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Abstract

Regression models with a scalar response and a functional predictor have been

extensively studied. One approach is to approximate the functional predic-

tor using eigenfunction expansion with the coefficient vector being random.

The random coefficient vector is also known as random effects. In our study

of this regression model, we assume the random effects have a general co-

variance matrix and the observed values of the predictor are contaminated

with measurement error. We propose methods of inference for the regression

model’s functional coefficient. As an application of the model, we analyze a

biological data set to investigate the dependence of a mouse’s wheel running

distance on its body mass trajectory.
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1 Introduction

Regression models with a functional predictor Z(·) and a scalar response Y

have been extensively studied (see, eg, Ramsay and Silverman, 2005, and

references therein). For individual i, the dependence of Yi on Zi is modelled

as

Yi = β0 +
∫ b

a
β(t)

[
Zi(t)− E(Zi(t))

]
dt + ei. (1)

The goal is to estimate β.

Data are collected from N independent individuals, with data on indi-

vidual i, i = 1, . . . , N , being Yi, Zij ≡ Zi(tij), j = 1, . . . , ni. If the Zi

processes are observed with error, then our data on individual i are Yi and

zij, j = 1, . . . , ni, with

zij = Zi(tij) + εij, Cov(εi1, . . . , εini
) = Σεi

. (2)

Here, we consider data where the Zij’s are observed with error, and we

model the function Zi using random effects with a set of basis functions

φ1, . . . , φK . In our estimation process, we approximate Zi(·) as

Zi(t) = µ(t) +
K∑

k=1

xikφk(t), (3)

where µ is smooth and xi ≡ (xi1, . . . , xiK)′ are independent and normally

distributed with mean vector 0 and covariance matrix Σx.

This approach was taken by James (2002), Müller (2005) and James and

Silverman (2005) for data with and without measurement error. James used

φk’s equal to a basis for natural cubic splines and also used this basis for mod-

elling µ. James’s approach is similar to that described in Section 3. However,
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we implement a faster algorithm, the ECME (Expectation/Conditional Max-

imization Either) algorithm in Liu and Rubin (1994), and consider Hessian

matrix based and boot-strapped standard errors.

Müller used φk’s equal to the first K estimated eigenfunctions of the

Zi process. Müller’s approach can be separated into two parts: the first

part uses only the zij’s to determine µ, the φk’s and the xij’s. The second

part incorporates the Yi’s to estimate β0 and β. The first part uses the

PACE method (principal analysis through conditional expectation) of Yao,

Müller and Wang (2005). In PACE, Yao et al. smooth the observed zij’s to

obtain an estimate µ̂ of µ and then centre the data by subtracting µ̂. Next

the authors smooth the centred data to estimate the covariance function

of the Zi’s and then estimate the first K eigenfunctions and eigenvalues of

the estimated covariance function. Denote these estimates by φ1, . . . , φK

and λ̂1, . . . , λ̂K . Let x̂ik be the best linear unbiased estimate of individual

i’s kth PC score, x̂ik = E(xik|zi1, . . . , zini
), calculated assuming normality,

(2) with Σεi
= σ2I and (3) with Σx = diag(λ̂1, . . . , λ̂K). The second part

of Müller’s methodology involves regressing Yi on x̂i1, . . . , x̂iK to estimate

βk =
∫

β(t) φk(t) dt and then setting β̂(t) =
∑

β̂kφk(t). Müller justifies the

use of this regression by showing that E(Yi|zij, j = 1, . . . , ni) = β0+
∑∞

1 βkxik,

for the true PC scores xik calculated with the true eigenfunctions.

Müller’s approach has a big computational advantage over James’s (2002),

in that it can fit the Zi’s well with K fairly small. An added benefit of

this eigenfunction approach is that we focus on “estimable directions” of β.

For instance, consider the extreme case where Zi can be written exactly as

Zi(t) = µ(t) +
∑K

1 xikφk(t). So Zi has no variability in directions orthogonal
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to the φk’s. Since
∫

β(t)[Zi(t) − E(Zi(t))] dt =
∑K

1 xik

∫
β(t) φk(t) dt, we

can only hope to estimate
∫

β(t) φk(t) dt, k = 1, . . . , K. We cannot estimate
∫

β(t) f(t) dt for f orthogonal to the φk’s. This issue was noted by James and

Silverman (2005) who handled it by adding a penalty term which penalizes

β’s that have
∫

β(t)f(t)dt big when Var(
∫

Z(t)f(t)dt) is small.

Müller’s approach has the disadvantage that it does not fully use the

Yi’s: the xik’s in (3) are estimated using only the zij’s. Clearly, the Yi’s also

provide information about the xik’s if there is a relationship between Yi and

Zi, that is, if β 6= 0. As James and Silverman (2005) note “It is an interesting

feature of this problem that the responses provide additional information in

the estimation of the Zi’s”. Also, Müller’s calculation, that E(Yi|zij, j =

1, . . . , ni) = β0 +
∑∞

1 βkxik does not hold if the eigenvalues or eigenfunctions

are incorrect. In particular, the calculation relies on Cov(xij, xik) = 0 for

j 6= k.

We consider a hybrid approach. Like Müller, we use φ1, . . . , φK equal to

the first K estimated eigenfunctions of the Zi process. Thus we not only

improve on James’s choice of φk’s but also focus on “estimable directions” of

β. We then treat these φk’s as fixed and known in our analysis. We use all

of the data, the Yi’s and the zij’s, to estimate the xik’s and we do not place

any restrictions on Σx. Thus we improve on Müller’s procedure, where the

xik’s are estimated using only the zij’s, and Σx is assumed diagonal and is

estimated completely by the eigenanalysis of the zij’s.

Our detailed parameter estimation procedure using the ECME algorithm

is in Section 3. In this work, we also propose test statistics for hypothesis

testing of β(·). In Section 4.1, we consider testing the nullity of the function
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β, i.e. testing Ho : β(t) = 0, for all t ∈ [a, b]. In the two sample situation,

we consider testing the equality of a selection βs and a control βc, i.e. testing

Ho : βs(t) = βc(t), for all t ∈ [a, b]. We propose a new integrated t-statistic

and three test statistics that are more standard. In Section 5, we derive

expressions of the residuals of the model fit and discuss model diagnostics

based on the analysis of residuals. In Section 6.2, we apply the model to

analyze a biological data set. In Section 7, via a simulation study, we com-

pare our ECME estimate of β to a modification of Müller’s (2005) two-stage

estimate and we also study the performance of the different test statistics.

Our detailed calculations to derive the ECME estimates are in Section 8.

2 Notation and Preliminaries

Before we fit the model, we introduce some notation and carry out prelim-

inary calculations. In this section and the next, we suppose that the φk’s

are fixed and known. In practice, however, we will estimate them from an

eigenanalysis of the zij’s.

For ease, assume ni ≡ n and tij = tj. Suppose that (1), (2) and (3) above

hold. Let Zi = (Zi1, . . . , Zin)′, µ = (µ(t1), . . . , µ(tn))′, εi = (εi1, . . . , εin)′

represent errors and zi = (zi1, . . . , zin)′ be the observed values. Write

zi = Zi + εi ≡ µ + Axi + εi, (4)

where xi
i.i.d.∼ N(0,Σx), Ajk = φk(tj), j = 1, . . . , n, k = 1, . . . , K,

εi
i.i.d.∼ N(0, σ2

εR), R known, symmetric and positive definite,

{x1, . . . ,xn} independent of {ε1, . . . , εn}.
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If R is known, then the model is identifiable (Wang, 2007). However, if σ2
εR

is unknown, then the model is not identifiable (Wang, 2007). Wang also

discusses model identifiability under other assumptions on the covariance

matrix of εi.

We choose a basis for β and write

β(t) =
J∑

j=1

βjψj(t) ≡ β′ψ(t).

Typically, we will take J = K and ψj = φj, but will write for the general

case. Thus we can write

Yi = β0 + β′Txi + ei, where Tjk =
∫ b

a
ψj(t) φk(t) dt and ei ∼ N(0, σ2).

(5)

We easily see that zi,xi and Yi are jointly multivariate normal with

E(zi) = µ, E(Yi) = β0, E(xi) = 0,

and

Var(Yi) ≡ σ2
Y = β′TΣxT

′β + σ2, Cov(zi) ≡ Σz = AΣxA
′ + σ2

εR,

Cov(zi, Yi) ≡ Σz,Y = AΣxT
′β, Cov (zi,x

′
i) ≡ Σz,x = AΣx

and Cov (Yi,x
′
i) ≡ ΣY,x = β′TΣx. (6)

Let Wi = (z′i, Yi)
′ be the ith subject’s observation and let µW denote E(Wi).

