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Abstract

We consider the problem of identifying novel RNA transcripts using
tiling arrays. Standard approaches to this problem rely on the calculation
of a sliding window statistic or on simple changepoint models. These meth-
ods suffer from several drawbacks including the need to determine a thresh-
old to label transcript regions and/or specify the number of transcripts. In
this paper, we propose a Bayesian multiple changepoint model to simulta-
neously identify the number of transcripts, the transcript boundaries and
their associated levels. We also present a computationally efficient on-line
algorithm which allows us to jointly estimate both the changepoint loca-
tions and the model parameters. Using two publicly available transcription
data sets, we compare our method to a common sliding window approach
and a simple changepoint model. In addition, we also provide the results
of a simulation study which shows that our on-line estimation procedure
provides good estimates of transcript boundaries and model parameters.

KEY WORDS: Tiling arrays; Sequential Monte Carlo; Particle filtering; Re-
cursive parameter estimation.
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1 Introduction

The advent of microarray technology (Lockhart et al. 1996) has enabled biomedical

researchers to monitor changes in the expression levels of thousands of genes. How-

ever, investigations into the mechanisms driving these changes have only recently

attained success with this high-throughput data. Affymetrix (Santa Clara, CA),

NimbleGen Systems (Madison, WI), and Agilent Technologies (Palo Alto, CA)

have recently developed oligonucleotide arrays that tile all of the non-repetitive

genomic sequences of humans and other eukaryotes. Currently, tiling arrays can

contain up to 7 million probes of length 25-50 base pairs (bps), spanning the

non-repetitive regions of a given genome at high resolution. For example, one

Affymetrix tiling array is enough to cover the whole yeast genome at an average

resolution of 8bps (David et al. 2006). These tiling arrays have great potential

and can be used for numerous genome-wide studies including transcriptome anal-

ysis (Bertone et al. 2004; Cheng et al. 2005; David et al. 2006), DNA protein

and chromatin modification assays (ChIP-chip) (Kapranov et al. 2002; Carroll

et al. 2005) and DNA variation detection (Mockler et al. 2005). Given their high

density (several million genomic sequences for small eukaryote genomes) and high

noise-to-signal ratio, the power of tiling arrays continues to be limited by a lack

of appropriate statistical tools.

In this paper, we focus on the detection of novel RNA transcripts from tiling

arrays- a problem that has received little attention from the statistics community.

A common approach is to combine probe measurements via a sliding window (SW)

statistic computed over neighboring probes, and then to apply a thresholding on

the resulting statistics to call transcript regions (Kapranov et al. 2002; Bertone

et al. 2004; Cheng et al. 2005). The threshold itself can be derived using con-
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trol regions or by making various distributional assumptions for the statistics. A

difficulty with SW approaches is that the resulting statistics are not independent

due to the fact that each statistic uses information from neighboring probes It is

also challenging to derive a meaningful threshold without control regions. Another

problem is that the window size, which is fixed and has to be determined in ad-

vance, can have a big impact on the final results. Too small of a window can lead

to many false positives whereas too large of a window can lead to over smoothing

and poor detections of the region’s endpoints (Huber et al. 2006). As an alterna-

tive to SW approaches, Huber et al. (2006) described a segmentation algorithm to

find a globally optimal fit of a piecewise constant expression profile along genomic

coordinates. This algorithm is based on a simple changepoint model, which mod-

els the changes in transcription along genomic coordinates as piecewise constant.

Even though Huber et al. (2006) showed that their changepoint model can pro-

vide more accurate segmentation than SW approaches, it still suffers from major

pitfalls. The number of segments has to be fixed in advance, but this number is

usually unknown. In addition, it is difficult to selectively threshold the segment

transcription levels in order to call transcript regions.

In this paper, we introduce a Bayesian changepoint model to simultaneously

identify transcript boundaries and their associated levels. Our model also builds

on previous approaches used in gene expression analysis (Newton et al. 2001;

Gottardo et al. 2003; Gottardo et al. 2006) and uses a mixture distribution to

classify segments as transcript or non-transcript, hence no thresholding is neces-

sary. Given the data, we are interested in inferring the changepoint locations, the

number of changepoints, and the model parameters; these parameters have a large

impact on the resulting changepoint segmentation and are typically unknown. In

our context, due to the large number of features, it would be extremely expen-
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sive to use Markov chain Monte Carlo (MCMC) methods. Moreover the strong

correlation between the changepoint locations and the parameters would induce

poor mixing, and thus slow convergence, for any Gibbs sampling type strategy.

Even in the simplest scenario where all the parameters are known, performing

exact Bayesian inference for the changepoints has a computational complexity

quadratic in the number of features, which is too expensive for our target ap-

plication. An alternative to MCMC are Sequential Monte Carlo methods, also

known as particle filtering methods. Recently, a variant of the particle filtering

approximation technique with computational complexity linear in the number of

features was proposed in Fearnhead and Liu (2007). We propose here a new recur-

sive maximum likelihood estimation procedure which allows us to jointly estimate

both the changepoint locations and the model parameters. The exact version of

this algorithm also has a computational complexity quadratic in the number of

features but, coupled to a particle approximation in the spirit of Fearnhead and

Liu (2007), we obtain an approximation whose computational cost is linear in the

number of features. This scales well with advances in feature density and tiling

array size.

