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Normal mixture distributions are arguably the most important

mixture models, and also the most challenging technically. The likeli-

hood function of the normal mixture model is unbounded based on a

set of random samples unless an artificial bound is placed on its com-

ponent variance parameter. Moreover, the model is not strongly iden-

tifiable so it is hard to differentiate between over-dispersion caused

by the presence of a mixture and that caused by a large variance;

and it has infinite Fisher information with respect to mixing pro-

portions. There has been extensive research on finite normal mixture

models, but much of it addresses merely consistency point estimation

or useful practical procedures, and many results require undesirable

restrictions on the parameter space. We show that an EM-test for

homogeneity is effective at overcoming many challenges in the con-

text of finite normal mixtures. We find that the limiting distribution

of the EM-test is a simple function of the 0.5χ2
0 + 0.5χ2

1 and χ2
1 dis-

tributions when the mixing variances are equal but unknown, and

the χ2
2 when variances are unequal and unknown. Simulations show

that the limiting distributions approximate the finite sample distri-

bution satisfactorily. Two genetic examples are used to illustrate the

application of the EM-test.

1. Introduction. The class of finite normal mixture models has many

applications. More than a hundred years ago, Pearson (1894) modeled a

set of crab observations with a two-component normal mixture distribution.

In genetics, such models are often used for quantitative traits influenced
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EM APPROACH FOR NORMAL MIXTURES 3

by major genes. Roeder (1994) discusses an example in which the blood

chemical concentration of interest is influenced by a major gene with additive

effects; see Schork et al. (1996) for additional examples in human genetics.

Normal mixture models are also used to account for heterogeneity in the

age of onset for male and female schizophrenia patients (Everitt, 1996), and

used in hematology studies (McLaren, 1996). They play a fundamental role

in cluster analysis (Tadesse et al., 2005; Raftery and Dean, 2006), and in

the study of the false discovery rate (Efron, 2004; McLachlan et al., 2006;

Sun and Cai, 2007; Cai et al. 2007). In financial economics they are used for

daily stock returns (Kon, 1984).

Contrary to intuition, of all the finite mixture models, the normal mix-

ture models have the most undesirable mathematical properties. Their likeli-

hood functions are unbounded unless the component variances are assumed

equal or constrained, the Fisher information can be infinite, and the strong

identifiability condition is not satisfied. We demonstrate these points in the

following example.

Example 1. Let X1, . . . ,Xn be a random sample from the following

normal mixture model:

(1.1) (1 − α)N(θ1, σ
2
1) + αN(θ2, σ

2
2).

Let f(x, θ, σ) be the density function of a normal distribution with mean θ

and variance σ2. The likelihood function is given by

(1.2) ln(α, θ1, θ2, σ1, σ2) =
n
∑

i=1

log{(1 − α)f(Xi; θ1, σ1) + αf(Xi; θ2, σ2)}.

1. (Unbounded likelihood function). The log-likelihood function is un-

bounded for any given n because when θ1 = X1, 0 < α < 1, it goes to

infinity when σ1 → 0.

2. (Infinite Fisher information). For each given θ1, θ2, σ2
1, and σ2

2, we

have

Sn =
∂ln(α, θ1, θ2, σ1, σ2)

∂α

∣

∣

∣

α=0
=

n
∑

i=1

{f(Xi; θ2, σ2)

f(Xi; θ1, σ1)
− 1

}

.

Under the homogeneous model in which θ1 = 0, σ1 = 1, and α = 0,

i.e., N(0,1), the Fisher information

E{S2
n} = ∞, whenever σ2

2 > 2.
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4 J. CHEN AND P. LI

3. (Loss of strong identifiability). It can be seen that

∂2f(x; θ, σ)

∂θ2
|(θ,σ2)=(0,1) = 2

∂f(x; θ, σ)

∂(σ2)
|(θ,σ2)=(0,1).

This is in violation of the strong identifiability condition introduced in

Chen (1995).

The above properties of finite normal mixture models are in addition to

other undesirable properties of general finite mixture models. In Hartigan

(1985), Liu et al. (2003), and Liu and Shao (2004), the likelihood ratio statis-

tic is shown to diverge to infinity as the sample size increases, which forces

most researchers to restrict the mixing parameter (θ) into some compact

space. Without which, Hall and Stewart (2005) find the likelihood ratio test

can only consistently detect alternative models at distance (n−1 log log n)1/2

rather than at the usual distance n−1/2. The partial loss of identifiability,

when θ1 = θ2, once forced in a technical separate condition, |θ1−θ2| ≥ ǫ > 0

(Ghosh and Sen, 1985). This condition has recently been shown to be un-

necessary by many authors, for instance, Garel (2005).

The unbounded likelihood prevents straightforward use of maximum like-

lihood estimation. Placing an additional constraint on the parameter space

(e.g., Hathaway, 1985) or adding a penalty function (Chen at al., 2008) to

the log-likelihood regains the consistency and efficiency of the maximum

constrained/penalized likelihood estimators.

The loss of strong identifiability results in a lower best possible rate of

convergence (Chen, 1995; Chen and Chen, 2003). Furthermore it invalidates

many elegant asymptotic results such as those in Dacunha-Castelle and Gas-

siat (1999), Chen et al. (2001), and Charnigo and Sun (2004). Finite Fisher

information is a common hidden condition of these papers, but it did not

gain much attention until the paper of Li et al. (2008).

Due to the indisputable importance of finite normal mixture models, de-

veloping valid and useful statistical procedures is an urgent task, particularly

for the test of homogeneity. Yet the task is challenging for the reasons pre-

sented. Many existing results used simulated quantiles of the corresponding

statistics, see Wolfe (1971), McLachlan (1987), and Feng and McCulloch

(1994). Without rigorous theory, however, it is difficult to reconcile their

varying recommendations.

In this paper, we investigate the application of the EM-test (Li et al.,

2008) to finite normal mixture models, and show that this test provides
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EM APPROACH FOR NORMAL MIXTURES 5

a most satisfactory and general solution to the problem. Interestingly, our

asymptotic results do not require any constraints on the mean and variance

parameters, or compactness of the parameter space.

In Section 2, we present the result for the normal mixture model (1.1)

when σ2
1 = σ2

2 = σ2. The limiting distribution of the EM-test is shown to be a

simple function of the 0.5χ2
0+0.5χ2

1 and the χ2
1 distributions. In Section 3, we

present the result for the general normal mixture model (1.1). The limiting

distribution of the EM-test is found to be the χ2
2. Both results are stunningly

simple and convenient to apply. In both cases, we conduct simulation studies

and the outcomes are in good agreement with the asymptotic results. In

Section 4, we give two genetic examples. For convenience of the presentation,

the proofs are deferred to the Appendix.

2. Normal mixture models in the presence of the structural pa-

rameter. When σ1 = σ2 = σ and σ is unknown in model (1.1), we call σ

the structural parameter. We are interested in the test of the homogeneity

null hypothesis

H0 : α(1 − α)(θ1 − θ2) = 0

under this assumption. Without loss of generality, we assume 0 ≤ α ≤ 0.5.

Because the population variance Var(X1) is the sum of the component

variance σ2 and the variance of the mixing distribution α(1−α)(θ1−θ2)
2, σ2

is often underestimated by straight likelihood methods. Furthermore, most

asymptotic results are obtained by approximating the likelihood function

with some form of quadratic function (Liu and Shao, 2003; Marriott, 2007).

The approximation is most precise when the fitted α value is away from

0 and 1. Based on these considerations, we recommend using the modified

log-likelihood

pln(α, θ1, θ2, σ) = ln(α, θ1, θ2, σ, σ) + pn(σ) + p(α)

with ln(·) given in (1.2). We usually select pn(σ) such that it is bounded

when σ is large, but goes to negative infinity as σ goes to 0, and p(α) such

that it is maximized at α = 0.5 and goes to negative infinity as α goes to 0

or 1. Concrete recommendations will be given later.

To construct the EM-test, we first choose a set of αj ∈ (0, 0.5], j =

1, 2, . . . , J , and a positive integer K. For each j = 1, 2, . . . , J , let α
(1)
j = αj
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6 J. CHEN AND P. LI

and compute

(θ
(1)
j1 , θ

(1)
j2 , σ

(1)
j ) = arg max

θ1, θ2, σ
pln(α

(1)
j , θ1, θ2, σ).

For i = 1, 2, . . . , n and the current k, we use an E-step to compute

w
(k)
ij =

α
(k)
j f(Xi; θ

(k)
j2 , σ

(k)
j )

(1 − α
(k)
j )f(Xi; θ

(k)
j1 , σ

(k)
j ) + α

(k)
j f(Xi; θ

(k)
j2 , σ

(k)
j )

and then update α and other parameters by an M-step such that

α
(k+1)
j = arg max

α
{(n −

n
∑

i=1

w
(k)
ij ) log(1 − α) +

n
∑

i=1

w
(k)
ij log(α) + p(α)}

and

(θ
(k+1)
j1 , θ

(k+1)
j2 , σ

(k+1)
j ) = arg

[

max
θ1, θ2, σ

2
∑

h=1

n
∑

i=1

w
(k)
ij log{f(Xi; θh, σ)} + pn(σ)

]

.