Let

C =




A

β′T


 (7)

and Σd be a block diagonal matrix as

Σd = diag(σ2
εR, σ2). (8)
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Then

Cov(Wi) ≡ ΣW = CΣxC
′ + Σd (9)

and the log-likelihood of the observed data is

ΛN = −N

2
ln det (CΣxC

′ + Σd)−1

2

N∑

i=1

(Wi−µW )′ (CΣxC
′ + Σd)

−1
(Wi−µW )

up to an additive constant term. Unknown model parameters are θ =

(µ, β0,Σx, σ
2
ε ,β, σ2). Directly maximizing ΛN over θ does not give us closed

forms of the parameter estimates except for µ and β0. So we need to rely

on iterative numerical methods to find the estimates. We will elaborate on

these methods in the next section.
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3 Parameter estimation

In this section, we use the ECME (Expectation/Conditional Maximization

Either) algorithm (Liu and Rubin, 1994) to estimate the model parameters

in θ.

In this balanced design, the MLEs of µ and β0 are z̄ and Ȳ respectively.

So throughout we take

µ(t) = µ̂ = z̄ and β
(t)
0 = β̂0 = Ȳ and so µ

(t)
W = W̄, t = 0, 1, . . . .

We estimate the other parameters iteratively and sequentially. Given θ(t),

the parameter estimates at iteration t, we update one component of θ(t) at a

time, holding the other components fixed. We treat (zi, Yi,xi), i = 1, . . . , N,

as the complete data. We update σ2(t)
ε by finding its EM estimate. That is,

we find its estimate by maximizing the conditional expected complete data

log-likelihood function, where we condition on the observed data. The other

components of θ(t) are updated by maximizing ΛN directly.

Throughout our ECME procedure in Sections 3.2-3.4, we make the fol-

lowing assumptions.

(a) A is of full column rank;

(b) T is of full row rank;

(c) there exists no u and v such that, for all i = 1, . . . , n, zi = u + v′xi;

(d) there exists no v such, for all i = 1, . . . , n, Yi = Ȳ + v′(zi − z̄).

The restrictions on A and T are easily satisfied. Assumption (b) requires

J , the number of the ψj basis functions to be no larger than K, the number
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of the φk basis functions. Typically, we will take J = K and ψj = φj.

Assumptions (c) and (d) are common for data where there is noise. We

notice assumption (a) implies that the matrix C defined in (7) is also of full

column rank.

3.1 Initial estimates of parameters other than µ and

β0

We choose the initial estimates as follows.

We take β(0) to be a vector of zeroes. If this were the true value of β,

then we could simply estimate σ2 by the sample variance of the Yi’s. To

account for the fact that β may not be zero and thus the sample variance of

the Yi’s would overestimate σ2, we take σ2(0) equal to 0.6 times the sample

variance of the Yi’s.

The values of Σ(0)
x and σ2(0)

ε are based on the penalized eigenanalysis

of the zi’s sample covariance matrix described in Section 6.1. These initial

estimates are sensible if R is the identity matrix, but can still be used if

R is not the identity. Roughly, the eigenanalysis in Section 6.1 partitions

the variability of the zi’s into two parts: variability from the Zi process and

variability from the noise. Let λ1, . . . , λn denote the calculated eigenvalues

and suppose the largest K sufficiently describe the variability in the zi’s.

So we will use K eigenfunctions. A reasonable first estimate of Σx is Σ(0)
x

diagonal with entries λ1, . . . , λK . We take σ2(0)
ε equal to

∑n
K+1 λk/(n −K),

explaining the remaining variability in the zij’s.

Clearly, under assumptions (a)-(d), we can force σ2(0) and σ2(0)
ε to be

positive and Σ(0)
x > 0. Given θ(t), we update Σx, σ2

ε , β, and σ2, as described
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below.

3.2 Updating Σ(t)
x

We update Σ(t)
x by maximizing ΛN over Σx while keeping the other param-

eters fixed. Let SW =
∑N

i=1(Wi − W̄)(Wi − W̄)′/N. We show that if σ2(t)

and σ2(t)
ε are positive and if SW −Σ

(t)
d > 0, then our update Σ(t+1)

x is positive

definite and using it in the log likelihood instead of Σ(t)
x increases the log

likelihood.

With detailed derivation in Section 8.4, differentiating ΛN with respect

to Σx and equating to zero yields the first order condition

C′Σ−1
W C = C′Σ−1

W SW Σ−1
W C. (10)

Here, C depends on β(t) and ΣW = CΣxC
′ + Σ

(t)
d from (9). Equation (10)

holds provided ΣW is invertible at the critical value of Σx. Since we assume

that σ2(t) and σ2(t)
ε are positive, Σ

(t)
d is positive definite. So ΣW will be

invertible provided Σx is non-negative definite.

We now solve (10) for Σx, first deriving two useful identities, (11) and

(12). For ease, we drop the hats and superscript t’s on the parameter esti-

mates that are being held fixed, that is, on µ̂W , σ2(t)
ε , β(t), and σ2(t). Direct

multiplication and some manipulation of the left hand side of the following

shows that

(
C′Σ−1

d C
)
×

[(
C′Σ−1

d C
)−1

+ Σx

]
C′Σ−1

W = C′Σ−1
d .

Solving this for CΣ−1
W yields

C′Σ−1
W =

[(
C′Σ−1

d C
)−1

+ Σx

]−1 (
C′Σ−1

d C
)−1

C′Σ−1
d . (11)
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Postmultiplying both sides of identity (11) by C yields

C′Σ−1
W C =

((
C′Σ−1

d C
)−1

+ Σx

)−1

. (12)

Substituting (11) into the right side of (10) and (12) into the left side of (10)

yields
(
C′Σ−1

d C
)−1

+ Σx = F SW F′,

where F =
(
C′Σ−1

d C
)−1

C′Σ−1
d . Note that F is of full row rank. Thus, the

critical point is

Σ̂x = F SW F′ −
(
C′Σ−1

d C
)−1

= F (SW −Σd)F
′, (13)

which is strictly positive definite. And so, clearly we have ΣW invertible at

the critical point.

To see that the updated Σ̂x leads to an increase in ΛN , we show that the

Hessian matrix, H(Σx) evaluated at Σ̂x is negative definite. The ijth element

of H(Σx) is the second order partial derivative of ΛN with respect to the ith

and jth elements of the vectorized Σx. From calculations in Section 8.4, we

have

H(Σ̂x) = −(N/2)
(
D̂⊗ D̂

)
, where D̂ = C′Σ̂

−1

W C, (14)

which is clearly negative definite.

3.3 Updating σ2(t)
ε

We update σ2(t)
ε , holding all other parameter estimates fixed, using one E-

step and one M-step of the EM algorithm. We show that if σ2(t) and σ2(t)
ε are

positive and if Σ(t)
x > 0, then our update σ2(t+1)

ε is positive. Increase of the
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log likelihood after updating σ2(t)
ε by σ2(t+1)

ε is guaranteed by the property of

the EM algorithm.

Recall (zi, Yi,xi), i = 1, . . . , N , are our complete data and Wi ≡ (z′i, Yi)
′,

i = 1, . . . , N , are the observed data. In conditional expectations, we let “ · ”
stand for the observed data. Abusing notation slightly, we let f denote a

generic density function with the exact meaning clear from the arguments.

The E-Step of the EM algorithm calculates E
θ(t)

(∑N
i=1 ln f(zi, Yi,xi) | ·

)
and

the M-step maximizes this conditional expectation over σ2
ε to obtain σ2(t+1)

ε .

By the conditional independence of zi and Yi given xi,

ln f(zi, Yi,xi) ≡ ln f(zi|xi) + ln f(yi|xi) + ln f(xi).

Since only ln f(zi|xi) contains σ2
ε , we can ignore the last two terms and obtain

σ2(t+1)
ε via maximizing E

θ(t)

(∑N
i=1 ln f(zi|xi) | ·

)
over σ2

ε .

From (4), we first get

N∑

i=1

ln f(zi|xi) = −N

2
ln(det σ2

εR)− 1

2σ2
ε

N∑

i=1

(zi−µ−Axi)
′R−1(zi−µ−Axi).

Following (6), we have

Cov(Wi,xi) = CΣx (15)

which then leads to the conditional mean and covariance of xi given Wi as

E[xi|Wi] ≡ µxi|Wi
= ΣxC

′Σ−1
W (Wi − µW ), (16)

Cov[xi|Wi] ≡ Σx|W = Σx −ΣxC
′Σ−1

W CΣx. (17)

Let

s̃ =
N∑

i=1

(zi − µ̂−Aµ
(t)
xi|Wi

)′R−1(zi − µ̂−Aµ
(t)
xi|Wi

).
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Routine calculations yield

E
θ(t)

(
N∑

i=1

ln f(zi|xi)|·
)

= −N

2
ln(detR)−nN

2
ln σ2

ε−
1

2σ2
ε

[
s̃ + Ntr(R−1AΣ

(t)
x|WA′)

]
.

Differentiating this conditional mean with respect to σ2
ε and equating the

derivative to zero yields

σ2(t+1)
ε =

1

nN
s̃ +

1

n
tr[R−1AΣ

(t)
x|WA′]. (18)

We show the update σ2(t+1)
ε is positive in the following. The first term in

σ2(t+1)
ε is positive, by assumption (c) and the fact that R is positive definite.