Our paper is organized as follows, Section 2 introduces the data structure and

the notation. In Section 3 and 4, we present our changepoint model and parameter

estimation procedure, respectively. In Section 5, we apply our method to exper-

imental data and compare it to the changepoint model of Huber et al. (2006)

and the SW approach used by Cheng et al. (2005). Section 6 presents the results

of a simulation study to demonstrate the performance of our on-line estimation

method. Finally, in Section 7 we discuss our results and possible extensions. All

the calculations are detailed in Appendices.
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2 Data

We use two publicly available datasets to demonstrate our methodology. In the

first, David et al. (2006) use high density Affymetrix tiling arrays with 25-mer

oligonucleotides spaced every 4bps on average to interrogate both strands of the

full Saccharomyces cerevisiae genome. We will refer to these data as the yeast

data. In the second, Cheng et al. (2005) use tiling arrays to map the sites of

transcription for approximately 30% of the human genome encoded in 10 human

chromosomes (6, 7, 13, 14, 19, 20, 21, 21, X, and Y). Similar to David et al.

(2006), Cheng et al. (2005) use Affymetrix high density tiling arrays with 25-mer

oligonucleotides spaced every 5 bps on average. These data, which we will refer

to as the human data, also contain experimentally verified transcripts which will

allow us to validate our methodology.

Similar to oligonucleotide gene expression arrays (Lockhart et al. 1996), Affymetrix

tiling arrays query each sequence of interest with a perfect match (PM) and a mis-

match (MM) probe, where the MM probe is complementary to the sequence of

interest except at the central base, which is replaced with its complementary base.

The difference is that the probes used on tiling arrays do not necessarily belong to

genes, which allows for an unbiased mapping of RNA transcripts. Following the

idea that MM intensities are poor measures of non-specific hybridization (Irizarry

et al. 2003), we only used the PM intensities. In the case of the yeast data, the data

were normalized using the procedure of David et al. (2006) and described in Huber

et al. (2006), which is part of the tilingArray package available from Bioconduc-

tor (Gentleman et al. 2004). In the case of the human data, the data were nor-

malized by quantile normalization (Bolstad et al. 2003), as in Cheng et al. (2005).

After normalization, the data take the form {ytr : t = 1, . . . , T ; r = 1 . . . R}, where
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ytr is the normalized intensity of probe (also called time in the following) t from

replicate r. Here, we assume that the probes are ordered by genomic positions,

where we denote by {xt : t = 1, . . . , T} the corresponding positions arranged in

increasing order, that is xt < xt′ for t < t′. Finally, we will summarize each probe

measurement by the mean of its normalized intensities across replicates, and we

will denote the resulting summaries by {zt : t = 1, . . . , T}. Such summaries are

often used in microarray studies to facilitate modeling, reduce the computational

burden, and avoid across-array normalization issues; see for example Efron (2004)

and Do et al. (2005).

3 Statistical Model

Using the notation introduced in Section 2, we will denote by zt1:t2 = {zt1 , . . . , zt2}

the vector of intensities from t1 to t2. As in Huber et al. (2006), we consider

a changepoint model in which the changes in transcription along genomic co-

ordinates can be modeled as piecewise constant. It follows that the sequence

of observations z1, . . . , zT can be partitioned into m + 1 contiguous segments

z1:τ1 , zτ1+1:τ2 , . . . , zτm:T where the index τ1, . . . , τm are called the changepoints, m

being unknown. A Bayesian changepoint model is defined by a joint distribu-

tion over the changepoints and the data. We consider changepoint models for

the data with the following conditional independence assumption (Barry and Har-

tigan 1992; Fearnhead and Liu 2007): “given the position of a changepoint, the

data before that changepoint is independent of the data after the changepoint”.

The number of changepoints is unknown as are their positions. The changepoint

positions are modeled as a Markov process

Pr(“next changepoint at t2”|“changepoint at t1”) = h(t2 − t1) (1)
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i.e. the probability of a changepoint depends on the index distance to the previous

one. This model is a special case of a product partition model for changepoints

(Barry and Hartigan 1992; Fearnhead and Liu 2007). In our case, the function

h is chosen to be a negative binomial distribution with parameters ρ and d, such

that

h(x) = Negbin(x− u; ρ, d)

=

{
Γ(d+x−u)

Γ(x−u+1)Γ(d)ρ
d(1− ρ)x−u if x ≥ u

0 otherwise

where u controls the smallest distance between two changepoints, d controls the

shape of the distribution, which has a mode greater than u for d > 1, and ρ controls

the average length of the segments. In the two examples explored in this paper

we will fix u to 15, corresponding to a minimum segment size of approximately

100bps, and d to 2, allowing for a positive mode. We estimate ρ using the algorithm

presented in Section 4. Finally, we denote by H, H(l) =
∑l

i=1 h(i) the cumulative

distribution associated with h, which will be used in Section 4 when we describe

our estimation procedure.

Let τ1 < τ2 < . . . < τm be the m successive unknown changepoints and set

τ0 = 0 and τm+1 = T . The changepoints define m + 1 segments, with segment

i consisting of observations zτi+1:τi+1 , for i = 0, . . . , m. We assume that each

segment may be either transcribed or non-transcribed. Let us denote by λ the

probability that a segment is transcribed and ri ∈ {0, 1} the associated latent

variable indicating if segment i is transcribed (ri = 1) or not (ri = 0). It follows

that ri ∼ Ber(λ), that is Bernoulli with parameter λ. If ri = 1 (transcript), then

the data zτi+1:τi+1 , are assumed to be distributed from a normal/normal-inverse
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gamma compound distribution, as follows,

(zt|µi, σ
2
i , ri = 1) ∼ N (µi, σ

2
i ) for t = τi + 1, . . . τi+1 (2)

(µi, σ
2
i |ri = 1) ∼ N iG(m1, s1, ν1, γ1)

where N iG(m1, s1, ν1, γ1) is the normal-inverse gamma distribution, defined in

Appendix A, with parameters m1, s1, ν1 and γ1 and N (µi, σ2
i ) is the normal

distribution with mean µi and variance σ2
i . If ri = 0 (not a transcript), the

data zτi+1:τi+1 , are assumed to arise from a mixture of a skew t-distribution and

a normal-normal inverse gamma compound distribution. If we introduce another

latent variable qi ∼Ber(p0), p0 ∈ [0, 1], we can write

(zt|ri = 0, qi = 1) ∼ N (µi, σ
2
i ) for t = τi + 1, . . . τi+1 (3)

(µi, σ
2
i |ri = 0, qi = 1) ∼ N iG(m0, s0, ν0, γ0)

and

(zt|ri = 0, qi = 0) ∼ st(ϕ0, ψ0, ζ0, ξ0)

where m0, s0, ν0, γ0, ϕ0 and ψ0 are unknown parameters that will be estimated

while ζ0 and ξ0 will be fixed in advanced. Note that in (3) resp. (2), the unknown

parameters are shared across non-trancript segments, resp. transcripts, which

allows us to borrow strength across segments when estimating segment boundaries.