The E-step and the M-step are iterated K − 1 times.

For each k and j, we define

M (k)
n (αj) = 2{pln(α

(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j ) − pln(1/2, θ̂0, θ̂0, σ̂0)}

where (θ̂0, σ̂0) = arg maxθ,σ pln(1/2, θ, θ, σ).

The EM-test statistic is then defined as

EM (K)
n = max{M (K)

n (αj) : j = 1, . . . , J}.

We reject the null hypothesis when EM
(K)
n exceeds some critical value to

be determined.

Consider the simplest case where J = K = 1 and α1 = 0.5. In this

case, the EM-test is the likelihood ratio test against the alternative models

with known α = 0.5. The removal of one unknown parameter in the model

simplifies the asymptotic property of the (modified) likelihood ratio test, and

the limiting distribution becomes the 0.5χ2
0 + 0.5χ2

1 which does not require

the parameter space of θ to be compact. The price of this simplicity is a

loss of efficiency when the data are from an alternative model with α 6= 0.5.

Choosing J > 1 initial values of α reduces the efficiency loss because the true

α value can be close to one of the initial values. The EM-iteration updates
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EM APPROACH FOR NORMAL MIXTURES 7

the value of αj and moves it toward the true α-value while retaining the

nice asymptotic property.

Specific choice of initial set of α values is not crucial in general. This is

another benefit of the EM-iteration. The updated α-values from either α =

0.3 or α = 0.4 are likely very close after two iterations. Hence, we recommend

{0.1, 0.3, 0.5}. If some prior information indicates that the potential α value

under the alternative model is low, then choosing {0.01, 0.025, 0.05, 0.1} can

improve the power of the test. We leave refinement considerations into a

future research project at this stage.

The idea of the EM-test was introduced by Li et al. (2008) for mixture

models with a single mixing parameter. Yet finite normal mixture models

do not fit into the general theory and pose specific technical challenges. The

asymptotic properties of the EM-test will be presented in the next subsec-

tion. The recommendation for penalty functions will be given in subsection

2.2.

2.1. Asymptotic properties. We study the asymptotic properties of the

EM-test under the following conditions on the penalty functions p(α) and

pn(σ):

C0. p(α) is a continuous function such that it is maximized at α = 0.5

and goes to negative infinity as α goes to 0 or 1.

C1. sup{|pn(σ)| : σ > 0} = o(n).

C2. The derivative p′n(σ) = op(n
1/4) at any σ > 0.

We allow pn to be dependent on the data. To ensure that the EM-test

has the invariant property, we recommend choosing a pn that also satisfies

C3. pn(aσ; aX1 + b, . . . , aXn + b) = pn(σ;X1, . . . ,Xn).

The following intermediate results reveal some curious properties of the

finite normal mixture model:

Theorem 1. Suppose Conditions C0, C1, and C2 hold. Under the null

distribution N(θ0, σ
2
0) we have, for j = 1, . . . , J and any k ≤ K,

(a) if αj = 0.5 then

θ
(k)
j1 − θ0 = Op(n

−1/8), θ
(k)
j2 − θ0 = Op(n

−1/8),

α
(k)
j − αj = Op(n

−1/4), σ
(k)
j − σ0 = Op(n

−1/4);
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8 J. CHEN AND P. LI

(b) if 0 < αj < 0.5 then

θ
(k)
j1 − θ0 = Op(n

−1/6), θ
(k)
j2 − θ0 = Op(n

−1/6),

α
(k)
j − αj = Op(n

−1/4), σ
(k)
j − σ0 = Op(n

−1/3).

Note that the convergence rates of (θ
(k)
j1 , θ

(k)
j2 , σ

(k)
j ) depend on the choice

of initial α value, and it singles out α = 0.5. Even when α1 = 0.5, α
(k)
1 6= 0.5

when k > 1. However, this does not reduce Case (a) to Case (b) because

α
(k)
1 = 0.5 + op(1) rather than equaling a non-random constant α1 6= 0.5.

Theorem 2. Suppose Conditions C0, C1, and C2 hold and α1 = 0.5.

Then under the null distribution N(θ0, σ
2
0) and for any finite K, as n → ∞,

Pr(EM (K)
n ≤ x) → F (x − ∆){0.5 + 0.5F (x)},

where F (x) is the cumulative density function (cdf) of the χ2
1 and

∆ = 2 max
αj 6=0.5

{p(αj) − p(0.5)}.

To shed some light on the non-conventional results, we reveal some helpful

momental relationships. Without loss of generality, assume that under the

null model, θ1 = θ2 = 0 and σ2 = 1. The EM-test or other likelihood-

based methods fit the data from the null model with an alternative model

(1−α)N(θ1, σ
2) + αN(θ2, σ

2). Asymptotically, the fit matches the first few

sample moments. When α = 0.5 is presumed, the first three moments of a

homogeneous model and an alternative model can be made identical with

proper choice of the values of the remaining parameters. Which model fits

the data better is revealed through the fourth moment,

E(X4
1 ) = 3 − (θ4

1 + θ4
2) ≤ 3.

Thus, for local alternatives, we may as well test

H0 : E(X4
1 ) = 3 versus Ha : E(X4

1 ) < 3.

The parameter of this null hypothesis is on the boundary so that the null

limiting distribution of Mn(0.5) is the 0.5χ2
0 + 0.5χ2

1.

When α = α0 ∈ (0, 0.5), the first two moments of the null and alternative

models can be made identical, but their third moments differ because

E(X3
1 ) = (1 − α0)θ

3
1 + α0θ

3
2,
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EM APPROACH FOR NORMAL MIXTURES 9

which can take any value in a neighborhood of 0. Thus, for local alternatives,

we may as well test

H0 : E(X3
1 ) = 0 versus Ha : E(X3

1 ) 6= 0.

Because the null hypothesis is an interior point, Mn(α0) has the asymptotic

distribution χ2
1 + 2{p(α0)− p(0.5)} in which 2{p(α0)− p(0.5)} is due to the

penalty.

Since the sample third and fourth moments are asymptotically orthogo-

nal, the limiting distribution of the EM-test involves the maximum of two

independent distributions, the χ2
1 and the 0.5χ2

0 + 0.5χ2
1, and a term caused

by the penalty p(α). This is the result as in the above theorem.

The order assessment results in Theorem 1 can be similarly explained. If

α = 0.5 is presumed, the fitted fourth moment of the mixing distribution

will be Op(n
−1/2) and hence both fitted θ1 and θ2 are Op(n

−1/8). For other

α values, the fitted third moment is Op(n
−1/2), which implies that the fitted

θ1 and θ2 are O(n−1/6).

2.2. Simulation results. We demonstrate the precision of the limiting

distribution via simulation and explore the power properties. Among several

existing results, the modified likelihood ratio test (MLRT) in Chen and

Kalbfleisch (2005) is known to have an accurate asymptotic upper bound.

Thus we also include this method in our simulation.

The key idea of the MLRT is to define the modified likelihood function

as

l̃n(α, θ1, θ2, σ) = ln(α, θ1, θ2, σ) + p(α)

and the recommended penalty function is log{4α(1−α)}. The corresponding

statistic is defined as

Mn = 2{ln(α̃, θ̃1, θ̃2, σ̃) − ln(0.5, θ̃0, θ̃0, σ̃0)}

where (α̃, θ̃1, θ̃2, σ̃) and (0.5, θ̃0, θ̃0, σ̃0) maximize l̃n under the alternative and

null models respectively. Unlike that for the EM-test, the limiting distribu-

tion of Mn is unknown, but is shown to have an upper bound χ2
2 when θ is

confined in a compact space. Chen and Kalbfleisch (2005) show that the type

I errors of the MLRT with critical values determined by the χ2
2 distribution

are close to the nominal values.
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10 J. CHEN AND P. LI

For the EM-test statistics, we choose the penalty function

pn(σ) = −
{

s2
n/σ2 + log(σ2/s2

n)
}

,

where s2
n = n−1∑n

i=1(Xi − X̄)2 with X̄ = n−1∑n
i=1 Xi.

It can be seen that (a) pn(σ) satisfies Conditions C1-C3; (b) it effectively

places an inverse gamma prior on σ2; (c) it allows a closed form expression

for σ
(k)
j ; and (d) it is maximized at σ2 = s2

n. In fact, even a constant function

pn(σ) satisfies C1-C2. This choice of pn(σ) prevents under-estimation of σ2

and plays a role of higher order adjustment.

For the penalty function p(α), we choose p(α) = log(1 − |1 − 2α|). We

refer to Li et al. (2008) for reasons of this choice. The combination of pn(σ)

and p(α) results in accurate type I errors for the EM-test.