The second term is nonnegative by the following argument.

Using the famous matrix identity

(VΣV′ + Σ0)
−1 = Σ−1

0 −Σ−1
0 V

(
Σ−1 + V′Σ−1

0 V
)−1

V′Σ−1
0

provided the matrix orders properly defined, we see that

Σ
(t)
x|W =

(
Σ(t)

x

−1
+ C(t)′Σ(t)

d

−1
C(t)

)−1

which is positive definite. Given Σ
(t)
x|W > 0, assumption (a) then implies that

AΣ
(t)
x|WA′ ≥ 0. Together with the fact that R > 0, the second term in (18)

is thus nonnegative.

3.4 Updating β(t) and σ2(t)

The updates of β(t) and σ2(t) maximize ΛN over β and σ2, holding the other

parameters fixed. Suppose that σ2(t)
ε > 0 and Σ(t)

x > 0. We find unique

critical points, β̂ and σ̂2, and show that they increase the log likelihood

provided σ̂2 > 0.
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Note that log f(yi, zi) = log f(yi|zi) + log f(zi), that log f(zi) doesn’t

depend on β or σ2. We also note given zi, yi is normal with mean

E(Yi|zi) ≡ β0 + β′G(zi − µ),

and variance

σ2
Y |z ≡ Var(Yi|zi) = β′Kβ + σ2 (19)

where

G = TΣxA
′Σ−1

z (20)

and

K = TΣxT
′ −TΣxA

′Σ−1
z AΣxT

′.

Therefore, to maximize ΛN with respect to β and σ2, we maximize

Λ̃N = −N

2
ln(β′Kβ + σ2)− 1

2(β′Kβ + σ2)

N∑

i=1

(Yi − β0 − β′G(zi − µ))
2
.(21)

With detailed derivation in Section 8.5, equating ∂Λ̃N/∂β and ∂Λ̃N/∂σ2 to

zero yields respectively

1

β′Kβ + σ2

N∑

i=1

(Yi − β0 − β′G(zi − µ))G(zi − µ) = 0 (22)

1

(β′Kβ + σ2)2

[
N∑

i=1

(Yi − β0 − β′G(zi − µ))
2 −N(β′Kβ + σ2)

]
= 0. (23)

Note that G is of full row rank because of the following two observations.

First, T is of full row rank by assumption (b). Second, the matrix Σz =

Σ(t)
x + σ2(t)

ε R is invertible since it is positive definite.

Let

M = G
N∑

i=1

(zi − µ)(zi − µ)′G′.
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Then, by assumption (c), M is positive definite.

Solving (22) for β and (23) for σ2 gives

β(t+1) = β̂ = M−1G
N∑

i=1

(zi − µ)(Yi − β0)

σ2(t+1) = σ̂2 =
1

N

N∑

i=1

(Yi − β0 − β′G(zi − µ))
2 − β′Kβ. (24)

Unfortunately, we are not guaranteed that σ̂2 is positive. However, in

all of our data analyses and simulation studies, the final estimate of σ2 was

always positive.

Again, to check if the update increases Λ̃N , we show that the Hessian

matrix is negative definite. We notice that (24) implies

σ̂2
Y |z ≡ β̂

′
Kβ̂ + σ̂2 =

1

N

N∑

i=1

(
Yi − β0 − β̂

′
G(zi − µ)

)2
, (25)

which is positive by assumption (d). With detailed calculation in Section 8.5,

the Hessian matrix HΛ̃(β, σ2) when evaluated at β̂ and σ̂2 equals

HΛ̃(β̂, σ̂2) = − N

(σ̂2
Y |z)

2




2Kβ̂β̂
′
K +

σ̂2
Y |z
N

M Kβ̂

β̂
′
K 1

2


 . (26)

It follows that HΛ̃(β̂, σ̂2) < 0 by the following argument. Let x1 ∈ <J and

x2 ∈ < with at least one of x1 or x2 non-zero. Direct calculation yields

(x′1, x2) HΛN(β̂, σ̂2)




x1

x2




= − N

(σ̂2
Y |z)

2




(
x2√
2

+
√

2x′1Kβ̂

)2

+
σ̂2

Y |z
N

x′1Mx1


 < 0.
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4 Inference for β

Given the estimate β̂ of β, we estimate the function β by β̂ = β̂
′
ψ. If the

covariance matrix of β̂ is Σβ, then the covariance function of β̂, denoted Vβ,

is

Vβ(s, t) = Cov(β̂
′
ψ(s), β̂

′
ψ(t)) = ψ(s)′Σβψ(t).

We base inference for β on β̂ and an estimate of Σβ.

We estimate Σβ in two ways, using bootstrap by resampling the observed

Wi’s with replacement or using the observed Hessian matrix HΛ̃N(β̂, σ̂2)

defined in (26). We take Σ̂β as the K × K upper corner of the inverse of

−HΛ̃N(β̂, σ̂2). In doing this, we are treating the other parameters as known,

ignoring the variability introduced by estimating them. Thus, we expect that

we may underestimate Vβ(t, t), while we don’t anticipate underestimation

with the bootstrap estimate. However, the Hessian-based estimate is very

fast to compute.

4.1 Hypothesis testing for β

4.1.1 Testing that β ≡ 0

To determine if Yi depends on Zi(·) we test

Ho : β(t) = 0, for all t ∈ [a, b].

We consider three test statistics.

The first test statistic is the generalized likelihood ratio statistic

Ul = sup
β = 0

ΛN − sup ΛN .

17



The unrestricted supremum of ΛN is achieved at the ECME estimates de-

scribed in Section 3. We can also use the ECME procedure to calculate the

first supremum. To obtain the first supermum, we observe under the restric-

tion β = 0, zi and Yi are independent, with zi ∼ N(µ,AΣxA
′ + σ2

εR) and

Yi ∼ N(β0, σ
2). Thus µ̂ = z̄, β̂0 = Ȳ and σ̂2 =

∑
(Yi − Ȳ )2/N . We then

calculate Σ(t)
x and σ2(t)

ε by an ECME method treating these estimates of µ,

β̂ and σ2 as known. We update Σx by maximizing ΛN directly while holding

σ2
ε fixed. We update σ2

ε by finding its EM estimate σ2(t+1)
ε while holding Σx

fixed. We iterate untill convergence occurs.

The second statistic considered is Wald’s test statistic using β̂, the vector

of estimated basis coefficients:

Uw = β̂
′
Σ̂
−1

β β̂.

It is interesting to note that this test statistic can be re-written in terms of

a vector of function evaluations of β̂. To see this, let t∗i , i = 1, . . . , n∗, be a

sequence of time points, let β̃ be the vector containing the values of β̂ at the

t∗i ’s, and let Σβ̃ be β̃’s covariance matrix. The Wald test statistic based on β̃

is β̃
′
Σ̂

+

β̃ β̃, where Σ̂
+

β̃ is the Moore-Penrose inverse of an estimate of Σβ̃. We

now argue that, under mild conditions on the t∗i ’s, β̃
′
Σ̂

+

β̃ β̃ = Uw. Define the

n∗× J matrix Ψ as Ψij = ψj(t
∗
i ) and suppose that Ψ is of full column rank.

Since β̃ = Ψβ̂, Σβ̃ = ΨΣβΨ′ and thus it is natural to take Σ̂β̃ = ΨΣ̂βΨ′.

Since Σ̂
+

β̃ = Ψ+′Σ̂
−1

β Ψ+ and Ψ+Ψ = I, β̃
′
Σ̂

+

β̃ β̃ = Uw.

The third statistic is the integrated t-statistic

Uf =
∫ b

a

β̂2(t)

V̂β(t, t)
dt.

To calculate the null distribution of a test statistic, and thus calculate

18



a p-value, we use a permutation type method, one that does not rely on

distributional assumptions. Under the null hypothesis that β(t) ≡ 0 for all

t ∈ [a, b], Yi and zi are independent. Therefore the joint distribution of (zi, Yi)

is the same as that of (zi, Yi′) where i′ is chosen at random from {1, . . . , N}.
To simulate the null distribution of a test statistic, we make Q new data

sets via permuting the Yi’s: the qth data set is simply {z1, Yi1 , . . . , zN , YiN}
where i1, . . . , iN is a random permutation of 1, . . . , N . The p-value is then

calculated as the proportion of the resulting Q statistic values larger than

the original observed value.

4.1.2 Testing equality of two β’s

Often we want to know if the β’s governing Y ’s and Z’s in two different

groups are equal. To denote group membership, we use the superscript “s”

or “c” to indicate the “selection” or “control” group respectively. We have

data collected independently from the two groups and we want to test

Ho : βs(t) = βc(t), for all t ∈ [a, b].

We consider four test statistics. We assume that the selection and control

log-likelihoods, Λs
Ns and Λc

Nc , each have the same expressions as in (21) but

with possibly different parameter values, superscripted by s or c.