The skew t-distribution, st(ϕ0, ψ0, ζ0, ξ0), is as defined in Azzalini and Capitanio

(2003) and whose density is given in Appendix A. The parameters ϕ0, ψ0, ζ0

and ξ0 represent the location, scale, degrees of freedom, and skewness parameters.

In the example explored in this paper, we will use ζ0 = 4 for the degrees of

freedom parameter to provide for robustness against outliers, and ξ0 = 10 for

the skewness parameter, which seems to be enough to deal with the skewness

observed for non-transcript segments. Even though these parameters could be
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estimated, we have chosen to fix them for simplicity. However, the exact value of

these parameters is not crucial; experimentation showed that different values give

similar results. For the non-transcribed segments, we have found it necessary to

introduce a skew t-distribution to deal with frequent outliers and the skewed nature

of low-intensity observations. We have experimented with a single normal/normal-

inverse gamma compound distribution for the baseline and the results were not

as good in terms of goodness of fit and segmentation results (data not shown). In

order to have the same mean value for the non-transcribed segments, we assume

that the mean of the skew t-distribution is equal to m0, that is we set m0 =

ϕ0+ψ0ξ0/
√

1 + ξ2
0

√
ζ0/πΓ((ζ0−1)/2)/Γ(ζ0/2). Note that we use the same generic

variables µi and σ2
i in (2) and (3) for ease of notation even though these are different

parameters. In any case, these variables are nuisance parameters which will be

integrated out later on.

Conditioning on two consecutive changepoints τi and τi+1 and the unknown

parameters, which are omitted below for ease of notation, the marginal likelihood

is given by

P (τi, τi+1) = p(zτi+1:τi+1) (4)

= (1− λ)p(zτi+1:τi+1|ri = 0) + λp(zτi+1:τi+1|ri = 1)

= (1− λ)

[
(1− p0)

∏τi+1

t=τi+1 st(zt|ϕ0, ψ0, ζ0, ξ0)+
p0

∫∫ ∏τi+1

t=τi+1 N (zt|µi, σ2
i )N iG(µi, σ2

i |m0, s0, ν0, γ0)dµidσ2
i

]

+ λ

∫∫ τi+1∏

t=τi+1

N (zt|µi, σ
2
i )N iG(µi, σ

2
i |m1, s1, ν1, γ1)dµidσ2

i

where the integrals can be computed analytically (see Appendix B).
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4 Changepoint Detection and Parameter Esti-
mation

4.1 Exact inference

4.1.1 Filtering recursions

Let Ct denote the time of the most recent changepoint prior to t (with Ct = 0

if there has been no changepoint before time t). Conditional on Ct−1 = j, either

Ct = j, i.e. there is no changepoint at time t, or Ct = t−1 if there is a changepoint.

The transition probabilities are

f(Ct = j|Ct−1 = i) =






1−H(t−i−1)
1−H(t−i−2) if j = i
H(t−i−1)−H(t−i−2)

1−H(t−i−2) if j = t− 1

0 otherwise

(5)

and

g(zt|Ct = j, z1:t−1) =

{
P (j,t)

P (j,t−1) if j < t− 1

P (t− 1, t) if j = t− 1

where P (·, ·) is given by (4). The so-called filtering distributions p(Ct|z1:t) can be

computed recursively in time using Fearnhead and Liu (2007)

p(Ct|z1:t) =
ξ (Ct, z1:t)∑t−1

i=0 ξ (Ct = i, z1:t)

where we denote

ξ (Ct, z1:t) = g(zt|Ct, z1:t−1)p(Ct|z1:t−1)

which satisfies the following recursion

ξ (Ct, z1:t) =

{
g(zt|Ct = j, z1:t−1)f(Ct = j|Ct−1 = j)p(Ct−1 = j|z1:t−1) if j < t− 1

g(zt|Ct = j, z1:t−1)
∑t−2

i=0 f(Ct = j|Ct−1 = i)p(Ct−1 = i|z1:t−1) if j = t− 1,
(6)

Once the filtering distributions p(Ct|z1:t) are stored for all t = 1, . . . , n, we can

simulate from the joint posterior distribution of the changepoints before time n

(Chopin 2007; Fearnhead and Liu 2007), as follows.
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Simulation of changepoints from the joint posterior distribution
• Simulate τ1 from p(Cn|z1:n). Set k = 1.

• While τk > 0

• Sample τk+1 proportionally to f(Cτk+1 = τk|Cτk
)p(Cτk

|z1:τk
) and set k = k+1.

4.1.2 MAP recursions

An on-line Viterbi algorithm can be designed for calculating the maximum a pos-

teriori (MAP) estimate of the changepoints and model orders (Fearnhead and Liu

2007). Let Mj be the event that given a changepoint at time j, the MAP estimate

of changepoints and model has occurred prior to time j. Then for t = 1, . . . , n,

j = 0, . . . , t− 1 and r = 0, 1 (non transcribed or transcribed segment), we define

Pt(j, r) = Pr(Ct = j, model r,Mj, z1:t),

PMAP
t = Pr(Changepoint at t,Mt, z1:t).