We conducted the simulation with two groups of initial values for α: (0.1,

0.2, 0.3, 0.4, 0.5) and (0.1, 0.3, 0.5). We generated 20,000 random samples

from N(0, 1) with sample size n (n=100, 200). The simulated null rejection

rates are summarized in Table 1. The EM-test and the MLRT both have

accurate type I errors, especially EM
(2)
n with the three initial values (0.1,

0.3, 0.5) for α.

Table 1

Type I errors (%) of the EM-test and the MLRT.

Level EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n MLRT

n = 100
10% 8.9 9.1 9.2 9.2 9.9 10.2 10.9
5% 4.6 4.8 4.8 4.6 5.1 5.3 5.7
1% 0.9 1.0 1.0 0.9 1.0 1.1 1.2

n = 200
10% 9.3 9.4 9.5 9.7 10.0 10.3 9.8
5% 4.6 4.8 4.8 4.7 5.0 5.1 5.0
1% 1.0 1.1 1.1 0.9 1.1 1.1 1.1

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5).
Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5).

We selected four models for power assessment. The parameter settings are

shown in Rows 2 to 5 of Table 2. The powers of the EM-test and the MLRT

are estimated based on 5,000 repetitions and are presented in Table 3. We

used the simulated critical values to ensure fairness of the comparison. The

results show that the EM-test statistics based on three initial values have

almost the same power as those from five initial values. Combining the type
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EM APPROACH FOR NORMAL MIXTURES 11

I error results and the power comparison results, we recommend the use of

EM
(2)
n with three initial values (0.1, 0.3, 0.5) for α.

The EM-test has higher power when the mixing proportion α is close to

0.5, while the MLRT statistic performs better when α is close to 0. However,

the limiting distribution of the EM-test is obtained without any restrictions

on the model, while the limiting distribution of the MLRT is unknown, and

the upper bound result is obtained under some restrictions. When α is small

and some prior information on α value is known, the lower efficiency prob-

lem of the EM-test can be easily fixed. We conducted additional simulation

by choosing the set of initial α-values {0.1, 0.05, 0.025, 0.01}. In this case,

the limiting distribution of the EM-test becomes χ2
1 + 2{p(0.1) − p(0.5)}.

When n = 100, the power comparison between the EM-test and the MLRT

becomes 71.5% versus 71.0% for Model III, and 73.1% versus 75% for Model

IV. Therefore the EM-test can be refined to attain higher efficiency and in

many ways. Naturally, a systematic way is preferential and is best left to a

future research project.

The other eight models in Table 2 have unequal variances, which are

mainly selected for power comparisons in Section 3.3. To examine the im-

portance of the equal variance assumption, we applied the current EM-test

designed for finite normal mixture models in the presence of a structural

parameter to the data from models V and IX. In some sense, Model V is a

null model because its two component means are equal; while Model IX is

an alternative model because its two component means are unequal. It can

be seen in Table 3 that the current EM-test has a rightfully low rejection

rate against Model V. This property is not shared by the MLRT. At the

same time, the current EM-test has good power for detecting model IX. In

fact, the power is comparable to that of the EM-test designed for finite nor-

mal mixture models with unequal variances, to be introduced in the next

section. We conclude that when σ1/σ2 is close to 1, the power of the current

EM-test is not sensitive to the σ1 = σ2 assumption.

To explore what happens when σ1/σ2 is large, we generated data from

Model IX with σ1 re-set to 2.4. The current EM-test rejected the null hy-

pothesis 84% of the time, compared to a 96% rejection rate for the EM-test

designed for finite mixture models without an equal variance assumption

when n = 100. We conclude that when the two component variances are

rather different, the current EM-test should not be used. An EM-test de-

signed for finite mixture models without an equal variance assumption is
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12 J. CHEN AND P. LI

preferred.

Table 2

Parameter values of normal mixture models for power assessment.

1 − α θ1 θ2 σ1 σ2

Model I 0.50 -1.15 1.20 1.00 1.00
Model II 0.25 -1.15 1.15 1.00 1.00
Model III 0.10 -1.30 1.30 1.00 1.00
Model IV 0.05 -1.55 1.55 1.00 1.00

Model V 0.50 0.00 0.00 1.20 0.50
Model VI 0.25 0.00 0.00 1.15 0.50
Model VII 0.10 0.00 0.00 1.40 0.50
Model VIII 0.05 0.00 0.00 1.85 0.50

Model IX 0.50 0.75 -0.75 1.20 0.80
Model X 0.25 0.65 -0.65 1.20 0.80
Model XI 0.10 0.85 -0.85 1.20 0.80
Model XII 0.05 1.15 -1.15 1.20 0.80

Table 3

Powers (%) of the EM-test and the MLRT at 5% level.

Model EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n MLRT

n = 100
I 53.4 53.2 52.8 53.8 53.4 53.4 45.2
II 51.8 51.7 51.6 50.3 50.5 50.7 50.7
III 51.9 52.2 52.2 50.7 51.3 51.7 59.2
IV 49.5 51.2 51.5 50.7 51.6 52.0 63.1

V 15.2 17.0 17.6 16.0 17.8 18.1 33.4
IX 49.4 49.3 49.1 48.1 48.7 48.6 48.3

n = 200
I 85.2 85.2 85.1 85.3 85.4 85.3 80.1
II 85.0 84.9 84.9 84.7 84.8 84.7 84.3
III 86.0 86.1 86.1 85.7 85.8 85.9 90.9
IV 81.4 82.3 82.5 82.5 83.1 83.2 91.1

V 23.0 25.0 25.9 24.4 26.0 26.9 52.9
IX 82.3 82.2 82.2 81.8 82.0 82.0 82.1

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5).
Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5).

3. Normal Mixture Models in Both Mean and Variance Param-

eters.

3.1. The EM-test Procedure. In this section, we apply the EM-test to

the test of homogeneity in the general normal mixture model (1.1) where
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EM APPROACH FOR NORMAL MIXTURES 13

both θ and σ are mixing parameters. We wish to test

H0 : α(1 − α) = 0 or (θ1, σ
2
1) = (θ2, σ

2
2).

Compared to the case where σ is a structural parameter, the asymp-

totic properties of likelihood-based methods become much more challenging

because of the unbounded log-likelihood and infinite Fisher information. Es-

pecially because of the latter, there exist few asymptotic results for general

finite normal mixture models. Interestingly, we find that the EM-test can

be directly applied and the asymptotic distribution is particularly simple.

However, its derivation is complex.

To avoid the problem of unbounded likelihood, adding a penalty becomes

essential in our approach. We define

pln(α, θ1, θ2, σ1, σ2) = ln(α, θ1, θ2, σ1, σ2) + pn(σ1) + pn(σ2) + p(α),

where pn(σ), p(α) are the same as before.

The EM-test statistic is constructed similarly. We first choose a set of αj ∈
(0, 0.5], j = 1, 2, . . . , J , and a positive integer K. For each j = 1, 2, . . . , J ,

let α
(1)
j = αj and compute

(θ
(1)
j1 , θ

(1)
j2 , σ

(1)
j1 , σ

(1)
j2 ) = arg max

θ1, θ2, σ1, σ2

pln(α
(1)
j , θ1, θ2, σ1, σ2).

For i = 1, 2, . . . , n, and the current k, we use the E-step to compute

w
(k)
ij =

α
(k)
j f(Xi; θ

(k)
j2 , σ

(k)
j )

(1 − α
(k)
j )f(Xi; θ

(k)
j1 , σ

(k)
j ) + α

(k)
j f(Xi; θ

(k)
j2 , σ

(k)
j )

and then we use the M-step to update α and other parameters such that

α
(k+1)
j = arg max

α
{(n −

n
∑

i=1

w
(k)
ij ) log(1 − α) +

n
∑

i=1

w
(k)
ij log(α) + p(α)}

and

(θ
(k+1)
j1 , θ

(k+1)
j2 , σ

(k+1)
j1 , σ

(k+1)
j2 )

= arg max
θ1, θ2, σ1, σ2

2
∑

h=1

[

n
∑

i=1

w
(k)
ij log{f(Xi; θh, σh)} + pn(σh)

]

.

The E-step and the M-step are iterated K − 1 times.
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14 J. CHEN AND P. LI

For each k and j, we define

M (k)
n (αj) = 2{pln(α

(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) − pln(1/2, θ̂0, θ̂0, σ̂0, σ̂0)}

where (θ̂0, σ̂0) = arg maxθ,σ pln(1/2, θ, θ, σ, σ). The EM-test statistic is then

defined as

EM (K)
n = max{M (K)

n (αj) : j = 1, . . . , J}.

We reject the null hypothesis when EM
(K)
n exceeds some critical value to

be determined.

In terms of statistical procedure, the EM-test for the case of σ2
1 = σ2

2 is

a special case of σ2
1 6= σ2

2 . However, the asymptotic distributions and their

derivations are different.

3.2. Asymptotic properties. We further require that pn(σ) satisfies C1

and

C4. p′n(σ) = op(n
1/6) for all σ > 0.