The first test statistic is from a likelihood ratio test

Ul = sup
βs = βc

{Λs
Ns + Λc

Nc} − sup{Λs
Ns + Λc

Nc}
= sup

βs = βc
{Λs

Ns + Λc
Nc} − sup Λs

Ns − sup Λc
Nc .

Each of the last two suprema is calculated separately, using the ECME esti-

mates from Section 3.
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We can also apply this ECME procedure to calculate the first supremum.

Under the restriction βs = βc, Λs
Ns and Λc

Nc have a common parameter

β ≡ βs = βc. Following the same argument as in Section 3, we have

µc(t) = z̄c, µs(t) = z̄s, β
c(t)
0 = Ȳ c and β

s(t)
0 = Ȳ s.

To update each of Σc(t)
x and Σs(t)

x , we follow the steps outlined in Section 3.2.

To update each of σc2(t)
ε and σs2(t)

ε , we follow the steps outlined in Section 3.3.

To update β(t), σs2(t) and σc2(t), we proceed as in Section 3.4, but with

some modification for our updating of β(t).

To describe the procedure to update β(t), σs2(t) and σc2(t), define Λ̃s
Ns

and Λ̃c
Nc in a manner analagous to Λ̃N in (21). By an argument similar to

that in Section 3.4, we must find β, σs2 and σc2 to maximize Λ̃s
Ns + Λ̃c

Nc .

Differentiating Λ̃s
Ns + Λ̃c

Nc with respect to σs2 and σc2 and setting equal to

zero yields equations analagous to the equation for σ2(t+1) in (24).

Unfortunately, differentiating Λ̃s
Ns + Λ̃c

Nc with respect to β and setting

equal to zero yields an intractable equation. So we modify our calculation

of β, but retain the above-described updates for σs2 and σc2. Instead of

maximizing Λ̃s
Ns +Λ̃c

Nc with respect to β we maximize ˜̃Λ
s

Ns +
˜̃Λ

c

Nc with respect

to β, where the ˜̃Λ’s are defined as follows. First consider the term β′Ksβ +

σs2. Calculate the matrix Ks using Σs(t+1)
x and σs2(t+1)

ε . Take β = β(t) and

σs2 = σs2(t). Then the resulting expression for β′Ksβ +σs2, which we denote

σ
s2(t)
Y |z , no longer contains the parameters β and σs2. Let

˜̃Λ
s

Ns = −N s

2
ln(σ

s2(t)
Y |z )− 1

2σ
s2(t)
Y |z

∑
(Y s

i − βs
0 − β′Gs(zs

i − µs))
2
.

Define σ
c2(t)
Y |z and ˜̃Λ

c

Nc similarly.
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Differentiating ˜̃Λ
s

Ns + ˜̃Λ
c

Nc with respect to β and setting equal to zero

yields the update

β(t+1) =


 1

σ
s2(t)
Y |z

Ms +
1

σ
c2(t)
Y |z

Mc



−1


 1

σ
s2(t)
Y |z

Gs
∑

(zs
i − µs)(Y s

i − βs
0) +

1

σ
c2(t)
Y |z

Gc
∑

(zc
i − µc)(Y c

i − βc
0)


 .

where

Ms = Gs
∑

(zs
i − µs)(zs

i − µs)′Gs′

and Mc is defined similarly.

To define the two sample Wald’s statistic Uw, let β̂
s
be the estimate of βs

with estimated covariance matrix Σ̂
s

β and define β̂
c

and Σ̂
c

β similarly. The

two sample statistic is

Uw = (β̂
s − β̂

c
)′

(
Σ̂βs + Σ̂βc

)−1
(β̂s − β̂c).

We consider a two sample statistic based on function evaluations, rather

than on basis coefficients, recalling the notation in Section 4.1.1. Let β̃
s

=

Ψsβ̂
s
be the vector of function evaluations of β̂s at a sequence of time points.

Let Σ̂
s

β̃ = ΨsΣ̂
s

βΨs′ be the estimate of β̃
s
’s covariance matrix. Similarly

define β̃
c
and Σ̂

c

β̃. The two sample Wald test statistic based on β̃
s

and β̃
c
is

Ue = (β̃
s − β̃

c
)′

(
Σ̂β̃

s + Σ̂β̃
c

)+
(β̃

s − β̃
c
).

In Section 4.1.1, the one sample situation, we argued that we needn’t use the

function evaluation statistic Ue as it is equivalent to the Wald test statistic

Uw under mild conditions. In the two sample situation here, however, the

21



two sample Uw and Ue may not agree unless Ψs = Ψc and both of them are

of full column rank.

To define the two sample integrated t-statistic Uf , let V̂βs(s, t) = ψs(s)′Σ̂
s

βψs(t)

be the estimate of the covariance function of β̂s and define V̂βc(s, t) similarly.

The two sample Uf is

Uf =
∫ [β̂s(t)− β̂c(t)]2

V̂βs(t, t) + V̂βc(t, t)
dt.

Again, we use the permutation method to calculate the null distribution

of the test statistics and thus the p-values. Under the null hypothesis that

βs(t) = βc(t) for all t ∈ [a, b], the dependence of Yi on zi is identical in both

groups. We generate Q “data sets” from the original data set, data sets that

follow the null hypothesis. To construct the qth “data set”, we randomly split

the N s +N c individuals into two groups of size N s and N c and calculate the

resulting test statistic. We use the empirical distribution of the obtained Q

test statistic values to approximate the null distribution of our statistic. The

p-value is then calculated as the proportion of the Q statistic values larger

than the original observed value.

22



5 Model assumption checking

After fitting the model, we need to check if the model assumptions are satis-

fied. Our model diagnostics rely on the analysis of residuals. In this section,

we derive expressions of the fitted values for Wi and for the residuals. Fitted

values and residuals for zi and Yi are then obtained as components. We can

then plot the residuals to check model assumptions and to look for outliers

and influential points.

To simplify notation, unknown parameters below stand for their esti-

mates. Using model (4) and (5), we base our fitted values Ŵi on the BLUP

of the random effects xi, µxi|Wi
in (16),

Ŵi = µW + Cµxi|Wi

= µW + CΣxC
′Σ−1

W (Wi − µW )

Recall the expression of ΣW in (9). We get

CΣxC
′Σ−1

W = (CΣxC
′ + Σd −Σd)Σ

−1
W = I−ΣdΣ

−1
W

and thus

Ŵi =
(
I−ΣdΣ

−1
W

)
Wi + ΣdΣ

−1
W µW .

It then follows

ri = Wi − Ŵi = ΣdΣ
−1
W (Wi − µW ).

The last element of Ŵi gives the fitted value of Yi and the last element of

ri gives the Yi residual. As we focus on modelling the dependence of Yi on

Zi, plotting residuals against fitted values of Yi is useful to detect outliers or

influential points of the model fit.
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6 Model application

In this section, we analyze a biological data set using our model. First we

give a general description of how to choose the basis functions φ1, . . . , φK .

Then we conduct the data analysis.

6.1 Choosing the basis functions

We choose the basis functions, the φk’s, as functions that give good approxi-

mations to Zi(·): we choose them as the first few estimated eigenfunctions of

the Zi process. To do so, we apply a smoothed principle component analysis

to the observed zi’s, penalizing an approximation of the second derivative of

the eigenfunction. Let Σ̂ be the sample covariance matrix of the zi’s. We

find a sequence of orthogonal vectors ṽj ∈ Rn to maximize

v′jΣ̂vj

v′jvj + λv′jD′Dvj

,

where λ is the smoothing parameter and Dvj calculates second divided dif-

ferences of the vector vj. The (n − 2) × n matrix D depends on t1, . . . , tn

and is defined to differentiate quadratic functions exactly. That is, if vj[i] =

a + bti + ct2i , then (Dvj)[i] = 2c. Given λ, the vectors ṽj are eigenvectors of

the matrix G−1/2Σ̂G−1/2, where G = I + λD′D. The approach is similar to

Ramsay and Silverman’s (2005) but we don’t use basis function expansions

of the Zi.

Choice of λ can be done by cross-validation, but for simplicity here, we

select λ by examining the smoothness of the resulting ṽj’s. In the data

analysis, we chose λ = 100.
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6.2 Data description

Data were provided by Patrick Carter, School of Biological Sciences, Wash-

ington State University, and are described in Morgan et al, 2003. Data are

from mice divided into four groups according to gender and the two treat-

ments “selection” and “control”. The selection group mice were bred over 16

generations, with selection being on high wheel-running activity at age eight

weeks. Control mice were bred at random. In the final generation, body mass

and wheel running activity were recorded for each mouse for sixty two con-

secutive weeks, indexed from −1 to 60, except for weeks 34, 38, 39, 50. The

research interest is to know how body mass and wheel running are related

and if the relationship depends on the treatment.

The wheel running distance data have many missing values and are very

noisy. In addition, the wheels were cleaned every four weeks, and so we see

spikes in wheel-running activity every fourth week. So in our analysis, we

take the averaged wheel running distance over weeks 5 to 60 as the response

Y . The predictor Z(·) is the log transformed body mass. We want to know

if any of the groups have β non-zero and if there is any difference between

the selection βs and the control βc within each gender.

