Aa)− MtRtF

σ2
ε

+ Σ−1
c µc

]
. (10)

The prior and conditional distributions of γi, i = 1, 2, 3, 4, are

p(γi|µγi
,Σγi) ∼ MV N(µγi

,Σγi)

p(γi|µγi
,Σγi , M , A,R, σ2

ε ) ∼ MV N(µ
′
γi

,Σ
′
γi

)

Σ
′
γi

=
[
Σ−1

γi
+

Zt
iZi

σ2
ε

]−1

µ
′
γi

= Σ
′
γi

[
Zt

i (R(O −Aa−Mc)− F + γiZi)
σ2

ε

+ Σ−1
γi

µγi

]
. (11)

The prior and conditional distributions of σ2
ε are both inverse gamma distributions with

the following form

p(σ2
ε |α, β) ∝ (σ2

ε )
−α−1 exp

(
− 1

βσ2
ε

)

p(σ2
ε |A, O, m, a, c, R, α, β) ∝ (σ2

ε )
−α

′−1 exp
(
− 1

β′σ2
ε

)

α
′
= α +

n(T − 1)
2

β
′
=

[
1/β +

1
2

(R(O −Aa−Mc)− F )t(R(O −Aa−Mc)− F )
]−1

. (12)

The prior and conditional distributions of σ2
a are both inverse gamma distributions with
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the following form

p(σ2
a|α, β) ∝ (σ2

a)
−α−1 exp

(
− 1

βσ2
a

)

p(σ2
a|α, β,a, λa, µa) ∝ (σ2

a)
−α

′−1 exp
(
− 1

β′σ2
a

)

α
′
= α +

n

2

β
′
=

[
1/β +

1
2

(a− µa)
t(exp(−D/λa))−1 (a− µa)

]−1

. (13)

We cannot find a conjugate prior for the parameter λa, so its conditional distribution

does not have a closed form. However, we have

p(λa|σ2
a, µa, a) ∝ | exp(−D/λa)|−1 exp{−1

2
(a− µa)

t(exp(−D/λa))−1 (a− µa)}. (14)

To obtain a random sample from the above distribution of λa, we have to use the Metropolis-

Hasting algorithm proposed by Metropolis et al. (1953) and Hastings (1970). The condi-

tional distributions of σ2
c and λc are very similar to σ2

a and λa. We only need to replace a

and µa with c and µc correspondingly in (13) and (14).

To update ρ, its ordinary least square (OLS) estimate given other parameters is used

instead of a random sample from its conditional distribution. We do this in part for compu-

tational simplicity. Finding a conjugate prior for ρ is very difficult while finding its ordinary

least square estimation is very easy. The main reason is that the variance of the conditional

distribution of ρ is small enough to be treated as zero because of the large sample size

n× (T − 1). The OLS estimate of ρ is

ρ̂ =

∑n
s=1

∑T
t=2(Ñs,t −

∑4
j=1 Z̃j,tγj,s)Ñs,t−1∑n

s=1

∑
t=2 Ñ2

s,t−1

, (15)

where Ñ is the matrix form of N in model (7) and Z̃1,t = cos(πt/6), Z̃2,t = sin(πt/6),

Z̃3,t = cos(πt/12), Z̃4,t = sin(πt/12).
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At each iteration in Gibbs sampling, the forecast or prediction is obtained in an iterative

way. The forecast or prediction is

Ôs,t = as + csMs,t + Ns,t

Ns,t = ρNs,t−1 + γ1,sZ1,t + γ2,sZ2,t + γ3,sZ3,t + γ4,sZ4,t + εs,t

εs,t is a random sample generated from N(0, σ2
ε ). (16)

At those stations where the historic measurements are available up to time T , Ôs,t, t = T +

1, ···, T +T
′
are the forecasts. At those stations where there is no historic measurement, Ôs,t,

t = 1, · · ·, T are the predictions. The parameters at those stations without measurements

can be spatially predicted by the parameter values at stations with measurement. Finally,

the credible interval of the forecast or prediction is obtained by taking their quantiles of all

their MCMC samples.