C5. pn(σ) ≤ 4(log n)2 log(σ), when σ ≤ n−1 and n is large.

The following theorems consider the consistency of (α
(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 )

and give the major result. The proofs are given in the Appendix.

Theorem 3. Suppose Conditions C0, C1, and C4-C5 hold. Under the

null distribution N(θ0, σ
2
0) we have, for j = 1, . . . , J , h = 1, 2, and any

k ≤ K,

α
(k)
j − αj = op(1), θ

(k)
jh − θ0 = op(1), and σ

(k)
jh − σ0 = op(1).

Theorem 4. Suppose Conditions C0, C1, and C4-C5 hold. When α1 =

0.5, under the null distribution N(θ0, σ
2
0) and for any finite K, as n → ∞,

EM (K)
n

d→ χ2
2.

It is a surprise that the EM-test has a simpler limiting distribution when

applied to a more complex model. We again shed some light on this via some

moment consideration.

The test of homogeneity is to compare the fit of the null N(0, 1) and the

fit of the full model. The limiting distribution amounts to considering this

problem when the data are from the null model. By matching the first two
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EM APPROACH FOR NORMAL MIXTURES 15

moments of the full model to the first two sample moments, we roughly

select a full model such that

(1 − α)θ1 + αθ2 = 0 and (1 − α)(θ2
1 + σ2

1) + α(θ2
2 + σ2

2) = 1.

Let β1 = θ2
1 + σ2

1 − 1. When the value of α = α0 ∈ (0, 0.5] (say α0 = 0.5),

the third moment and the fourth moment of the full model are

E(X3
1 ) = 3θ1β1,

E(X4
1 ) = 3β2

1 − 2θ4
1 + 3.

It is easy to verify that {E(X3
1 ), E(X4

1 )} = {0, 3} if and only if the mixture

model is the homogeneous model. Therefore, we may as well test

H0 : {E(X3
1 ), E(X4

1 )} = {0, 3} versus Ha : {E(X3
1 ), E(X4

1 )} 6= {0, 3}.

As shown in Figure 1, {0, 3} is an interior point of the parameter space of

{E(X3
1 ), E(X4

1 )}. Therefore the null limiting distribution of the EM-test is

the χ2
2. We note that when the observations are from an alternative model,

the situation is totally different. A test on moments is not equivalent to the

EM-test.

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

5
6

Third moment

F
or

th
 m

om
en

t

(0,3)

Fig 1. The range (area inside the solid line) of {E(X3
1 ), E(X4

1 )}.
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16 J. CHEN AND P. LI

3.3. Simulation Studies. We demonstrate the precision of the limiting

distribution and explore the power properties via simulations. In contrast

to the case where σ2
1 = σ2

2, the EM-test does not have many competitors.

Thus we set up an MLRT method with

Mn = 2

{

sup
α,θ1,θ2,σ1,σ2

pln(α, θ1, θ2, σ1, σ2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)

}

.

Although the limiting distribution of Mn is not available, we simulate the

critical values and use the MLRT as an efficiency barometer.

We suggest using the penalty function pn(σ) = −0.25
{

sn/σ2+log(σ2/sn)
}

which is almost the same as before, except for the coefficient because we

have two penalty terms in this problem. Our simulation shows that this

choice works well in terms of providing accurate type I errors. We use

p(α) = log(1−|1−2α|) according to the recommendation of Li et al. (2008).

In the simulations, the type I errors were calculated based on 20,000

samples from N(0, 1). As in Section 2.2, we used two groups of initial values

(0.1, 0.2, 0.3, 0.4, 0.5) and (0.1, 0.3, 0.5) to calculate EM
(K)
n . The simulation

results are summarized in Table 4. The EM-test statistics based on (0.1, 0.3,

0.5) give accurate type I errors.

Table 4

Type I errors (%) of the EM-test.

Level EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n

n = 100
10% 10.8 10.9 10.9 10.5 10.6 10.6
5% 5.5 5.5 5.6 5.3 5.4 5.4
1% 1.2 1.2 1.2 1.1 1.2 1.2

n = 200
10% 10.7 10.7 10.7 10.4 10.5 10.5
5% 5.4 5.4 5.4 5.1 5.2 5.2
1% 1.1 1.1 1.1 1.0 1.0 1.0

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5)
Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5)

The powers of the EM-test and the MLRT for the models in Table 2 are

calculated based on 5,000 repetitions and presented in Table 5. Since the

limiting distribution of the MLRT is unavailable and hence is not a viable

method, the simulated critical values were used for power calculation. The

simulation results show that the EM
(2)
n and EM

(3)
n based on three initial

values (0.1,0.3,0.5) for α have almost the same power as the MLRT. Further
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EM APPROACH FOR NORMAL MIXTURES 17

increasing the number of iterations or the number of initial values for α does

not increase the power of the EM-test statistics. We hence recommend the

use of EM
(2)
n or EM

(3)
n based on three initial values (0.1, 0.3, 0.5) for α.

We note that when σ1 = σ2, the current EM-test loses some power com-

pared to the EM-test designed for finite mixture models in the presence of

a structural parameter if the mixing parameter α is close to 0.5, but it has

higher power when α is near 0 or 1. Nevertheless, we recommend the use of

the current EM-test if the equal variance assumption is likely violated.

Table 5

Powers (%) of the EM-test and the MLRT at the 5% level.

Model EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n MLRT

n = 100
I 44.0 44.0 43.9 44.1 43.8 43.8 44.0
II 47.7 47.9 47.8 47.5 47.5 47.4 47.9
III 55.5 55.5 55.4 55.6 55.6 55.5 55.5
IV 56.9 56.9 56.8 57.4 56.9 56.8 56.8

V 58.6 58.4 58.4 58.8 58.8 58.7 58.2
VI 63.5 63.3 63.3 63.7 63.6 63.6 63.2
VII 66.8 66.6 66.6 66.9 66.8 66.8 66.6
VIII 67.3 67.2 67.2 67.4 67.2 67.1 67.4

IX 48.9 48.8 48.7 49.1 48.8 48.7 48.7
X 54.6 54.6 54.5 55.0 54.8 54.6 54.3
XI 56.5 56.5 56.5 57.0 56.6 56.6 56.3
XII 57.1 57.1 57.0 57.4 57.1 57.0 57.0

n = 200
I 78.3 78.2 78.2 78.3 78.2 78.2 78.2
II 82.0 81.9 81.9 82.2 82.1 82.1 81.9
III 88.6 88.6 88.6 88.8 88.7 88.7 88.5
IV 88.7 88.6 88.6 88.9 88.8 88.8 88.5

V 90.0 89.9 89.9 90.1 90.0 90.0 89.8
VI 91.6 91.5 91.5 91.7 91.6 91.6 91.5
VII 91.4 91.3 91.3 91.5 91.4 91.4 91.3
VIII 89.6 89.6 89.6 89.6 89.5 89.5 89.7

IX 81.7 81.5 81.5 81.9 81.8 81.7 81.4
X 88.1 88.0 88.0 88.3 88.2 88.1 87.9
XI 86.4 86.3 86.3 86.5 86.4 86.4 86.2
XII 87.7 87.6 87.6 87.9 87.9 87.8 87.5

Results in columns (2, 3, 4) used α = (0.1, 0.2, 0.3, 0.4, 0.5).
Results in columns (5, 6, 7) used α = (0.1, 0.3, 0.5).

4. Genetic Applications.

Example 2. We apply the EM-test to the example discussed in Loisel
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18 J. CHEN AND P. LI

et al. (1994). Due to the potential use for hybrid production, cytoplasmic

male sterility in plant species is a trait of much scientific and economic inter-

est. To efficiently use this character, it is important to find nuclear genes—

preferably dominant ones—that induce fertility restoration (MacKenzie and

Bassett, 1987). Loisel et al. (1994) carried out an experiment for detecting

a major restoration gene. In this experiment, 150 F2 bean plants were ob-

tained. The number of pods with one up to a maximum of ten grains were

then counted on each F2 plant. Loisel et al. (1994) suggested analyzing the

square root of the total number of grains for each plant. If a major restora-

tion gene exists, the normal mixture model will provide a more suitable fit;

otherwise the single normal distribution best fits the data. The histogram of

the transformed counts is given in Figure 2. It indicates the existence of two

modes, and an unequal variance normal mixture model is a good choice.

Based on some genetic background, Loisel et al. (1994) postulated a three-

component normal mixture model:

(4.1)
1

4
N(θ1, σ

2) +
1

2
N(θ2, σ

2) +
1

4
N(θ3, σ

2)

and tested the null hypothesis that θ1 = θ2 = θ3. They found that the

limiting distribution of the LRT statistic is a 50-50 mixture of the χ2
1 and

χ2
2, and the resulting p-value is 0.002%. We investigated the null rejection

rates of the LRT under model (4.1) when n = 150 and the critical values

were determined by a 50-50 mixture of the χ2
1 and χ2

2 limiting distributions.