At time t, the MAP estimate ĉt of Ct and the current model are given by the values

of j and r which maximise Pt(j, r). The following recursions can be established

Pt(j, r) = (1−H(t− j − 1))P (j, t| r) Pr(r)PMAP
j ,

PMAP
t = max

j,r

(
Pt(j, r)h(t− j)

1−H(t− j − 1)

)
(7)

where P (j, t|r) is the marginal distribution of the observations zj+1:t assumed to

be in the same segment following the model r.

4.1.3 Recursive parameter estimation

The previous recursions assume the parameters θ = {p0, ψ0,m0, s0, ν0, γ0, λ, m1,

s1, ν1, γ1, ρ} are known. However, these parameters have a strong influence on

the changepoint estimates. Here, we propose to estimate them using a recur-

sive maximum likelihood approach. We introduce a subscript θ to emphasize
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the dependence on parameters θ of the filtering density pθ(Ct|z1:t), the transi-

tion probability fθ(Ct|Ct−1), the conditional predictive density gθ(zt|Ct, z1:t−1) and

ξθ (Ct, z1:t) = gθ(zt|Ct, z1:t−1)pθ(Ct|z1:t−1).

The log-likelihood conditional on the data z1:t is given by

lt (θ) = log pθ(z1) +
t∑

k=2

log pθ(zk|z1:k−1) (8)

where

pθ(zt|z1:t−1) =
t−1∑

j=0

ξθ (Ct = j, z1:t) . (9)

As t→∞, we have

lim
t→∞

lt (θ)

t
= l (θ) .

This follows from the fact that (1)-(2)-(3) define an (asymptotically) stationary

process with ‘good’ mixing properties. Moreover, l(θ) admits the true parameter

θ∗ as a global maximum. To find a local maximum of l(θ), we use a stochastic

approximation algorithm (Benveniste et al. 1990)

θt = θt−1 + γt∇ log pθ1:t−1(zt|z1:t−1) (10)

where the stepsize sequence {γt} is a positive non-increasing sequence such that
∑

γt =∞ and
∑

γ2
t <∞ whereas ∇ log pθ1:t−1(zt|z1:t−1) is the gradient of the pre-

dictive log-likelihood. The subscript θ1:t−1 indicates that this predictive likelihood

is computed using θ = θk at time k + 1. Under regularity conditions (Benveniste

et al. 1990), it can be shown that θt will converge to a local maximum of l(θ).

To improve the convergence rate of this algorithm, we can also use a Newton

or quasi-Newton stochastic gradient algorithm by computing the Hessian of the

log-likelihood; see Poyiadjis et al. (2005) for an application of this approach in a

state-space model context.
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To compute the gradient term appearing in (10), we note that

∇ log pθ(zt|z1:t−1) =
∇pθ(zt|z1:t−1)

pθ(zt|z1:t−1)

=

∑t−1
j=0∇ξθ(Ct = j, z1:t)

∑t−1
j=0 ξθ(Ct = j, z1:t)

. (11)

By taking the derivative of pθ(Ct|z1:t) with respect to θ, we obtain

∇pθ(Ct|z1:t) =
∇ξθ(Ct, z1:t)∑t−1

i=0 ξθ(Ct = i, z1:t)
− pθ(Ct|z1:t)

∑t−1
i=0∇ξθ(Ct = i, z1:t)∑t−1
i=0 ξθ(Ct = i, z1:t)

(12)

The term ∇ξθ(Ct, z1:t) is obtained by taking the derivative of (6)

∇ξθ(Ct = j, z1:t)

=






(
gθ(zt|Ct = j, z1:t−1)fθ(Ct = j|Ct−1 = j)

×pθ(Ct−1 = j|z1:t−1)π
(j,j)
t

)
if j < t− 1

(
gθ(zt|Ct = j, z1:t−1)

×
∑t−2

i=0 fθ(Ct = j|Ct−1 = i)pθ(Ct−1 = i|z1:t−1)π
(i,j)
t

)
if j = t− 1

(13)

where

π(i,j)
t = ∇ log gθ(zt|Ct = j, z1:t−1)+∇ log fθ(Ct = j|Ct−1 = i)+∇ log pθ(Ct−1 = i|z1:t−1).

4.2 Approximate inference

The computational cost of the recursion for computing pθ(Ct|z1:t) and∇ log pθ(zt|z1:t−1)

is proportional to t. This procedure is thus not appropriate for large datasets. We

propose a deterministic approximation scheme to numerically approximate these

quantities. Our approximation of pθ(Ct|z1:t) is inspired by the work of Fearnhead

and Liu (2007) and relies on the following idea. At time t, the exact algorithm

stores the set of probabilities pθ(Ct = j|z1:t) for j = 0, 1, . . . , t − 1. Given many

of these probabilities are negligible, we can reasonably approximate the filtering

distribution by a fewer set of Nt support points c(1)
t , . . . , c(Nt)

t , called particles, with

associated probability mass w(1)
t , . . . , w(Nt)

t , called weights. To limit the number of
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particles Nt at time t, we adopt a simple adaptive deterministic selection scheme

where all the particles whose weights are below a given threshold ε are discarded;

see below. In simulations, we have found that this deterministic selection step

was performing better in terms of average mean square error than the random

stratified optimal resampling proposed in Fearnhead and Liu (2007).