5 Data analysis and conclusions

Among all the 78 stations, we use the first 240 hours of measurements and modeling outputs

at 15 stations as training data. Then we forecast the ozone concentration levels in the next

240 hours for the 15 stations and also predict the first 240 hours’ ozone concentration levels

at the remaining 63 stations. To fit the Bayesian spatial-temporal Model (7), we use 500

iterations of the Gibbs sampling algorithm and the first 50 iterations for the “burnin-in”

period. Figure 2 shows the time series plots of the posterior MCMC samples for some

parameters as example. From that plot, we can see the Markov Chains converge after the

”burn-in” period. We use the root mean square forecast error (RMSFE) and root mean

square prediction error (RMSPE) to evaluate accuracy of the forecasts or predictions, the

smaller RMSFE or RMSPE, the better the forecast or prediction. At each station location

s, RMSFE or RMSPE is

√
1
T

∑T
t=1

(
Os,t − Ôs,t

)2
, Os,t being the real measurement at time
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t and Ôs,t, the forecast or prediction.

5.1 Forecasting and spatial prediction

Table 1 presents parameters estimates for Model (6). Most differ significantly from 0 except

σ2
a, the spatial variance of the process a. Table 2 presents the RMSFE of the forecasts by

three approaches, Bayesian spatial-temporal model (6), the ad-hoc approach in Section

(3) and the unadjusted modeling output. As an example, Figure 3 shows the plot of

measurements versus the forecast by the Bayesian spatial-temporal model for one station.
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Figure 2: Plots of the parameter values in the Gibbs sampling iterations. The upper left
panel is for µa; the upper right panel is for µc; the lower left panel is for ρ and the lower
right panel is for µγ1.

The spatial predictor predicts the ozone concentration levels over the first 240 hours at

the 63 stations that have modeling output only and no historic measurements. The four

predictions include the Bayesian spatial-temporal model, the ad-hoc approach, Kriging,

and the unmodified modeling output. By kriging, we mean using the Kriging approach to

interpolate the measurements at the 63 stations repeatedly for every hour. So, the modeling
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Table 1: Posterior mean and standard deviation of µa, σ2
a, µc, σ2

c , ρ and µγi , σ2
γi

, i = 1, ···, 4.

mean sd mean sd
µa 28.96 0.94 µγ4 1.10 0.13
µc 0.16 0.04 σ2

γ1
1.96 1.06

σ2
a 2.99 3.81 σ2

γ2
2.12 1.15

σ2
c 0.30 0.11 σ2

γ3
1.06 0.51

µγ1 −2.31 0.17 σ2
γ4

0.84 0.51
µγ2 −3.17 0.19 ρ 0.89 0.01
µγ3 −0.54 0.15 σ2

ε 39.19 0.98

output is not used in the Kriging approach. Tables 3 and 4 present the RMSPE for these

four approaches. As an example, Figure 4 shows the plot of measurements versus the spatial

predictions using the Bayesian spatial-temporal model at one station.

The Bayesian spatial-temporal model can give credible predictive intervals for the fore-

casts and predictions by using the quantiles of the MCMC samples of the forecast and

prediction. The coverage probability of the credible interval is defined as the proportion

of the true predicted measurements falling into the credible intervals of the forecast or

prediction. The coverage probabilities of the 90% credible intervals for the forecasts and

predictions are 85% and 84% respectively.

5.2 Remarks

The results above suggest a number of conclusions.

• The two-step linear regression procedure can only forecast the measurements. The

Kriging approach can only spatially predict the measurements. But the ad-hoc ap-

proach and the Bayesian spatial-temporal model can both forecast and predict the

measurements at the same time. Figure 3 and Figure 4 show that the forecasts and

predictions from the Bayesian spatial-temporal model track the real measurements

reasonably well.
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Table 2: The first column gives the indices of 15 stations where the first 240 hours’ mea-

surements are available. The second, third and forth columns are the RMSFE (square

root of the mean square forecast error) of the next 240 hours’ measurements fore-casted

by Bayesian hierarchical model, ad-hoc approach and modeling output without calibration.