Based on 40,000 repetitions, the simulated null rejection rates were 15.6%,

8.8%, and 2.2% for nominal values of 10%, 5%, and 1%. The above p-value

may be biased toward the liberal side.

For illustration purposes, we re-analyzed the data with the EM-test under

model (1.1) with σ2
1 = σ2

2 . The p-value of the MLRT calibrated with the χ2
2

distribution was found to be 1.4%. We found EM
(2)
n = 6.827 with three

initial values (0.1, 0.3, 0.5) for α, corresponding to the p-value 1.0%. It can

be seen that the EM-test provides stronger evidence against the null model

than the MLRT test.

It appears that the equal variance assumption is not suitable. We con-

sider the EM-test for a finite normal mixture with unequal variance. We

found that EM
(1)
n = 15.966 and EM

(2)
n = 20.590 with three initial values

(0.1, 0.3, 0.5) for α, resulting in the p-values 0.03% and 0.003%, respectively.

Further iteration does not change the p-value much. This result is in line with
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EM APPROACH FOR NORMAL MIXTURES 19

the outcome of Loisel et al. (1994). The modified MLES of (α, θ1, θ2, σ1, σ2)

are (0.175, 10.663, 2.535, 3.203, 1.080), confirming that σ1 6= σ2 and explain-

ing why the EM-test under the general model gives much stronger evidence

against the null model.

Figure 2 shows the fitted density functions of models (1.1) and (4.1). Our

analysis indicates that a two-component mixture model can fit the data just

as well as the model suggested by Loisel et al. (1994). The question of which

model is more appropriate is not the focus of this paper.
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Fig 2. The histogram of the square root of the total number of grains per plant, the fitted
densities of the normal mixtures in (1.1) (solid line) and in (4.1) (dashed line).

Example 3. The second example considers the data presented in Everitt

et al. (2001); see part (b) of Table 6.2. This data set is from a schizophrenia

study reported by Levine (1981), who collated the results of seven studies

on the age of onset of schizophrenia including 99 females and 152 males.

We use the male data to illustrate the use of the EM-test. As suggested by

Levine (1981), there are two types of schizophrenia in males. The first type

is diagnosed at a younger age and is generally more severe; the second type

is diagnosed later in life. We wish to test the existence of the two types of

schizophrenia.

Everitt et al. (2001) fitted the 152 observations using a two-component
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normal mixture model, and used the LRT to test the homogeneity. Using the

χ2
3 distribution for calibration, they found the p-value was less than 0.01%.

Following Everitt (1996), our analysis is based on logarithmic transformed

data. Assuming model (1.1) with σ2
1 = σ2

2 , the p-value of the MLRT cali-

brated with the χ2
2 distribution is 1.8%, but EM

(2)
n = 0 with three initial

values (0.1, 0.3, 0.5) for α.

Removing the σ1 = σ2 assumption, we find that EM
(1)
n = 13.301 and

EM
(2)
n = 13.323 with three α initial values (0.1, 0.3, 0.5) and both p-values

are 0.1%. The modified MLEs of (α, µ1, µ2, σ1, σ2) are (0.448, 1.379, 1.319,

0.192, 0.071). Our analysis indicates that there are two subpopulations in

the population with close mean-ages of onset but different variances. This

also explains why the EM-test designed for finite mixture models in the

presence of a structural parameter is insignificant.

Figure 3 contains the histogram and the fitted densities. It can be seen

that the mixture model with unequal variances fits better. We also computed

the LRT statistic which equals 15.27 under the unequal variance assumption.

If it is calibrated with the χ2
4 distribution, as suggested by Wolfe (1971), the

p-value is 0.4%, and if calibrated with the χ2
6 distribution, as suggested by

McLachlan (1987), the p-value is 1.8% Without a solid theory, it would be

hard to reconcile these inconsistent outcomes.

 

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
1

2
3

Fig 3. The histogram of log age of onset for male schizophrenics, the fitted densities of
the single normal model (dashed line) and normal mixture model in (1.1) (solid line).
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APPENDIX A: PROOFS

A.1. Proofs of Theorems 1 and 2. Without loss of generality, we

assume that the null distribution is N(0, 1). A brief roadmap is as follows.

Lemma 1 shows that any estimator with α bounded away from 0 and 1,

and with a large likelihood value, is consistent for θ1, θ2, and σ under the

null model. Lemma 2 provides technical preparation for Lemma 3. Lemma

3 strengthens Lemma 1 by providing specific convergence rates. Lemma 4

makes Lemmas 1 and 3 applicable to (α
(k)
j , θ

(k)
1j , θ

(k)
2j , σ

(k)
j ), by showing that

the EM-iteration keeps α
(k)
j away from 0 and 1. Theorems 1 and 2 then

follow easily.

Two results, one from Chen et al. (2008) and another from Chen and

Chen (2003), are stated as Lemmas A and B as follows. We include them

here without proof for easy reference.

Lemma A. Except for a zero-probability event not depending on σ, and

under the null model N(0, 1), we have for all large enough n,

sup
θ

n
∑

i=1

I(|Xi − θ| ≤ |σ log σ|) ≤
{

8n{|σ log σ| + n−1} n−1 ≤ σ ≤ e−2

4(log n)2 0 < σ < n−1 .

That is, the number of observations in a small neighborhood of θ has the

above upper bound, uniformly in θ.

The next lemma concerns the expansion of the likelihood function when

θ and σ are in a small neighborhood of the true values. For i = 1, . . . , n, let

Zi = (X2
i − 1)/2, Ui = (X3

i − 3Xi)/6, and Vi = (X4
i − 6X2

i + 3)/24.

Lemma B. Under the null model N(0, 1), and when (θ̄1, θ̄2, σ̄) = (0, 0, 1)+

op(1), we have

ln(ᾱ, θ̄1, θ̄2, σ̄) − ln(0.5, 0, 0, 1)

≤ s̄1

n
∑

i=1

Xi + s̄2

n
∑

i=1

Zi + s̄3

n
∑

i=1

Ui + s̄4

n
∑

i=1

Vi

−1

2
{s̄2

1

n
∑

i=1

X2
i + s̄2

2

n
∑

i=1

Z2
i + s̄2

3

n
∑

i=1

U2
i + s̄2

4

n
∑

i=1

V 2
i }{1 + op(1)} + op(1).

Lemma 1. Let (ᾱ, θ̄1, θ̄2, σ̄) be any estimators of (α, θ1, θ2, σ) such that

pln(ᾱ, θ̄1, θ̄2, σ̄) − pln(0.5, 0, 0, 1) ≥ c > −∞
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and ᾱ ∈ [δ, 1 − δ] for some δ ∈ (0, 0.5]. Under the null model N(0, 1),

θ̄1 = op(1), θ̄2 = op(1), and σ̄ − 1 = op(1).

Proof. We first show that, with probability approaching 1, σ̄ has a non-

zero lower bound. Then we apply the result in Kiefer and Wolfowitz (1956)

to show the consistency of (θ̄1, θ̄2, σ̄).

Let A = {i : min(|Xi − θ1|, |Xi − θ2|) < |σ log σ|}, and let n(A) be the

number of indices in set A. For any index set, for instance A, we define

ln(α, θ1, θ2, σ;A) =
∑

i∈A

log{(1 − α)f(Xi; θ1, σ) + αf(Xi; θ2, σ)}.

Since for any i ∈ A, the mixture density function (1 − α)f(Xi; θ1, σ) +

αf(Xi; θ2, σ) ≤ (
√

2πσ)−1, we have

(A.1) ln(α, θ1, θ2, σ;A) ≤ −n(A) log(
√

2πσ).

For any i ∈ Ac, the complement of A,

(1 − α)f(Xi; θ1, σ) + αf(Xi; θ2, σ) ≤ (
√

2πσ)−1 exp{−1

2
log2 σ}.

Hence,

(A.2) ln(α, θ1, θ2, σ;Ac) ≤ −n(Ac){log(
√

2πσ) +
1

2
log2 σ}.

Combining (A.1) and (A.2), we have

ln(α, θ1, θ2, σ) ≤ −n log(
√

2πσ) − 1

2
{n − n(A)} log2 σ.

This further implies that

ln(α, θ1, θ2, σ) − ln(0.5, 0, 0, 1) ≤ 1

2

n
∑

i=1

X2
i − n log(σ) − 1

2
{n − n(A)} log2 σ.

According to Lemma A, it is easy to check that there exists a non-random

ǫ > 0 not depending on n such that for large enough n and σ < ǫ, we have

n(A) ≤ n/2. Consequently, as n → ∞,

ln(α, θ1, θ2, σ) − ln(0.5, 0, 0, 1) ≤ 1

2

n
∑

i=1

X2
i − n{log(σ) +

1

4
log2 σ}.
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Let ǫ be small enough such that for all σ < ǫ,

log(σ) +
1

4
log2 σ ≥ 1.

Hence, we must have

ln(α, θ1, θ2, σ) − ln(0.5, 0, 0, 1) ≤ −n

2
+ o(n).