Plots of the observed zi’s and histograms of the Yi’s in each group are in

Figures 1 and 2 respectively. We see that log body mass is roughly monotone

with a high rate of increase in weeks −1 to 4. The log body mass in the males

is more variable than that in the females.
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6.3 Choice of basis functions

A smoothed eigenanalysis in each of the four groups yielded a first eigen-

function that was close to constant, indicating that the biggest source of

variability in log body mass in each group was overall size of the mouse.

Since a constant eigenfunction is biologically meaningful, we forced our first

basis function to be constant and, within each group, calculated the remain-

ing functions via a smoothed eigenanalysis on the centered log body mass as

follows. We let

z̄i =
1

58

60∑

k=−1
k 6=34,38,39,50

zik

be the ith mouse’s average log body mass and

zij − z̄i j = −1, . . . , 60, j 6= 34, 38, 39, 50

the ith mouse’s centered log body masses. Within each group, we calculated

the sample covariance matrix of the centered log body mass vectors. We then

applied the smoothed eigenanalysis to this covariance matrix. Figure 3 shows

the proportion of cumulative variance explained by the first ten principal

components of this analysis in each group. The variance explained by the

constant function was 85% in the male selection group, 72% in the male

control group, 70% in the female selection group and 63% in the female

control group. Figure 4 shows the constant function and the first three

eigenfunctions for each group. They are displayed one by one with the four

groups’ functions together in one panel. There we see the three smoothed

eigenfunctions are very similar in the four groups.

Figure 3 suggests that, if we choose the first three smoothed eigenfunc-

tions in each group, we will capture about 90% of the variability of the log
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body mass trajectories, beyond the variability captured by the constant func-

tion. We will use a constant function plus these three eigenfunctions in our

analysis.

6.4 Estimation and residual analysis

Before proceeding with inference, we study residuals of our fits to see if there

are any outliers.

We fit the model (4) and (5) within each group, using R = I, and choose

the same basis functions for β as for the log body mass, calculated in Sec-

tion 6.3. Within each group, we plot the Yi residuals against the fitted Yi’s

to detect outliers as outlined in Section 5. Residual plots of each group are

in Figure 5. In the control males, we see an outlier at the left side. This

outlier may be influential in the estimation of β. So we remove this outlier

and refit the model to the male control group. The first panel of Figure 6 is

the same as the plot in the second panel of Figure 5, showing the outlier in

the control males. The second panel of Figure 6 shows the residual plot of

the fit after removing the outlier. There we see no new outliers. We remove

the one outlier in the control males in our subsequent analyses.

6.5 Inference for β(·)
In each of the four groups, we estimated β and calculated standard errors

from both the Hessian matrix and the bootstrap, as described in Section 4.

These are shown in Figure 7.

To determine if β(t) = 0 for all t ∈ [−1, 60], we can study the plots in

Figure 7 and we can conduct a formal hypothesis test. From the plots in
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Figure 7, we see that, except for the female control group, all groups show a

region where the zero line is not within one standard error of β̂. This suggests

that, within these groups, perhaps there may be a dependence of averaged

wheel running on log body mass.

We conduct a hypothesis test of Ho : β(t) = 0 for all t ∈ [−1, 60]

in each group using the test statistics in Section 4.1.1. We compute the

standard errors using the Hessian matrix (26). The results are in Table 1

below. The last three columns contain the permutation p-values of Ul, Uw

and Uf , computed by using 500 permutations. The second column gives the

observed value of the test statistic Ul and the next column gives the p-value

of Ul based on the fact that negative twice the log-likehood ratio statistic is

asymptotically chi-squared distributed with 4 degrees of freedom.

From the Table, we see that, in selected and control males, average wheel-

running depends on the log body mass trajectories. However, there is insuf-

ficient evidence to make this claim in the other three groups.

Group Observed Ul Asymptotic p-Ul p-Ul p-Uw p-Uf

Male selected 13.723 0.008 0.008 0.008 0.008

Male control 10.940 0.027 0.044 0.044 0.034

Female selected 9.095 0.059 0.082 0.082 0.264

Female control 3.280 0.512 0.568 0.568 0.656

Table 1: P-values of the test Ho : β(t) = 0, for all t ∈ [−1, 60] in each group.

We observe that the p-values of Ul and Uw are identical. We plot the

permuted values of Ul and Uw in Figure 8 and see that Ul is an increasing

function of Uw. This may be due to the normality assumption in the model.
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6.6 Inference for βs − βc

Within each gender, we want to compare the selection β(·) with the control

β(·). Figure 9 shows the pointwise difference between the selection β̂ and

the control β̂ together with the standard errors computed from the Hessian

matrix and from the bootstrap. For both males and females, the region

within one standard error of β̂s − β̂c contains much of the zero line, which

suggests we can’t distinguish between the selection β and the control β.

Table 2 gives results of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60]

in each gender. The last three columns contain the permutation p-values of

Ul, Uw and Uf , computed by using 500 permutations. The second column

gives the observed value of the test statistic Ul and the next column gives

the p-value of Ul based on the fact that negative twice the log-likehood ratio

statistic is asymptotically chi-squared distributed with 4 degrees of freedom.

Given the results, we can not reject Ho in either gender. That is, within

each gender, there is no evidence of a difference between the selected group

and the control group in terms of average wheel running’s dependence on log

body mass.

Gender Observed Ul Asymptotic p-Ul p-Ul p-Uw p-Ue p-Uf

Male 11.919 0.018 0.364 0.356 0.532 0.110

Female 5.852 0.210 0.564 0.568 0.884 0.444

Table 2: P-values of the test Ho : βs(t) = βc(t), for all t ∈ [−1, 60], within

each gender.

In conclusion, we find a strong dependence of average wheel running on

the log body mass in the selected males and control males. We don’t have
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enough evidence to distinguish the difference between the selected group and

the control group in terms of average wheel running’s dependence on log

body mass in either gender.
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7 Simulation study

In the simulation study, we compare the pointwise mean squared errors of

our ECME estimate of β with those of a modified version of the two stage

estimate proposed by Müller (2005). We also compare the power of the test

statistics proposed in Section 4.1 for one-sample and two-sample compar-

isons.

We will see that, in terms of mean squared error, in the one-sample case,

both the ECME estimate and the two stage estimate suffer from an edge

effect. In Section 7.4, we look into this edge effect further. The ECME

estimate typically has slightly smaller MSE than the two stage estimate,

with the improvement in MSE being more noticeable as the dependence of

Y on Z increases. In the two-sample case, the two methods are comparable.

For testing, in the one-sample case, there is little difference in power

between the two statistics considered. In the two sample case, the integrated

t-statistic has more power to distinguish the difference between βs and βc.

In the one-sample comparison in Section 7.2, we simulate data using

parameter values estimated from the male selected group data analyzed in

Section 6.2. In the two-sample comparison in Section 7.3, we simulate selec-

tion group data using estimates from the male selected group data and the

control group data using estimates from the male control group data without

the outlier.
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7.1 Two stage estimate

Recall from Section 1 that the calculation of Müller’s (2005) estimate of β

had two parts. The first part ignored the yi’s and only used the zi’s to

predict the underlying xi’s. The second part of the analysis was essentially

a linear regression of the yi’s on the predicted xi’s. We would like to study

this procedure’s ability to estimate β. We suspect that ignoring the yi’s in

the first part of the procedure will lead to poorer estimation of β.

To study this in a way that is comparable to our over-all methodology, we

slightly modify the Müller’s method. We use linear mixed effects methodol-

ogy to predict the xi’s from the zi’s. Specifically, we first use our smoothed

principal components analysis of the zi’s to determine basis functions, the

φk’s, see (3). We then construct the matrix T and fit model (4) using the

EM algorithm. Laird (1982) gave an elaboration on the EM computation

in linear mixed models. We use the resulting estimated covariances of the

xi’s and εi’s to calculate our predictors, the BLUPs of xi given zi, that is,

to calculate E(xi|zi). For the second part of the analysis, we find the least

squares estimate of β according to the regression model

Yi = β0 + E(x′i|zi)T
′β + ei.

In our fit of (4), we force Σx to be diagonal. This is in keeping with

Múller, and stems from the fact that the components of the xi’s are principal

component scores.

The main difference between our approach and Müller’s is in the way we

estimate the required variances and covariances for calculating the BLUPs.

We use a linear mixed effects model based on eigenfunctions. Müller used
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a smoothing method to directly estimate the components of the covariance

structure.

7.2 One sample comparison

We simulate data based on parameter and eigenfunction estimates from the

data analysis of the male selected group in Section 6.2. Let µs,Σs
x, σ

s2
ε , σs2, βs

0,

βs and βs(t) = ψ(t)′βs denote these estimates and let As be the matrix con-

structed from the basis functions, evaluated at the same tj’s as in the data

analysis.

We simulate the unperturbed predictor Zi according to a multivariate

normal N (µs,AsΣs
xA

s′) and let the observed zi be Zi plus N(0, σs2
ε I) noise.