The number followed by ∗ indicates the approach that has the smallest RMSFE in each

row.

station Bayesian ad-hoc modeling output
1 16.52* 21.51 23.06
2 14.33* 19.70 21.21
3 17.07 13.73* 14.03
4 17.22* 18.16 18.37
5 15.95 15.61* 17.53
6 17.00 14.54 12.34*
7 16.65* 19.33 21.55
8 14.08* 19.91 20.87
9 12.43* 14.08 14.90
10 13.56 11.28* 14.55
11 12.89 12.04* 13.44
12 13.43* 15.37 15.98
13 13.23 10.95* 12.74
14 13.01 12.57* 13.96
15 13.90* 14.71 17.16

mean 14.75* 15.57 16.78

• Tables 2, 3 and 4 show that in averaging over the stations, the Bayesian spatial-

temporal model gives the smallest RMSFE and RMSPE among all the competitive

approaches for forecasting and spatially prediction. For forecasting, the mean RMSFE

of the Bayesian spatial-temporal model is about 20% smaller than the forecasts from

the unadjusted modeling output. The RMSFE of the ad-hoc approach is slightly

bigger than the Bayesian spatial-temporal model. In prediction, not surprisingly,

Kriging has the biggest RMSPE because we have interpolated 63 stations using only

15 stations. The RMSPE of the Bayesian spatial-temporal model is about 10% smaller

than the ad-hoc approach and the modeling output. So, using Model (6) to adjust the

modeling output seems worthwhile achieving better forecasts and predictions. The
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Figure 3: Plot of measurement versus the forecast and the 90% credible interval from the
Bayesian spatial-temporal model at one of the 15 stations.

coverage probabilities of the intervals for the Bayesian spatial-temporal model are

fairly good, meaning the uncertainties in the forecasts and predictions are accounted

for quite well.

• Although in averaging over the stations, the Bayesian spatial-temporal model achieves

the smallest RMSFE and RMSPE, it is also marginally better than the ad-hoc ap-

proach in forecasting albeit at significant cost in computational time and parsimony

judging from the number of parameters. Table 2 shows that the ad-hoc approach has

smaller RMSFE than Bayesian spatial-temporal model at 8 out 15 stations. Table 3

and 4 show that ad-hoc approach has smaller RMSPE than Bayesian spatial-temporal

model at 24 out 63 stations. So, cost stated above, the major benefit of the Bayesian

spatial-temporal model lies in the quality of spatial predictions and in its well cali-

brated credible predictive intervals.

• As we can see in Table 1, the posterior mean of the auto-regressive parameter ρ is as
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Figure 4: Plot of measurement versus the spatial prediction and the 90% credible interval
from the Bayesian spatial-temporal model at one of the 63 stations.

big as 0.89, which suggests strong auto-regression in the residuals {Nt}.

5.3 Future Work

We assume the residuals {εs,t} in Model (6) are independently normal variables. This

is assumption implies that the modeling output captures the spatial correlation within the

measurements. To verify this assumption, we calculate the Pearson’s correlation coefficients

between residuals at different stations. We use the residuals for the 15 stations in the

training dataset. Figure 5 shows the plot of these correlation coefficients versus the distance

between stations and Figure 5 and Figure 6 shows the locations of the 15 stations. We can see

in Figure 5 that there are still some spatial correlation left in the residuals. Figure 4 shows

that the spatial predictions are very smooth, which also implies that the prediction does not

borrow much strength from the neighboring stations. In the future work, we will assume

that the residuals at different stations {εs,t} are also spatially correlated. Through this
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technical report, we assume exponential function for the spatial correlation for simplicity,

we will use Matern function in the future for its flexibility.
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Figure 5: The correlation coefficients of residuals at different stations versus the distance
between stations. This plot is for the 15 stations in the training dataset.
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Figure 6: The locations of the 15 stations in the training dataset.
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Table 3: RMSPE (square root of the mean square prediction error) at stations 1-35. Column
2: Bayesian spatial-temporal model; column 3: ad-hoc approach; column 4: modeling
output; column 4: Kriging approach. The number followed by ∗ indicates the approach
that has the smallest RMSPE in each row.