Since the penalty is o(n) by Conditions C0 and C1, this furthermore implies

that uniformly over the parameter space such that σ < ǫ,

pln(α, θ1, θ2, σ) − pln(0.5, 0, 0, 1) ≤ −n

2
+ o(n).

Thus for any estimator (ᾱ, θ̄1, θ̄2, σ̄) such that pln(ᾱ, θ̄1, θ̄2, σ̄)−pln(0.5, 0, 0, 1) ≥
c > −∞ for all n, we must have

lim
n→∞

P (ǫ ≤ σ̄) = 1.

This result is equivalent to placing a positive constant lower bound for

the variance parameter for searching the maximal value of pln(α, θ1, θ2, σ).

Thus, the consistency of (θ̄1, θ̄2, σ̄) is covered by the result in Kiefer and

Wolfowitz (1956). Note that their proof can be modified to accommodate a

penalty of size o(n).

Let m̄j = (1 − ᾱ)θ̄j
1 + ᾱθ̄j

2, j = 1, 2, 3, 4 be the first four moments of the

mixing distribution, and let

(A.3) s̄1 = m̄1, s̄2 = m̄2 + σ̄2 − 1, s̄3 = m̄3, and s̄4 = m̄4 − 3m̄2
2.

The following lemma provides technical preparation for Lemma 3.

Lemma 2. Under the same conditions as in Lemma 1 we have

θ̄4
1 = Op

(

4
∑

j=1

|s̄j|
)

, θ̄4
2 = Op

(

4
∑

j=1

|s̄j |
)

, and (σ̄2 − 1)2 = Op

(

4
∑

j=1

|s̄j |
)

.

Proof. It is obvious that s̄j = op(1) for all j = 1, 2, 3, 4. Write

(A.4) θ̄1 =
s̄1 − αθ̄2

1 − ᾱ
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Substituting (A.4) into the expression for s̄3, we obtain

s̄3 =
ᾱ(1 − 2ᾱ)

(1 − ᾱ)2
θ̄3
2 + op(s̄1).

Furthermore, this implies that

s̄4 = m̄4 − 3m̄2
2

=
ᾱ{α3 + (1 − α)3}

(1 − ᾱ)3
θ̄4
2 −

3ᾱ2

(1 − ᾱ)2
θ̄4
2 + op(s̄1)

=
ᾱ(1 − 6ᾱ + 6ᾱ2)

(1 − ᾱ)3
θ4
2 + op(s̄1)

= − ᾱ

2(1 − ᾱ)3
θ̄4
2 +

3(1 − 2ᾱ)

2(1 − ᾱ)
θ̄2s3 + op(s̄1)

= − ᾱ

2(1 − ᾱ)3
θ̄4
2 + op(s̄1) + op(s̄3).(A.5)

The coefficient of θ̄4
2 is bounded away from 0 because δ < ᾱ < 1−δ for some

positive δ, and this implies that

θ̄4
2 = Op(s̄4) + op(s̄1) + op(s̄3) = Op

(

4
∑

j=1

|s̄j|
)

and by symmetry, θ̄4
1 = Op

(

∑4
j=1 |s̄j|

)

. Furthermore,

(σ̄2 − 1)2 = (s̄2 − m̄2)
2 ≤ 2s̄2

2 + 2m̄2
2 = Op

(

4
∑

j=1

|s̄j|
)

.

The next lemma strengthens the results of Lemma 1 and more.

Lemma 3. Under the same conditions as in Lemma 1, and if ᾱ − α0 =

op(1) for some α0 ∈ (0, 0.5], then s̄j = Op(n
−1/2) for j = 1, 2, 3, 4, and

θ̄1 = Op(n
−1/8), θ̄2 = Op(n

−1/8), and σ̄2 − 1 = Op(n
−1/4).

Furthermore, when 0 < α0 < 0.5, the orders are refined to

θ̄1 = Op(n
−1/6), θ̄2 = Op(n

−1/6), and σ̄2 − 1 = Op(n
−1/3).
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Proof. Expanding ln(ᾱ, θ̄1, θ̄2, σ̄) at (θ̄1, θ̄2, σ̄) = (0, 0, 1), we find

−∞ < c ≤ pln(ᾱ, θ̄1, θ̄2, σ̄) − pln(0.5, 0, 0, 1)

= ln(ᾱ, θ̄1, θ̄2, σ̄) − ln(0.5, 0, 0, 1)

+{pn(σ̄) − pn(1)} + {p(ᾱ) − p(0.5)}

≤ s̄1

n
∑

i=1

Xi + s̄2

n
∑

i=1

Zi + s̄3

n
∑

i=1

Ui + s̄4

n
∑

i=1

Vi

−1

2
{s̄2

1

n
∑

i=1

X2
i + s̄2

2

n
∑

i=1

Z2
i + s̄2

3

n
∑

i=1

U2
i + s̄2

4

n
∑

i=1

V 2
i }{1 + op(1)}

+{p(α0) − p(0.5)} + op(1).(A.6)

In the above, we used Lemma B and the fact that the penalty term

p(ᾱ) − p(0.5) = p(α0) − p(0.5) + op(1),

and that

pn(σ̄) − pn(1) = (σ̄2 − 1)op(n
1/4) ≤ op{1 + n(σ̄2 − 1)4}

which is a higher order term compared to the quadratic part of the expan-

sion. The reason for expanding up to the fourth term is the loss of strong

identifiability. Since

s̄1

n
∑

i=1

Xi −
1

2
s̄2
1

n
∑

i=1

X2
i {1 + op(1)} ≤ (

∑n
i=1 Xi)

2

2
∑n

i=1 X2
i

{1 + op(1)} = Op(1),

and similarly for the other terms, we must have

s̄1

n
∑

i=1

Xi −
1

2
s̄2
1{

n
∑

i=1

X2
i } = Op(1).

This is possible only if s̄1 = Op(n
−1/2) and similarly s̄j = Op(n

−1/2), for

j = 2, 3, 4.

Next, by Lemma 2, the order results on s̄j imply that

θ̄1 = Op(n
−1/8), θ̄2 = Op(n

−1/8), and σ̄2 − 1 = Op(n
−1/4).

Recall that

s̄3 =
ᾱ(1 − 2ᾱ)

(1 − ᾱ)2
θ̄3
2 + op(s̄1).

Hence when 0 < α0 < 0.5, the order assessment is refined to θ̄1 = Op(n
−1/6),

θ̄2 = Op(n
−1/6), and σ̄2 − 1 = Op(n

−1/3).
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Now we show that under the null model, the EM-iteration changes the

fitted value of α by no more than an Op(n
−1/4) quantity. Let (ᾱ, θ̄1, θ̄2, σ̄)

be some estimators of (α, θ1, θ2, σ) as before, and let

w̄i =
ᾱf(Xi; θ̄2, σ̄)

(1 − ᾱ)f(Xi; θ̄1, σ̄) + ᾱf(Xi; θ̄2, σ̄)
.

We further define

Rn(α) = (n −
n
∑

i=1

w̄i) log(1 − α) +
n
∑

i=1

w̄i log(α)

and Hn(α) = Rn(α) + p(α). The EM-test updates α by searching for ᾱ∗ =

arg maxα Hn(α).

Lemma 4. Under the same conditions as in Lemma 1, and if ᾱ − α0 =

Op(n
−1/4) for some α0 ∈ (0, 1), then ᾱ∗ − α0 = Op(n

−1/4).

Proof. Putting α̂ = n−1∑n
i=1w̄i which is the maximum point of Rn(α),

we find

|α̂ − ᾱ| =
ᾱ(1 − ᾱ)

n

∣

∣

∣

n
∑

i=1

f(Xi; θ̄2, σ̄) − f(Xi; θ̄1, σ̄)

(1 − ᾱ)f(Xi; θ̄1, σ̄) + ᾱf(Xi; θ̄2, σ̄)

∣

∣

∣.(A.7)

By Lemma 1, (θ̄1, θ̄2, σ̄) are in a small neighborhood of (0, 0, 1) in probability.

Therefore, expanding (A.7) at (0, 0, 1), we get

|α̂−ᾱ| = n−1ᾱ(1−ᾱ)
∣

∣

∣(θ̄2−θ̄1)
n
∑

i=1

Xi+Op(n){θ̄2
1+θ̄2

2+(σ̄2−1)2}
∣

∣

∣ = Op(n
−1/4)

using the order results of Lemma 3. We hence obtain α̂ − α0 = Op(n
−1/4).

Thus, the lemma is true if ᾱ∗ − α̂ = Op(n
−1/4).