At time t − 1, suppose that ξθ (Ct, z1:t) and pθ(Ct−1|z1:t−1) are approximated

through

ξ̂θ (Ct−1, z1:t−1) =
Nt−1∑

i=1

w̃(i)
t−1δc(i)t−1

(Ct−1)

p̂θ(Ct−1|z1:t−1) =
Nt−1∑

i=1

w(i)
t−1δc

(i)
t−1

(Ct−1) (14)

where δ
c
(i)
t−1

(Ct−1) = 1 if Ct−1 = c(i)
t−1 and 0 otherwise. That is w̃(i)

t−1 resp. w(i)
t−1

is an approximation of ξθ

(
Ct−1 = c(i)

t−1, z1:t−1

)
resp. pθ(Ct−1 = c(i)

t−1

∣∣∣ z1:t−1) and

w(i)
t−1 ∝ w̃(i)

t−1 with
∑Nt−1

i=1 w(i)
t−1 = 1. We propose to approximate ∇pθ(Ct−1|z1:t−1)

through

∇̂pθ(Ct−1|z1:t−1) =
Nt−1∑

i=1

w(i)
t−1β

(i)
t−1δc

(i)
t−1

(Ct−1) (15)

where
∑Nt−1

i=1 w(i)
t−1β

(i)
t−1 = 0; that is we are using the same particles

{
c(i)
t−1

}
. Here

w(i)
t−1β

(i)
t−1 is an approximation of ∇pθ(Ct−1 = c(i)

t−1|z1:t−1) so β(i)
t−1 can be thought of

as an approximation of ∇ log pθ(Ct−1 = c(i)
t−1|z1:t−1).

At time t, let c̃(i)
t = c(i)

t−1 and c̃(Nt−1+1)
t = t− 1 for each particle i = 1, . . . , Nt−1.

To compute an approximation of pθ(Ct−1|z1:t−1), we plug our approximation (15)

into (6) to obtain the unnormalized weights for i = 1, . . . , Nt−1

w̃(i)
t = gθ(zt|Ct = c̃(i)

t , z1:t−1)fθ(Ct = c̃(i)
t |Ct−1 = c̃(i)

t )w(i)
t−1, (16)

and

w̃(Nt−1+1)
t = gθ(zt|Ct = t− 1, z1:t−1)

Nt−1∑

i=0

fθ(Ct = t− 1|Ct−1 = c̃(i)
t )w(i)

t−1. (17)
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Similarly, by plugging (15) into (13), we obtain an approximation α̃(i)
t of ∇ξθ(Ct =

c̃(i)
t , z1:t) which satisfies for i = 1, . . . , Nt−1

α̃(i)
t = gθ(zt|Ct = c̃(i)

t , z1:t−1)fθ(Ct = c̃(i)
t |Ct−1 = c̃(i)

t )w(i)
t−1 (18)

×
[
∇ log gθ(zt|Ct = c̃(i)

t , z1:t−1) +∇ log fθ(Ct = c̃(i)
t |Ct−1 = c̃(i)

t ) + β(i)
t−1

]
,

and

α̃(Nt−1+1)
t = gθ(zt|Ct = t− 1, z1:t−1)

Nt−1∑

i=0

fθ(Ct = t− 1|Ct−1 = c̃(i)
t )w(i)

t−1 (19)

×
[
∇ log gθ(zt|Ct = t− 1, z1:t−1) +∇ log fθ(Ct = t− 1|Ct−1 = c̃(i)

t ) + β(i)
t−1

]
.

Using (11), we obtain

∇̂ log pθ(zt|z1:t−1) =

∑Nt−1+1
i=1 α̃(i)

t∑Nt−1+1
i=1 w̃(i)

t

. (20)

If we were to iterate this algorithm, the computational complexity would increase

without bound with t. We only keep the particles c̃(i)
t such that w(i)

t > ε where

w(i)
t ∝ w̃(i)

t ,
∑Nt−1+1

i=1 w(i)
t = 1 and discard the others. We then renormalize the

weights of the surviving Nt particles and denote them w(i)
t . Finally, using (12) we

obtain

w(i)
t β(i)

t =
α̃(ϕ(i))

t∑Nt

j=1 w̃(ϕ(j))
t

− w(i)
t

∑Nt

j=1 α̃(ϕ(j))
t

∑Nt

j=1 w̃(ϕ(j))
t

(21)

for i = 1, . . . , Nt where ϕ : {1, . . . , Nt} → {1, . . . , Nt−1+1} is the injective function

such that w(i)
t = w(ϕ(i))

t .

To summarize, the particle filter for joint changepoints and parameter estima-

tion proceeds as follows.

Particle filter for on-line changepoints and parameter estimation
At time t = 1

• Set θ0, c(1)
1 = 0, w(1)

1 = 1, w(1)
1 β(1)

1 = 0 and N1 = 1.

At time t ≥ 2
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• For i = 1, . . . , Nt−1 let c̃(i)
t = c(i)

t−1. Set c̃(Nt−1+1)
t = t− 1.

• For i = 1, . . . , Nt−1 + 1, compute w̃(i)
t using (16-17) using θt−1.

• For i = 1, . . . , Nt−1 + 1, compute α̃(i)
t using (18-19) using θt−1.

• Update the parameter vector using (10) and (20), that is

θt = θt−1 + γt

∑Nt−1+1
i=1 α̃(i)

t∑Nt−1+1
i=1 w̃(i)

t

• Use the adaptive selection step. Let Nt be the number of selected particles

and w(i)
t , c(i)

t , i = 1, . . . , Nt be resp. the normalized weights and the associated

support points and ϕ : {1, . . . , Nt} → {1, . . . , Nt−1 +1} the injective function such

that w(i)
t = w̃(ϕ(i))

t for i = 1, . . . , Nt.

• For i = 1, . . . , Nt, compute the weights w(i)
t β(i)

t using (21).

Note that a particle filter for joint state and parameter estimation relying on

recursive maximum likelihood has also been proposed in Poyiadjis et al. (2005) for

the class of general non-linear non-Gaussian state-space models. However, the cost

of the algorithm in Poyiadjis et al. (2005) is quadratic in the number of particles

whereas it is linear in our case.