station Bayesian ad-hoc modeling Kriging
1 10.54* 13.08 12.07 16.51
2 11.10 12.07 10.11* 17.05
3 13.93 13.91 13.25* 24.15
4 14.26* 17.08 17.52 19.17
5 8.88* 29.98 12.32 43.40
6 12.79 18.15 9.94* 40.89
7 17.37 12.98* 19.02 22.80
8 18.88 13.62* 21.64 23.10
9 21.06 17.28* 24.66 27.81
10 19.47 16.26* 18.33 31.90
11 17.68 16.07* 18.54 35.59
12 18.26* 17.94 18.92 29.32
13 16.85* 20.35 19.17 36.71
14 13.36* 15.37 13.50 20.84
15 14.91 11.49* 13.76 16.70
16 14.98 12.91* 13.89 17.11
17 16.11* 18.77 16.28 19.14
18 14.51* 15.76 14.94 23.07
19 14.00* 14.29 14.92 18.33
20 12.79* 14.15 13.61 17.70
21 13.91 13.06* 13.08 18.79
22 13.75 10.26* 11.98 14.83
23 15.48* 16.25 16.46 10.38
24 8.44* 10.75 9.05 19.64
25 20.60 15.93* 23.25 24.78
26 15.51 13.40* 18.58 25.74
27 16.82* 19.10 20.19 27.33
28 18.99 12.9*4 22.49 26.94
29 18.44* 19.17 21.57 32.11
30 19.49 18.70* 23.67 32.67
31 23.61 17.84* 23.32 25.94
32 12.50* 21.61 13.46 34.19
33 14.38* 22.79 17.86 32.95
34 14.57* 15.29 11.87 27.05
35 15.57 14.76* 15.72 24.43
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Table 4: RMSPE at stations 36-63. Column 2: Bayesian spatial-temporal model; column
3: ad-hoc approach; column 4: modeling output; column 5: Kriging approach. The bold
station number means the Bayesian spatial-temporal does not have the smallest RMSPE in
that station.

station Bayesian ad-hoc modeling Kriging
36 12.73* 22.56 14.94 35.43
37 15.28* 23.24 18.28 33.09
38 13.75 12.52* 12.56 26.54
39 15.90* 21.30 23.26 20.20
40 14.24* 14.86 17.75 16.91
41 13.26* 14.49 18.68 16.57
42 15.69* 14.72 20.83 18.77
43 11.16* 14.66 10.06 26.53
44 8.71* 14.28 9.08 23.84
45 17.30 15.07* 20.56 14.22
46 17.15 14.35* 18.50 31.88
47 18.54 13.80* 19.79 28.34
48 11.86 15.54 11.83* 19.62
49 18.17* 20.88 21.85 25.71
50 14.80* 15.35 14.59 13.38
51 13.94 11.48* 17.41 14.31
52 12.45* 12.60 16.81 13.79
53 16.22* 18.07 23.34 16.47
54 15.92 12.77* 19.68 13.77
55 13.49* 15.47 19.74 15.31
56 15.96* 17.61 19.94 21.02
57 18.54* 19.41 22.73 25.79
58 17.57* 19.02 21.94 25.05
59 17.80* 17.40 22.95 23.48
60 16.62 13.34* 18.60 18.03
61 17.95 14.32* 23.61 19.83
62 15.16* 18.49 15.69 14.62
63 14.31* 15.48 14.14 19.99

mean 15.36 16.13 17.27 23.36
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