We consider four possible β functions to describe the relationship between

Yi and Zi:

Yi = βs
0 +

∫ 60

−1
β(t)

[
Zi(t)− Z̄i(t)

]
dt + ei.

The integral is calculated using the R function “sintegral” and we simulate

ei from N(0, σs2). We take β = γβs with γ = 0, 2/3, 4/3 or 2. When γ = 0,

Yi does not depend on Zi. When γ = 2, the dependence is large. Recall in

our data analysis in Section 6.2, we found that βs was significantly different

from zero.

Thus, for each value of γ, we can generate an observed data sets (zi, Y
γ
i ), i =

1, . . . , 39.

We first compare our estimate of β with the two stage estimate. We run

100 simulations and the MSE of the estimate β̂ is calculated as

100∑

1

(
β̂(t)− β(t))2

)
/100
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at each observation point t. The results are in Figure 10 where the first panel

shows the pattern of the true β’s, the next two panels show the pointwise

MSE’s of our two estimates of β and the last panel shows the differences of

these pointwise MSE’s. In the plots, the MSE’s increase as γ increases and

both estimates of β have high MSE’s for t’s at the edges. The MSE’s of both

methods are much worse at the left hand edge, probably due to the sharp

decrease of the true β and the sharp increase in log body mass before week

10. The ECME method seems to be more affected by this edge. We will

give a further study of this edge effect in Section 7.4. However, in the last

panel we see that overall, the ECME estimate has a smaller MSE, with the

superiority of ECME increasing as γ increases.

Therefore, if there is a significant dependence of Yi on zi through β, the

ECME method of estimate is preferred.

To test Ho : β(t) = 0, for all t ∈ [−1, 60], we use the test statistics

Uw and Uf with standard errors calculated using the Hessian matrix (26)

as described in Section 4. For each data set, we run 300 permutations to

calculate the p-values. We simulate 100 data sets for each value of γ and

choose levels α = 0.01 and α = 0.05. Figure 11 and Figure 12 summarize

the proportion of times Ho was rejected using Uw and Uf but with different

levels: α = 0.01 and α = 0.05 respectively. As expected, the powers increase

as γ increases. There is little difference in power between the two statistics.

7.3 Two sample comparison

To simulate data from two independent samples, we choose model parameters

using the male selected group data and the male control group data analysed
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in Section 6.2. We simulate data for the selection group and, separately, for

the control group using the same methodology as in Section 7.2 but with

different true β’s.

Let βs and βc be the estimates of β from the original male selected group

and male control group data. Let β̄ = (βs + βc)/2 and ∆β = (βs − βc)/2.

In the simulation study we set the β of the selection group to β̄ + γ∆β and

that of the control group to β̄ − γ∆β with γ = (0, 2/3, 4/3, 2). Thus, the

difference between the selection and control β is 2γ∆β = γ(βs − βc).

To estimate βs and βc, we fit the selection data and control data sepa-

rately. For each value of γ we simulate 100 data sets and calculate the MSE

as in Section 7.2 in each group. Figures 13 and 14 show the MSE’s of the

two estimates in each group respectively. The pattern of the two MSE’s are

similar to their counterparts in Figure 10.

We calculate the MSE of the estimate βs − βc as

100∑

1

(
β̂s(t)− β̂c(t)− βs(t) + βc(t))2

)
/100

at each observation point t. Figure 15 shows the results. The patterns of the

two MSE’s are similar to their counterparts in Figure 10. The MSE’s of the

two estimates are comparable but in general the MSE of the ECME estimate

is smaller.

To test Ho : βs(t) = βc(t), for all t ∈ [−1, 60], we compare the four

test statistics, Ul, Uw, Ue and Uf , with standard errors calculated using the

Hessian matrix (26). For each data set, we run 300 permutations to calculate

the p-values. We simulate 100 data sets for each value of γ and choose levels

α = 0.01 and α = 0.05. Figures 16 and 17 show the power of the four test

statistics with levels 0.01 and 0.05 respectively. The statistic Uf is the most
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powerful, especially when γ is large, but Uf and Uw are comparable.

7.4 Edge effect discussion in one-sample MSE compar-

ison

In Figure 10, we see that the MSE’s of the ECME estimate of β are much

worse at the left hand edge than the MSE’s of the two stage estimate. We

suspect this is probably due to the sharp decrease of the true β before week

10 as shown at the first panel of Figure 10, and the large increase in log body

mass in that same period. In this section, we exclude the early weeks’ data

from our analysis.

To determine the various parameter values to use in a new simulation, we

re-analyze the male selected group data but with zi containing log body mass

values a week 5 rather than at week −1. After obtaining the new parameter

estimates, we simulate data in the same way as in Section 7.2. The simulation

analysis result is in Figure 18. t The edge effect still exists but this time the

MSE’s of ECME and the two stage method are comparable at the edges.
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8 Appendix

In this appendix, we provide the calculations in Sections 3.2 and 3.4 where

we find the updates of Σx and {β, σ2} in the ECME procedure.

In Section 8.4, we derive the first order condition (10) and the Hessian

matrix (14) of Section 3.2 where we maximize the log-likelihood ΛN over Σx

while holding the other parameters fixed.. In Section 8.5, we derive the first

order conditions (22) and (23), and the Hessian matrix (26) of Section 3.4

where we maximize Λ̃N over {β, σ2} holding the other parameters fixed.

We use the tool of matrix differential calculus, calculating first differen-

tials to obtain the first order conditions and second differentials to obtain

the Hessian matrices. The book by Magnus and Neudecker (1988) gives an

elegant description on this subject. In Sections 8.1-8.3, we follow the book to

introduce some definitions and provide some background, mainly from Part

Two of the book. We keep the same notation as in the book. Throughout

this section, chapters and page numbers all refer to (Magnus and Neudecker,

1988).

8.1 Definition of the first differential

We first give the definition of the first differential for a vector function (a

vector valued function with a vector argument). We show that the function’s

first differential is connected with its Jacobian matrix. We then give an

extension of the definition to a matrix function (a matrix valued function

with a matrix argument) and show how to identify the Jacobian matrix from

the first differential.
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Definition 8.1 Let f : S → <m be a function defined on a set S in <n. Let

c be an interior point of S, and let B(c; r) be an n-ball lying in S centred at

c of radius r. If there exists a real m× n matrix A, depending on c but not

on u, such that

f(c + u) = f(c) + A(c)u + rc(u)

for all u ∈ <n with ||u|| < r and

lim
u→0

rc(u)

||u|| = 0,

then the function f is said to be differentiable at c; the m × n matrix A(c)

is then called the first derivative of f at c, and the m× 1 vector

df(c;u) = A(c)u,

which is a linear function of u, is called the first differential of f at c (with

increment u). If f is differentiable at every point of an open subset E of S,

we say f is differentiable on E.

After calculating the first differential, we identify the Jacobian matrix

as follows. Let Df be the m × n Jacobian matrix of f whose ijth element

is Djfi: the partial derivative of the ith component function fi of f with

respect to the jth coordinate. The First Identification Theorem (p.87) states

that the first derivative A(c) is Df(c) when f is differentiable at c.

To extend the definition of a vector function to a matrix function with a

matrix argument is straightforward using the vec operator. The vec operator

transforms a matrix into a vector by stacking the columns of the matrix one

underneath the other.
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Recall the norm of a real matrix X is defined by

||X|| = (trX′X)1/2.

Let <n×q contains all the real n × q matrices. Define a ball B(C; r) with

center C and radius r in <n×q by

B(C; r) = {X : X ∈ <n×q, ||X−C|| < r}.

Let F : S → <m×p be a matrix function defined on a set S in <n×q. That is,

F maps an n × q matrix into an m × p matrix F(X). We consider the the

vector function f : vec S → <m×p defined by

f(vec X) = vec F(X)

and the following gives the definition of the first differential of F.

Definition 8.2 Let F : S → <m×p be a matrix function defined on a set S

in <n×q. Let C be an interior point of S and let B(C; r) ⊂ S be a ball with

center C and radius r. If there exists RC and a real (mp)× (nq) matrix A,

depending on C but not on U, such that

vecF(C + U) = vecF(C) + A(C)vecU + vecRC(U)

for all U ∈ <n×q with ||U|| < r and

lim
U→0

RC(U)

||U|| = 0,

then the function F is said to be differentiable at C. Let

dF(C;U) = A(C)vecU.
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Although this is a vector of length (mp), it can be formed into a matrix of

dimension m× p, in the usual natural way. This m× p matrix dF(C;U) is

called the first differential of F at C with increment U and the (mp)× (nq)

matrix A(C) is called the first derivative of F at C.

From the definition, it is clear that the differential of F and f are related

by

vec dF(C;U) = df(vecC; vecU).

The Jacobian matrix of F at C is defined as

DF(C) = Df(vecC).