Note that here T is the size of the dataset. The parameter estimate typically

converges before time T for large T. For smaller datasets, we can run the particle

filter K > 1 times on the dataset, using θ(j)
1 = θ(j−1)

T and γ(j)
1 = γ(j−1)

T as the

initial values for parameter estimates and step size for runs j = 2, . . . , K, so as to

obtain convergence. In this case, the algorithm can be interpreted as a stochastic

approximation algorithm maximizing lT (θ) given by (8). Then the particle filter

may be applied to obtain the MAP and full posterior of changepoints using the

final hyperparameter estimate γ(K−1)
T .
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5 Experimental Data

5.1 Yeast dataset

We fitted our changepoint model to the positive strand of the first chromosome of

the yeast data, using u = 15, d = 2, ζ0 = 4 and ξ0 = 10, as explained earlier.

The parameters θ = {p0, ψ0,m0, s0, ν0, γ0, λ, m1, s1, ν1, γ1, ρ} are estimated by

running the particle filter K = 20 times with ε = 10−6 on the full dataset, hence

4×105 iterations. Evolution of each parameter with respect to iterations is shown

in Figure 1. Although we have used K = 20 passes over the whole dataset in

order to show the convergence, most parameters had converged after only two

passes. In terms of segmentation and classification, the results obtained using

the parameter after 2 passes were very similar to the results obtained after 20

passes. Note that, as stated in the previous section, for a larger number of probes

the parameter estimates would typically converge more quickly as there is more

information. The final parameter value θ̂ obtained after 20 passes over the full

dataset, shown in Table 1, is used as the parameter values and the particle filter is

then ran with ε = 10−6 in order to obtain the segmentation. The MAP estimate

of the changepoints for a portion of the whole chromosome is represented in Fig-

ure 2 (top). The associated number of changepoints for the whole chromosome is

299. Figure 2 (bottom) also shows the results using the algorithm of Huber et al.

(2006), with 153 segments over chromosome 1. The number 153 was estimated

using previous biological knowledge as explained in David et al. (2006). Over-

all, both segmentations show similar results and clearly agree with known coding

sequence (CDS) annotations. This said, the advantage of our methodology over

Huber’s is obvious when looking at the segmentation results as we get a direct

classification of the segments into transcripts and non-transcripts. Additionally,
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no thresholding is necessary. Using our method, one can easily see that some of

the detected transcripts (green background) do not overlap with know annota-

tions. This confirms the findings of David et al. (2006) that even this well-studied

genome has transcriptional complexity far beyond current annotations.

Note that, using our method, the number of segments is estimated whereas in

Huber’s it has to be fixed in advance. Our estimated number of segments is sig-

nificantly larger than the number used by David et al. (2006), but a closer look at

the segmentation results suggests that such a larger number is necessary to explain

changes in intensity along the chromosome; see Figure 3 where we have zoomed

onto two specific regions. For example, the left parts of Figure 3 (a) (around

6.9 × 104) show a clear jump in the observed intensities, which is detected as a

separate transcript by our method (top) but not Huber’s (bottom). Similar obser-

vations can be made for the left parts of Figure 3 (b) (around 1.14× 105), where

our method detects a putative transcript not detected by Huber’s. Even though

David et al. (2006) decided to fix the number of segments to 153 using previous

biological knowledge, Huber et al. (2006) also provide a method for estimating

the number of segments based on AIC or BIC. However, these require running the

segmentation algorithm for all possible number of segments, which is not ideal for

large genomes. For the data used here, the estimated number of segments using

AIC and BIC are 307 and 232, respectively, which are closer to our estimate. Fi-

nally, Figure 3 (a) also shows the marginal posterior probabilities of changepoints,

which provide nice measures of uncertainty for the corresponding changepoints.

These marginal probabilities are obtained with 1,000 draws distributed from the

approximated joint posterior distribution of the changepoints; see the algorithm

in Section 4.1.1.

Overall, using the yeast data, we have shown that our changepoint model is a
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Figure 1: Online estimation convergence for the yeast data. The value of each
parameter is shown as a function of iterations. The dot on the left-hand side of
each plot represents the initial value of the hyperparameter.

Table 1: Summary of parameter estimates for both the yeast and human data,
using the online estimation procedure.
Parameter p0 ψ0 m0 s0 ν0 γ0 λ m1 s1 ν1 γ1 ρ
Yeast .52 .50 −0.64 .76 16.5 1.17 .51 .55 1.98 11.88 1.35 .05
Human .23 .93 −0.37 .96 10.83 1.84 .63 1.18 .83 6.02 4.32 .21

compelling method for RNA transcript segmentation using tiling arrays as it au-

tomatically estimates the number of segments along with their classification while

also estimating important tuning parameters. We now turn to a more complex

human dataset (Cheng et al. 2005).

5.2 Human dataset

As with the yeast data, we fitted our changepoint model to the chromosome 6 of

the human data with the same fixed parameters, namely u = 15, d = 2, ζ0 = 4 and

ξ0 = 10. For ease of comparison with Huber’s segmentation algorithm, we have
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Figure 2: Segmentation results for part of chromosome 1 for the yeast data using
our algorithm (top) and Huber et al.’s algorithm (bottom). For the top graph,
the MAP estimate is displayed with transcript segments (green background), non-
transcript segments (white background) segments and black segments for the seg-
ment intensity levels. For both top and bottom graphs, segments boundaries are
represented with green vertical lines. Transcript annotations are shown below with
red rectangles representing coding sequences and black segments representing TF
binding sites.

only selected a subset of chromosome 6 which contains 20,000 probes with many

known annotations and verified transcript regions. For comparison, we have also

ran our algorithm on the whole chromosome 6, and the results were very similar.

The parameters θ = {p0, ψ0,m0, s0, ν0, γ0, λ, m1, s1, ν1, γ1, ρ} are first estimated,

running the particle filter with ε = 10−6 twenty times on the full dataset, hence

4× 105 iterations. Evolution of θ̂ with respect to iterations is shown in Figure 4.