First, note that Rn(α) is a binomial log-likelihood. It attains its maximum

at and decreases from α̂ in both directions. For any ǫ > 0 and α ≥ α̂ + 2ǫ,

by the mean value theorem,

Rn(α) − Rn(α̂) ≤ Rn(α̂ + 2ǫ) − Rn(α̂ + ǫ) = ǫR′
n(ξ)

for some ξ ∈ [α̂ + ǫ, α̂ + 2ǫ]. It is easy to verify that R′
n(ξ) → −∞ in

probability as n → ∞ uniformly for ξ in this range. On the other hand, we

have

p(α) − p(α̂) ≤ p(0.5) − p(α0) + op(1) = Op(1).
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Hence, with probability approaching 1,

Hn(α) − Hn(α̂) = Rn(α) − Rn(α̂) + {p(α) − p(α̂)} → −∞

uniformly for any α > α̂+2ǫ. Hence, we must have ᾱ∗ < α̂+2ǫ in probability.

Similarly, we can show that ᾱ∗ > α̂ − 2ǫ in probability. Therefore, we have

ᾱ∗ = α̂ + op(1).

Next, noting that R′
n(α̂) = 0, p(ᾱ∗) − p(α̂) = op(1), we find

0 < Hn(ᾱ∗)−Hn(α̂) = Rn(ᾱ∗)− Rn(α̂) + op(1) =
1

2
R′′

n(η)(ᾱ∗ − α̂)2 + op(1)

by Taylor’s expansion for some η ∈ [α̂, ᾱ∗]. Since

−R′′
n(η) =

n

(1 − η)2
(1 − α̂) +

n

η2
α̂ =

n

α0(1 − α0)
{1 + op(1)}

is of order n, we must have

(ᾱ∗ − α̂)2 = op(n
−1).

This clearly suffices.

Lemma 5. Suppose the same conditions as in Lemma 1 hold.

(a) If ᾱ − 0.5 = Op(n
−1/4), then

2{pln(ᾱ, θ̄1, θ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ (
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(∑n

i=1 Vi)
−}2

∑n
i=1 V 2

i

+ op(1),

where (
∑n

i=1 Vi)
− means the negative part of

∑n
i=1 Vi.

(b) If ᾱ − α0 = op(1) for some α0 ∈ (0, 0.5), then

2{pln(ᾱ, θ̄1, θ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ (
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
(
∑n

i=1 Ui)
2

∑n
i=1 U2

i

+ 2{p(α0) − p(0.5)} + op(1).

Proof. (a). When ᾱ − 0.5 = Op(n
−1/4), we have θ̄2 = Op(n

−1/8) and

hence

s̄3 =
ᾱ(1 − 2ᾱ)

(1 − ᾱ)2
θ̄3
2 + op(s1) = op(n

−1/2).
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Consequently, the terms in (A.6) containing s̄3 are op(1). Furthermore this

value of ᾱ makes s̄4 < 0. Hence, the upper bound (A.6) simplifies to

2{pln(ᾱ, θ̄1, θ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ 2{s̄1

n
∑

i=1

Xi + s̄2

n
∑

i=1

Zi + s̄4

n
∑

i=1

Vi}

−{s̄2
1

n
∑

i=1

X2
i + s̄2

2

n
∑

i=1

Z2
i + s̄2

4

n
∑

i=1

V 2
i }{1 + op(1)} + op(1)

≤ (
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(∑n

i=1 Vi)
−}2

∑n
i=1 V 2

i

+ op(1).

(b) When ᾱ−α0 = op(1) for some α0 ∈ (0, 0.5), we have θ̄1 = Op(n
−1/6),

θ̄2 = Op(n
−1/6), and σ̄2 − 1 = Op(n

−1/3) by Lemma 3. These imply that

s̄4 = op(n
−1/2). Hence, the s4 terms in (A.6) are op(1). The upper bound in

(A.6) simplifies to

2{pln(ᾱ, θ̄1, θ̄2, σ̄) − pln(0.5, 0, 0, 1)}

≤ 2{s̄1

n
∑

i=1

Xi + s̄2

n
∑

i=1

Zi + s̄3

n
∑

i=1

Ui}

−{s̄2
1

n
∑

i=1

X2
i + s̄2

2

n
∑

i=1

Z2
i + s̄2

3

n
∑

i=1

U2
i }{1 + op(1)} + 2{p(α0) − p(0.5)} + op(1)

≤ (
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
(
∑n

i=1 Ui)
2

∑n
i=1 U2

i

+ 2{p(α0) − p(0.5)} + op(1).

We now prove Theorems 1 and 2 by showing that the slightly more general

results in the previous lemmas are applicable.

Proof of Theorem 1

For any k ≤ K, due to the property of the EM-algorithm that the likelihood

increases after each iteration (Dempster et al., 1977; Wu, 1981; McLachlan

and Krishnan, 1997), we have

pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j ) ≥ pln(α

(1)
j , θ

(1)
j1 , θ

(1)
j2 , σ

(1)
j ) ≥ pln(αj , 0, 0, 1).

That is,

pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j ) − pln(0.5, 0, 0, 1) ≥ p(αj) − p(0.5) > −∞.
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Furthermore, by Lemma 4 and applying mathematical induction in k, we

find that

α
(k)
j − αj = Op(n

−1/4).

Hence the rate conclusions in Lemma 3 are applicable to (α
(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j )

for any finite k and hence we get the conclusion of this theorem.

Proof of Theorem 2

Expanding the log-likelihood function, we have that

2{sup
θ,σ

ln(0.5, θ, θ, σ) − ln(0.5, 0, 0, 1)} =
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+ op(1).

By Theorem 1, σ
(k)
j − 1 = Op(n

−1/4) for any k ≤ K. Hence the penalty

pn(σ
(k)
j )− pn(1) = op(1) by Condition C2, and the above expansion remains

unchanged when ln(α, θ1, θ2, σ) is replaced by pln(α, θ1, θ2, σ).

Due to the properties established in Theorem 1, (α
(K)
j , θ

(K)
j1 , θ

(K)
j2 , σ(K))

satisfies the conditions of Lemma 5 and hence for αj = 0.5,

M (K)
n (0.5) = 2{pln(α

(K)
j , θ

(K)
j1 , θ

(K)
j2 , σ(K)) − pln(0.5, 0, 0, 1)}

−2{sup
θ,σ

pln(0.5, θ, θ, σ) − pln(0.5, 0, 0, 1)}

≤ {(∑n
i=1 Vi)

−}2

∑n
i=1 V 2

i

+ op(1).

Now we show that the M
(K)
n (0.5) asymptotically equals this upper bound.

Since the EM-iteration increases the penalized likelihood, we need only show

that for given α = 0.5, there exists a set of feasible θ1, θ2, σ values at which

the upper bound in Part (a) of Lemma 5 becomes equality. Consequently,

the inequality for M
(K)
n (0.5) will also become equality. This is equivalent to

finding a set of values such that sj = ŝj + op(n
−1/2), for j = 1, 2, 4, where

sj are defined in (A.3) and

ŝ1 =

∑n
i=1 Xi

∑n
i=1 X2

i

, ŝ2 =

∑n
i=1 Zi

∑n
i=1 Z2

i

, and ŝ4 = −(
∑n

i=1 Vi)
−

∑n
i=1 V 2

i

.

Ignoring op(n
−1/2) terms, these equations are

(A.8)











1
2(θ1 + θ2) = ŝ1

1
2 (θ2

1 + θ2
2) + σ2 − 1 = ŝ2

1
2(θ4

1 + θ4
2) − 3

4 (θ2
1 + θ2

2)
2 = ŝ4

,
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Furthermore, we may replace the third equation by (A.5): −2θ4
2 = ŝ4. Let

θ̃2 be the non-negative solution. We then solve (A.8) to get θ̃1 and σ̃.

Additional simple algebra shows that the above solutions satisfy s̃j =

ŝj + op(n
−1/2), for j = 1, 2, 4, θ̃1 = Op(n

−1/8), θ̃2 = Op(n
−1/8), and σ̃2 − 1 =

Op(n
−1/4). With this order information, we can easily expand and obtain

2{pln(0.5, θ̃1, θ̃2, σ̃) − pln(0.5, 0, 0, 1)}

=
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(∑n

i=1 Vi)
−}2

∑n
i=1 V 2

i

+ op(1)

and hence

2{pln(0.5, θ̃1, θ̃2, σ̃1, σ̃2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)} =
{(∑n

i=1 Vi)
−}2

∑n
i=1 V 2

i

+ op(1).

Because the EM-iteration always increases the penalized likelihood, we must

have

M (K)
n (0.5) ≥ 2{ sup

(θ1,θ2,σ1,σ2)
pln(0.5, θ1, θ2, σ1, σ2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)}

≥ 2{pln(α̃, θ̃1, θ̃2, σ̃1, σ̃2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)}

=
{(∑n

i=1 Vi)
−}2

∑n
i=1 V 2

i

+ op(1).

That is, the asymptotic upper bound of M
(K)
n (0.5) is also a lower bound.

Hence

M (K)
n (0.5) =

{(∑n
i=1 Vi)

−}2

∑n
i=1 V 2

i

+ op(1).

Similarly for αj 6= 0.5

M (K)
n (αj) =

(
∑n

i=1 Ui)
2

∑n
i=1 U2

i

+ 2{p(αj) − p(0.5)} + op(1).