This is an (mp) × (nq) matrix, whose ijth element is the partial derivative

of the ith component of vecF(X) with respect to the jth element of vecX,

evaluated at X = C. The First Identification Theorem for matrix functions

(p.96) states that if F is differentiable at C, then

vec dF(C;U) = DF(C)vecU.

So we can calculate the differential of F to identify its Jacobian matrix.

8.2 Definition of the second differential

We first introduce the definition of twice differentiable on which the definition

second differential is based. The definitions are restricted to real valued

functions as in our calculations we only need to consider second differentials

of real valued functions. Then we connect the Hessian matrix with the second

differential. As in the first differential case, we give an extension of the
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definition to a real valued function with a matrix argument and also show

how to identify the Hessian matrix from the second differential.

Definition 8.3 Let f : S → < be a real valued function defined on a set S

in <n, and let c be an interior point of S. If f is differentiable in some n-ball

B(c) and each of the partial derivatives Djf is differentiable at c, then we

say that f is twice differentiable at c. If f is twice differentiable at every

point of an open subset E of S, we say f is twice differentiable on E.

The following is the definition of the second differential.

Definition 8.4 Let f : S → < be twice differentiable at an interior point c

of S ⊂ <n. Let B(c) be an n-ball lying in S such that f is differentiable at

every point in B(c), and let g : B(c) → < be defined by the equation

g(x) = df(x;u).

Then the differential of g at c with increment u, i.e. dg(c;u), is called the

second differential of f at c (with increment u), and is denoted by d2f(c;u).

To calculate the second differential of f , by the definition, we just need to

calculate the differential of the first differential of f , i.e.

d2f = d(df).

We have seen that the Jacobian matrix can be identified from the first

differential. Similarly, we can identify the Hessian matrix from the second

differential. The Second Identification Theorem (p.107) states that if f is

twice differentiable at c, then

d2f(c;u) = u′ (Hf(c))u,
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where Hf(c) is the n×n symmetric Hessian matrix of f at c with (i, j) entry

equal to ∂2f(c)/(∂ci∂cj). Therefore, once we have calculated the second

differential, the Hessian matrix is obtainable.

Similarly as in Section 8.1, the extension of the second differential from

vector functions to matrix functions is straightforward using the vec operator.

As we only consider real valued functions, we restrict the extension to a real

valued function with a matrix argument.

We follow the notation in the definition of the first differential of matrix

functions. Let the domain of f be S ⊆ <n×q and let C be an interior point of

S. Let B(C; r) ⊂ S be a ball with center C and radius r and let U be a point

in <n×q with ||U|| < r, so that C + U ∈ B(C; r). The second differential of

f at C is then defined as

d2f(C;U) = d2f(vecC; vecU).

The Second Identification Theorem for matrix functions (p.115) says if f is

twice differentiable at C, then

d2f(C;U) = (vecU)′ Hf(C) vecU,

where Hf(C) is the nq× nq symmetric Hessian matrix of f at C defined as

Hf(C) ≡ Hf(vecC).

That is, the ijth element of Hf(C) is the second order derivative of f with

respect to the ith and jth element of vecX where X ∈ S, evaluated at C.
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8.3 Matrix algebraic and differential rules

In this section, we list the matrix algebraic and differential rules (chap.8)

which will be used without specific reference in our derivations. In the fol-

lowing, we let A, B, C and D denote constant matrices, u denote a vector

function and U and V denote matrix functions. We let ⊗ stand for the

Kronecker product. The rules are the following.

• tr(AB) = tr(BA), provided AB is square.

• tr(A′B) = (vecA)′vecB.

• tr(ABCD) = (vecD)′(A⊗C′)(vecB′), provided ABCD is defined and

square.

• dA = 0.

• dAU = AdU.

• d(U + V) = dU + dV.

• d(UV) = (dU)V + U(dV).

• d(U′) = (dU)′.

• d (ln detU) = trU−1(dU).

• d (U−1) = −U−1(dU)U−1.

• d (trU) = tr (dU).

• d(vecU) = vec (dU).

• d(u′Au) = u′(A + A′)du = (du)′(A + A′)u.
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8.4 Calculations in Section 3.2

Recall the observed data log-likehood has the expression

ΛN = −N

2
ln det (CΣxC

′ + Σd)−1

2

N∑

i=1

(Wi−µW )′ (CΣxC
′ + Σd)

−1
(Wi−µW ).

We want to maximize it over Σx while holding the other parameters fixed.

In this section, holding the other parameters fixed, we calculate the first

differential of ΛN to obtain the first order condition (10) and calculate the

second differential to obtain the Hessian matrix in (14).

As we treat Σx as the only unknown parameter, it immediately follows

from the expression of ΣW in (9)

dΣW = CdΣxC
′. (27)

In our derivation, we will use the shorter notation dΣW before we reach (10)

or (14). We have

dΛN = −N

2
d (lnΣW )− 1

2

N∑

i=1

(Wi − µW )′
(
d Σ−1

W

)
(Wi − µW )

= −N

2
tr

[
Σ−1

W dΣW

]
+

1

2

N∑

i=1

(Wi − µW )′Σ−1
W (d ΣW )Σ−1

W (Wi − µW )

= −N

2
tr

[
Σ−1

W dΣW

]
+

1

2
tr

[
Σ−1

W

N∑

i=1

(Wi − µW )(Wi − µW )′Σ−1
W (d ΣW )

]

= −N

2
tr

[
Σ−1

W (ΣW − SW )Σ−1
W (dΣW )

]
(28)

Recalling (27), we now have

dΛN = −N

2
tr

[
C′Σ−1

W (ΣW − SW )Σ−1
W CdΣx

]
.

By the First Identification Theorem for matrix functions mentioned in Sec-

tion 8.1, we obtain the Jacobian matrix of ΛN at Σx as

D ΛN(Σx) = vec
{
C′Σ−1

W (ΣW − SW )Σ−1
W C

}
.
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Equating it to zero yields

C′Σ−1
W (ΣW − SW )Σ−1

W C = 0

which is equivalent to the first order condition (10).

Next we calculate d2ΛN to identify the Hessian matrix in (14). Starting

from (28), we have

d2ΛN = −N

2
tr

[
(dΣ−1

W )(ΣW − SW )Σ−1
W (dΣW )

]
− N

2
tr

[
Σ−1

W d(ΣW − SW )Σ−1
W (dΣW )

]

−N

2
tr

[
Σ−1

W (ΣW − SW )dΣ−1
W (dΣW )

]

=
N

2
tr

[
Σ−1

W (dΣW )Σ−1
W (ΣW − SW )Σ−1

W (dΣW )
]
− N

2
tr

[
Σ−1

W (dΣW )Σ−1
W (dΣW )

]

+
N

2
tr

[
Σ−1

W (ΣW − SW )Σ−1
W (dΣW )Σ−1

W (dΣW )
]
.

The first term and the last term at the right hand side are equal, and so they

can be combined into one term

Ntr
[
Σ−1

W (dΣW )Σ−1
W (ΣW − SW )Σ−1

W (dΣW )
]
.

Then

d2ΛN = Ntr
[
Σ−1

W (dΣW )Σ−1
W (

1

2
ΣW − SW )Σ−1

W (dΣW )
]

Recall (27). Right hand side of the above

= Ntr
[
Σ−1

W CdΣxC
′Σ−1

W (
1

2
ΣW − SW )Σ−1

W CdΣxC
′
]

= Ntr
[
C′Σ−1

W CdΣxC
′Σ−1

W (
1

2
ΣW − SW )Σ−1

W CdΣx

]

= N(vec dΣx)
′
[
C′Σ−1

W C⊗C′Σ−1
W (

1

2
ΣW − SW )Σ−1

W C
]
vec(dΣx).
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When evaluated at the critical point Σ̂x which satisfies the first order condi-

tion (10), d2ΛN is then

−N

2
(vec dΣx)

′
[
C′Σ̂

−1

W C⊗C′Σ̂
−1

W C
]
vec(dΣx).

By the Second Identification Theorem for matrix functions mentioned in Sec-

tion 8.2, we have at Σ̂x the Hessian matrix is equal to

H(Σ̂x) = −(N/2)
(
D̂⊗ D̂

)
, where D̂ = C′Σ̂

−1

W C.

This is the matrix we saw in (14).

8.5 Calculations in Section 3.4

Recall we want to maximize the log-likelihood

Λ̃N = −N

2
ln(β′Kβ + σ2)− 1

2(β′Kβ + σ2)

N∑

i=1

(Yi − β0 − β′G(zi − µ))
2

over {β, σ2} to find the update while fixing the other parameters. In this

section, we derive the first order conditions (22) and (23) via calculating

the first differential of Λ̃N with respect to {β, σ2}. Calculating the second

differential of Λ̃N then gives us the Hessian matrix (26).