Most of the parameters have converged. The parameters associated to the skew t-
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Figure 3: Segmentation results for two close up regions from the yeast data. Our
MAP segmentation (top) provides a better fit to the data by segmenting a few
jumps in the data not detected as segments by Huber’s method (bottom). The
posterior probabilities of changepoints are represented in the middle plots.

distribution converge slowly due to the small probability of this mixture component

(around 0.09). Using more iterations for the parameter estimation has shown very

little difference for the changepoint results.

The parameter estimate θ̂ obtained after 20 passes (Table 1), is used as the pa-

rameter value, then the particle filter algorithm is applied with ε = 10−6 in order

to obtain the segmentation. The MAP segmentation estimate of the changepoints

for a portion of the whole chromosome is represented in Figure 5 (top). The as-

sociated number of changepoints is 824, which is significantly higher than for the

yeast data used previously, even though it contains roughly the same number of

probes. This is not surprising as the human genome is far more complex than its

yeast counterpart as it contains many exons (Figure 5). In addition, the experi-

ment of Cheng et al. (2005) was not strand-specific (hence the presence of both
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+/- annotations on Figure 5) which could lead to more transcripts being detected.

Finally, Cheng et al. (2005) did not use a control sample to normalize their data

as did David et al. (2006), which could potentially lead to the detection of false

transcripts due to sequence specific biases. Figure 5 (bottom) also shows the re-

sults using the algorithm of Huber et al. (2006), fixing the number of segments to

204 using BIC. Using AIC, the optimal number of segments is 5448, which seems

a bit large, and requires running the algorithm several thousands times in order

to select the optimal number of changepoints.

Because of the large number of changepoints, it is hard to compare our ap-

proach with that of Huber et al. (2006) based on Figure 5 alone. This said,

the advantage of our methodology over Huber’s is once again obvious when look-

ing at the segmentation results as we get a direct classification of segments into

transcripts and non-transcripts. In addition, using our method, the number of

segments is estimated automatically. As with the yeast data, Figure 5 shows that

many of the detected transcripts (green background) do not overlap with known

annotations. This confirms the findings of Cheng et al. (2005), where the authors

have noted that most of the detected transcripts were previously unannotated.

The number of segments estimated by our method is somewhat larger than

the number estimated by Huber’s segmentation combined with BIC, but a closer

look at some specific regions suggests that such a number is necessary to explain

changes in intensity along the chromosome; see Figure 6 where we have zoomed

onto two specific regions. For example the left parts of Figure 6 (a) (around

7.1715 × 106) show many jumps in the observed intensities which are detected

as separate transcripts by our method (top) but not Huber’s (bottom). In fact,

Huber’s method fails to properly segment one validated region (mark as verified

transcript). Figure 6 also shows the regions detected as transcripts by the sliding
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window approach of Cheng et al. (2005). In general, our method and Huber’s

lead to precise estimates of the transcript boundaries whereas the sliding window

approach tends to smooth out the boundaries, confirming previous observations

made by Huber et al. (2006). In addition, the sliding window approach requires

one to derive a threshold in order to call transcript regions, which can be difficult

without prior knowledge. Cheng et al. (2005) used negative control measure-

ments to derive the threshold used to detect transcripts, but such controls are not

always available. Using our method, we simultaneously estimate the number of

segments along with their classification (transcript/non-transcript). In particu-

lar, our method correctly classifies all of the verified transcripts. Note that such

classification is not possible with Huber’s method.
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Figure 4: Parameter estimates for the human dataset. The value of each parameter
is shown as a function of iterations. The dot on the left-hand side of each plot
represents the initial parameter estimates.
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Figure 5: Segmentation results for part of chromosome 6 for the human dataset us-
ing our algorithm (top) and Huber et al.’s algorithm (bottom). For the top graph,
the MAP estimate is displayed with transcript segments (green background) and
non-transcript segments (white background), and black segments for the segment
intensity levels. For both top and bottom graphs, segment boundaries are rep-
resented with green vertical lines. Transcript annotations are shown with coding
sequences and Exon for both strands. We also show the transcript regions found
by the sliding window method of Cheng et al. (2005), and the subset of these that
were experimentally verified.

5.3 Model checking

In order to check model assumptions for both datasets, we now look at the pre-

dictive cumulative distribution Pr(Zt ≤ zt|z1:t−1) evaluated at zt. If the model

assumptions are correct, these values should be uniformly distributed between 0

and 1 and Φ−1(Pr(Zt ≤ zt|z1:t−1)), where Φ−1 is the inverse Gaussian cdf, should
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be normally distributed. The histogram of the predictive distribution and the

associated qq-plot are represented in Figure 7. Although the model is slightly

overconfident, the histogram and qq-plot show that our model fits the data quite

well for the yeast dataset. For the human dataset, the qq-plot and histogram are

not as good, which is not surprising as the data are more noisy than the yeast

data. Nonetheless, there is no evidence of severe mis-specification.

6 Simulated data

We have simulated a data set with 40,000 observations from our changepoint

model described in Section 3 with the following parameters p0 = 0.4, ψ0 = 0.47,

ζ0 = 4, ξ0 = 10, m0 = −0.8, ϕ0 = −1.27, s0 = 0.3, ν0 = 16, γ0 = 1.2, m1 = 0.5,

s1 = 0.67, ν1 = 16, γ1 = 1.2, λ = 0.35, ρ = 0.25, α = 10−6, d = 2, u = 15.

These values were chosen to be within the range of the estimated parameters

in Table 1. The parameters θ are first estimated on the whole dataset. The

evolution of the parameter estimates over time are represented in Figure 8. The

algorithm manages to correctly estimate this set of parameters. Based on the final

estimated value, the particle filter is then run again on the whole dataset. The

MAP, posterior of changepoints, and number of particles for a portion of the data

are represented in Figure 9. The true transcribed segments are represented by red

patches. The number of particles varies over time adaptively. It increases as long

as there is no changepoint, and decreases when evidence of a changepoint occurs.

The predictive histogram and qq-plot are given in Figure 10. Even with a few

number of particles (20 on average), the algorithm manages to estimate the model

parameters (including the segment boundaries) very well.
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7 Discussion

We have developed a flexible changepoint model combined with an on-line param-

eter estimation method which provides a powerful framework for detecting RNA

transcripts from tiling array experiments. Our method presents several advan-

tages over current approaches. In particular, it does not suffer from degeneracy

problems of standard particle methods for static parameter estimation (Andrieu

et al. 2004; Fearnhead 2002). Additionally, it can automatically detect the num-

ber of segments and call transcript regions. In addition, the estimation algorithm

is linear in the number of features, which is an important characteristic for whole

genome analysis where the number of features is very large. Using two experi-

ments on Affymetrix tiling arrays, we have shown that our approach can provide

powerful detection of RNA transcript compared to a sliding window approach or

a simple segmentation algorithm. This is particularly true of the human dataset

were we have detected all of the verified transcripts. In addition, we have per-

formed a simulation study which showed that our estimation procedure provides

good estimates of the unknown parameters, including the unknown changepoints.

Here we have assumed that the biological process of transcription can be de-

scribed by piecewise constant expression levels. In reality, the actual biological

process could lead to more complex hybridization profiles than the piecewise con-

stant shape assumed here. In addition, we have assumed that conditioning on the

changepoints, the residuals are independent. In reality, the residuals might not be

independent due to complex biological processes and overlaps in probe sequences.

This said, we view our model as a useful approximation to the true biological

process that can be used to detect meaningful transcripts as demonstrated with

the two experimental datasets explored here.
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Finally, even though our model was developed for RNA transcript analysis,

the methodology introduced is far more general and could be used in many other

problems (e.g. copy number variation), other type of arrays (e.g. Nimblegen,

Agilent), and also the applications discussed in Fearnhead and Liu (2007).
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A Distributions

The probability distribution of the skew t-distribution with parameters ϕ0, ψ0, ζ0

and ξ0 is given by

2

ψ0
t

(
x− ϕ0

ψ0
, ζ0

)
T



ξ0

(
x− ϕ0

ψ0

) √√√√
ζ0 + 1

(
x−ϕ0

ψ0

)2

+ ζ0

, ζ0 + 1



 (22)

where t and T are the standard centered student t density and cumulative density

function, respectively. The parameters ϕ0, ψ0, ζ0 and ξ0 represent the location,

scale, degrees of freedom and skewness parameters. The normal inverse gamma

distribution (µ, σ2) ∼ N iG(m1, s1, ν1, γ1) is defined by

(µi|σ2
i ) ∼ N (m1, s

2
1σ

2
i ), σ2

i ∼ iG(
ν1

2
,
γ1

2
)
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and the resulting joint pdf is given by

N iG(µi, σ
2
i |m1, s1, ν1, γ1) = (2πs2

1σ
2
i )
−1/2 exp(− 1

2s2
1σ

2
i

(x−m1)
2)

×
(γ1

2 )
ν1
2

Γ(ν1
2 )

(σ2
i )
− ν

2−1 exp(− γ1

2σ2
i

).

B Marginal likelihoods

B.1 Transcribed segments

The marginal likelihood p(zτi+1:τi+1|ri = 1) is

p(zτi+1:τi+1|ri = 1) =

∫
p(zτi+1:τi+1|ri = 1, µi, σ

2
i )p(µi, σ

2
i )dµidσi

= π−n/2(1 + ns2
1)
−1/2(s2 +

n(m−m1)2

1 + ns2
1

+ γ1)
−(n+ν1)/2

× γν1/2
1

Γ((n + ν1)/2)

Γ(ν1/2)

where m = 1
n

∑τi+1

k=τi+1 zk, s2 =
∑τi+1

k=τi+1 (zk −m)2 and n = τi+1 − τi.

B.2 Non-transcribed segments

The marginal likelihood p(zτi+1:τi+1|ri = 0) is

p(zτi+1:τi+1|ri = 0) = (1−p0)p(zτi+1:τi+1|ri = 0, qi = 0)+p0p(zτi+1:τi+1|ri = 0, qi = 1)

where

p(zτi+1:τi+1|ri = 0, qi = 0) =

τi+1∏

k=τi+1

st(zk; ϕ0, ψ0, ζ0, ξ0)

p(zτi+1:τi+1|ri = 0, qi = 1) = π−n/2(1 + ns2
0)
−1/2

(
s2 +

n(m−m0)2

1 + ns2
0

+ γ0

)−(n+ν0)/2

× γν0/2
0

Γ((n + ν0)/2)

Γ(ν0/2)

where again m = 1
n

∑τi+1

k=τi+1 zk, s2 =
∑τi+1

k=τi+1 (zk −m)2 and n = τi+1 − τi.
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Figure 6: Segmentation results for two close-up regions from the human data. Our
MAP segmentation (top) provides a better fit to the data and properly detect a
verified transcript not detected by Huber’s method (bottom).
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(d)

Figure 7: Histogram of Pr(Zt ≤ zt|z1:t−1) and qq-plot for the Yeast (a-b) and
Human (c-d) Datasets.
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Figure 8: Parameter estimates for the simulated data. The value of each parameter
is shown as a function of iterations. The true value for each parameter is shown
with a horizontal line.
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Figure 9: (top) MAP, (middle) posterior of changepoints and (bottom) number
of particles for the simulated dataset. On the top figure, the true transcribed
segments are represented by red patches.
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Figure 10: Histogram of Pr(Zt ≤ zt|z1:t−1) and qq-plot for the simulated dataset
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