The following two differentials will facilitate our calculation in dΛ̃N and

d2Λ̃N . Recall the expression of σ2
Y |z in (19). We have

dσ2
Y |z ≡ d

(
β′Kβ + σ2

)
= 2β′Kdβ + dσ2. (29)

Let

g(β) =
N∑

i=1

(Yi − β0 − β′G(zi − µ)) (zi − µ)′G′. (30)
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We then obtain

d

[
N∑

i=1

(Yi − β0 − β′G(zi − µ))
2

]
= −2

N∑

i=1

(Yi − β0 − β′G(zi − µ)) (dβ)′G(zi − µ)

= −2
N∑

i=1

(Yi − β0 − β′G(zi − µ)) (zi − µ)′G′(dβ)

= −2g(β)dβ (31)

To calculate dΛ̃N , we use the terms σ2
Y |z and β′Kβ +σ2 interchangeably.

dΛ̃N = −N

2
d

[
ln(β′Kβ + σ2)

]
− d

[
1

2(β′Kβ + σ2)

]
N∑

i=1

(Yi − β0 − β′G(zi − µ))
2

− 1

2(β′Kβ + σ2)
d

[
N∑

i=1

(Yi − β0 − β′G(zi − µ))
2

]

By (29) and (31), the right hand side above is equal to

−N

2

2β′Kdβ + dσ2

σ2
Y |z

+
2β′Kdβ + dσ2

2σ4
Y |z

N∑

i=1

(Yi − β0 − β′G(zi − µ))
2
+

1

σ2
Y |z

g(β)dβ.

Let

c(β, σ2) =

[
N∑

i=1

(Yi − β0 − β′G(zi − µ))
2 −Nσ2

Y |z

]
. (32)

Then dΛ̃N is equal to

dσ2

2σ4
Y |z

c(β, σ2) +
1

σ4
Y |z

[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ. (33)

By the First Identification Theorem mentioned in Section 8.1, we obtain the

first order conditions

1

σ4
Y |z

[
β′K c(β, σ2) + σ2

Y |zg(β)
]

= 0,

1

2σ4
Y |z

c(β, σ2) = 0
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which lead to (22) and (23).

Calculating d2Λ̃N to identify the Hessian matrix is lengthy and tedious.

In fact, we don’t need the closed form of the Hessian matrix but the Hessian

matrix evaluated at the critical points {β̂, σ̂2} given in (26). So in our deriva-

tion, we will make use of the first order conditions to simplify calculation.

We notice, equivalently, the critical points {β̂, σ̂2} only need to satisfy

g(β̂) = 0 (34)

c(β̂, σ̂2) = 0. (35)

From (32), using (29) and (31) we have

dc(β, σ2) = −2
N∑

i=1

(Yi − β0 − β′G(zi − µ)) (zi − µ)′G′dβ − 2Nβ′Kdβ −Ndσ2

= −2g(β)dβ − 2Nβ′Kdβ −Ndσ2,

which is a function of β. By (34),

dc(β̂, σ2) = −2N(dβ)′Kβ −Ndσ2. (36)

Now we calculate d2Λ̃N starting from (33). We first calculate

d


 dσ2

2σ4
Y |z

c(β, σ2)




which is

d


 1

2σ4
Y |z


 dσ2 c(β, σ2) +

dσ2

2σ4
Y |z

d c(β, σ2).

When at {β̂, σ̂2}, by (35) and (36), it is equal to

−Ndσ2

2σ̂4
Y |z

(
2(dβ)′Kβ̂ + dσ2

)
= − N

σ̂4
Y |z

(
dβ′ dσ2

)



Kβ̂

1/2


 dσ2. (37)
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Then we calculate

d


 1

σ4
Y |z

[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ




which is

d


 1

σ4
Y |z




[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ+

1

σ4
Y |z

d
[
β′K c(β, σ2) + σ2

Y |zg(β)
]
dβ.

(38)

At {β̂, σ̂2}, the term in the first square brackets vanishes by (34) and (35).

Thus, at {β̂, σ̂2}, (38) is equal to

1

σ̂4
Y |z

[
(dβ)′Kc(β̂, σ̂2) + β′Kdc(β̂, σ2) + dσ2

Y |zg(β̂) + σ̂2
Y |zdg(β̂)

]
dβ.

From (30), we have

dg(β) = −(dβ)′
N∑

i=1

G(zi − µ)(zi − µ)′G′. (39)

Again by (34)-(36) and that dc(β̂, σ2) is a scalar, (38) is equal to

1

σ̂4
Y |z

[(
−2N(dβ)′Kβ̂ −Ndσ2

)
β̂
′
K− σ̂2

Y |z(dβ)′
N∑

i=1

G(zi − µ)(zi − µ)′G′
]

dβ

= − N

σ̂4
Y |z

(
dβ′ dσ2

)



2Kβ̂β̂
′
K +

σ̂2
Y |z
N

∑N
i=1 G(zi − µ)(zi − µ)′G′

β̂
′
K


 dβ (40)

Combining (37) and (40), eventually we get, at (β̂, σ̂2),

d2Λ̃N(β̂, σ̂2) =
(
dβ′ dσ2

)
HΛ̃(β̂, σ̂2)




dβ

dσ2


 ,

where

HΛ̃(β̂, σ̂2) = − N

σ̂4
Y |z




2Kβ̂β̂
′
K +

σ̂2
Y |z
N

∑N
i=1 G(zi − µ)(zi − µ)′G′ Kβ̂

β̂
′
K 1/2


 .

By the Second Identification Theorem mentioned in Section 8.2, HΛ̃(β̂, σ̂2)

is the Hessian matrix and we have seen it in (26).
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Figure 1: Predictor: log transformed body mass.
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Figure 2: Histogram of the response: averaged wheel running.
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Figure 3: Plots of the proportion of cumulative variance of the centered log

body mass explained by the first ten principal components in each group,

after the individual average log body mass has been removed.
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Figure 4: The constant function and the first three smoothed eigenfunctions

of the covariance of centered log body mass.
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Figure 5: Residuals of the fit of the Yi.
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Figure 6: Yi residuals in the male control group before and after removing

the outlier.
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Figure 7: Plots of β̂ and its standard errors computed from the Hessian

matrix (solid) and from the bootstrap (dash-dot).
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Figure 8: Comparing the permuted values of the generalized likelihood ratio

statistic Ul with the Wald statistic Uw.
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Figure 9: Plots of β̂s− β̂c and the standard errors of the difference computed

from the Hessian matrix (solid) and from the bootstrap (dash-dot).
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Figure 10: MSE of the estimate of β for each γ value. Compare the ECME

method with the two stage method.
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Figure 11: Proportion of times Ho is rejected using level α = 0.01, where

Ho : β(t) = 0, for all t ∈ [−1, 60]. Two test statistics are considered, Uw

and Uf .
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Figure 12: Proportion of times Ho is rejected using level α = 0.05, where

Ho : β(t) = 0, for all t ∈ [−1, 60]. Two test statistics are considered, Uw

and Uf .
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Figure 13: MSE of the estimate of βs for each γ value. Compare the ECME

method with the two stage method.
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Figure 14: MSE of the estimate of βc for each γ value. Compare the ECME

method with the two stage method.
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Figure 15: MSE of the estimate of βs − βc for each γ value. Compare the

ECME method with the two stage method.
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Figure 16: Proportion of times Ho is rejected using level α = 0.01, where

Ho : βs = βc, for all t ∈ [−1, 60]. Four test statistics are considered Ul, Uw,

Ue and Uf .
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Figure 17: Proportion of times Ho is rejected using level α = 0.05, where

Ho : βs = βc, for all t ∈ [−1, 60]. Four test statistics are considered Ul, Uw,

Ue and Uf .
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Figure 18: MSE of the estimate of β for each γ value using truncated log

body mass. Compare the ECME method with the two stage method.

67



References

[1] James, G. (2002) Generalized Linear Models with Functional Predictors.

Journal of the Royal Statistical Society B 64, 3, 411-432.

[2] James, G. M. and Silverman, B. W. (2005) Functional adaptive model

estimation. Journal of the American Statistical Association 100, 470,

565-576.

[3] Laird, N. M. (1982) Computation of Variance Components Using the

E-M Algorithm. Journal of Statistical Computation and Simulation 14,

295-303.

[4] Liu, C. H. and Rubin, D. B. (1994) The ECME Algorithm - a simple ex-

tension of EM and ECM with faster monotone convergence. Biometrika

81 4, 633-648.

[5] Magnus, J. R. and Neudecker, H. (1988) Matrix Differential Calculus

with Applications in Statistics and Econometrics. John Wiley and Sons.

[6] Morgan, T. J., T. Garland, Jr., and Carter, P. A. (2003) Ontogenetic

trajectories in mice selected for high wheel- running activity. I. Mean

ontogenetic trajectories. Evolution 57, 646-657.

[7] Müller, H.G. (2005) Functional modeling and classification of longitudi-

nal data. Scandinavian Journal Statistics 32, 223-240.

[8] Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis.

2nd edition, Springer Series in Statistics.

68



[9] Wang, W. (2007) Identifiability in linear mixed effects models.

Manuscript, Department of Statistics, University of British Columbia.

[10] Yao, F., Müller, H.G., Wang, J.L. (2005) Functional data analysis for

sparse longitudinal data. Journal of American Statistical Association

100, 577-590.

69