Therefore

EM (K)
n = max

[

(
∑n

i=1 Ui)
2

∑n
i=1 U2

i

+ ∆,
{(∑n

i=1 Vi)
−}2

∑n
i=1 V 2

i

]

+ op(1).

It is easy to verify that
∑n

i=1 Ui/
√

n and
∑n

i=1 Vi/
√

n are jointly asymptotical

bivariate normal and independent. Consequently, the limiting distribution

is given by F (x − ∆){0.5 + 0.5F (x)} with F (x) being the cdf of the χ2
1

distribution.
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A.2. Proof of Theorems 3 and 4. We first prove some general results

and then apply these results to show Theorems 3 and 4. Without loss of

generality, we assume the null distribution is N(0, 1).

Lemma 6. Let (ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) be any estimators of (α, θ1, θ2, σ1, σ2)

such that δ ≤ ᾱ ≤ 1 − δ for some δ ∈ (0, 0.5]. Assume that

pln(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) − pln(0.5, 0, 0, 1, 1) ≥ c > −∞.

Then under null distribution N(0, 1), θ̄h = op(1) and σ̄h − 1 = op(1) for

h = 1, 2.

The next lemma states that the EM-iteration changes the fitted value of

α by no more than an op(1) quantity. First we define Rn(α), Hn(α), w̄i, and

ᾱ∗ = arg maxα Hn(α) as in the case where σ1 = σ2.

Lemma 7. Assume the same conditions as in Lemma 6. If |ᾱ − α0| =

op(1) for some α0 ∈ (0, 1), then under the null distribution N(0, 1) we have

|ᾱ∗ − α0| = op(1).

The proofs for the above two lemmas are the same as those for Lemmas

1 and 4, respectively, and are therefore omitted.

Proof of Theorem 3

For any k ≤ K, due to the property of the EM-algorithm that the likelihood

increases after each iteration (Dempster et al., 1977; Wu, 1981; McLachlan

and Krishnan, 1997), we have

pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) ≥ pln(α

(1)
j , θ

(1)
j1 , θ

(1)
j2 , σ

(1)
j1 , σ

(1)
j2 ) ≥ pln(αj , 0, 0, 1, 1).

Therefore

pln(α
(k)
j , θ

(k)
j1 , θ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 ) − pln(0.5, 0, 0, 1, 1) ≥ p(αj) − p(0.5) > −∞.

According to Lemma 6, this property implies the consistency of θ
(k)
jh and

σ
(k)
jh , h = 1, 2 whenever α

(k)
j − αj = op(1) is firmly established.

This key requirement, |α(k)
j −α0| = op(1), is the result of applying Lemma

7. Hence, the conclusions of the Theorem are proved.

imsart-aos ver. 2007/01/24 file: EMnormal_Tech.tex date: August 14, 2008



32 J. CHEN AND P. LI

Theorem 4 derives the asymptotic distribution of the EM-test. Its proof

is long. We give some preparatory derivations as well as some preparatory

lemmas.

Suppose (ᾱ, θ̄1, θ̄2, σ̄1, σ̄2), such that δ ≤ ᾱ ≤ 1 − δ for some δ ∈ (0, 0.5],

are the consistent estimators of (θ1, θ2, σ1, σ2) under the null model N(0, 1).

That is, θ̄h = op(1) and σ̄h = 1 + op(1), h = 1, 2.

Denote

r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) = 2{ln(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) − ln(0.5, 0, 0, 1, 1)},
r2n = 2{ln(0.5, 0, 0, 1, 1) − ln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)},

r3n(σ̄1, σ̄2) = 2{pn(σ̄1) − pn(1) + pn(σ̄2) − pn(1)} + 2{p(ᾱ) − p(0.5)}.

Their sum resembles the usual likelihood ratio statistic with penalties.

Put r1n = r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) = 2
∑n

i=1 log(1 + δ̄i) with

δ̄i = (1 − ᾱ)
{f(Xi, θ̄1, σ̄1)

f(Xi; 0, 1)
− 1

}

+ ᾱ
{f(Xi, θ̄2, σ̄2)

f(Xi; 0, 1)
− 1

}

.

As an aside we note that, in contrast to the EM-test, most other likelihood

approaches do not naturally confine the fitted values σ̄1 and σ̄2 to a small

neighborhood of the true variance. Consequently, their derivations are valid

only if

E
{f(Xi, θ̄1, σ̄1)

f(Xi; 0, 1)
− 1

}2
< ∞

for any nonrandom values of (θ̄1, σ̄1). As observed in the introduction, this

condition is not satisfied by finite normal mixture models, which explains

why these results do not apply to such models.

By 2 log(1 + x) ≤ 2x − x2 + (2/3)x3, we have

r1n ≤ 2
n
∑

i=1

δi −
n
∑

i=1

δ2
i + 2/3

n
∑

i=1

δ3
i .

For l = 0, 1, 2, 3, 4 and s = 0, 1, 2, 3, 4, we define

m̄l,s = (1 − ᾱ)θ̄l
1(σ̄

2
1 − 1)s + ᾱθ̄l

2(σ̄
2
2 − 1)s.

Denoting

f (l,s)(x; θ, σ) =
∂l+sf(x; θ, σ)

∂θl∂(σ2)s
,
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and expanding f(Xi; θ̄h, σ̄h) to order 4, we find that

δi =
4
∑

l+s=1

(

l + s

s

)

m̄l,s

(l + s)!

f (l,s)(Xi; 0, 1)

f(Xi; 0, 1)
+ ǫ

(1)
in

and the remainder term ǫ
(1)
n =

∑n
i=1ǫ

(1)
in satisfies

(A.9) ǫ(1)
n = Op(n

1/2)
{

2
∑

h=1

5
∑

k=0

|θ̄h|k|σ̄2
h − 1|5−k

}

.

The reason for expanding to the fourth term is the loss of strong identifia-

bility. Having to go through these extra terms makes the proof complex.

Note that when k = 0, 1, 2,

2
∑

h=1

|θ̄h|k|σ̄2
h − 1|5−k ≤

2
∑

h=1

|σ̄2
h − 1|3

and when k = 3, 4,

2
∑

h=1

|θ̄h|k|σ̄2
h − 1|5−k ≤

2
∑

h=1

|θ̄h|3|σ̄2
h − 1|.

Therefore, (A.9) is simplified to

ǫ(1)
n = Op(n

1/2)
2
∑

h=1

{|θ̄h|5 + |θ̄h|3|σ̄2
h − 1| + |σ̄2

h − 1|3}.

Absorbing the terms m̄l,s with l + 2s ≥ 5 into the remainder term, we

have

δi =
4
∑

l+2s=1

(

l + s

s

)

m̄l,s
f (l,s)(Xi; 0, 1)

(l + s)!f(Xi; 0, 1)
+ ǫin(A.10)

with

ǫn =
n
∑

i=1

ǫin

= Op(n
1/2)

2
∑

h=1

{|θ̄h|5 + |θ̄h|3|σ̄2
h − 1| + |θ̄h|(σ̄2

h − 1)2 + |σ̄2
h − 1|3}.(A.11)
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Note that all the other terms in δi have been looked after in the above

absorption. For example,

m̄2,2 =
2
∑

h=1

θ̄2
h(σ2

h − 1)2 ≤
2
∑

h=1

|θ̄h|(σ2
h − 1)2

and

m̄0,4 =
2
∑

h=1

(σ2
h − 1)4 ≤

2
∑

h=1

|σ2
h − 1|3.

It is seen that 2|θ̄h|3|σ̄2
h − 1| ≤ {|θ̄h|5 + |θ̄h|(σ̄2

h − 1)2}. Consequently, (A.11)

is reduced to

ǫn =
n
∑

i=1

ǫin = Op(n
1/2)

2
∑

h=1

{|θ̄h|5 + |θ̄h|(σ̄2
h − 1)2 + |σ̄2

h − 1|3}.(A.12)

Next we simplify the dominant term of δi. By simple algebra, (A.10) is

further reduced to

δi = t̄1Xi + t̄2Zi + t̄3Ui + t̄4Vi + ǫin,

where Zi, Ui, and Vi are defined as before, and

(A.13)

t̄1 = m̄1,0, t̄2 = m̄2,0+m̄0,1, t̄3 = m̄3,0+3m̄1,1, and t̄4 = m̄4,0+6m̄2,1+3m̄0,2.

After some straightforward algebra, we get

r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) ≤ 2{t̄1
n
∑

i=1

Xi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n
∑

i=1

X2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)}

+2/3{t̄1
n
∑

i=1

Xi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}3 + Op(ǫn).

Because (Xi, Zi, Ui, Vi) are uncorrelated, the potential cross terms are of

high orders and have been absorbed into the leading terms. In addition, we

note that

{t̄1
n
∑

i=1

Xi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}3 = op(n)
{

4
∑

l=1

t̄2l

}

.
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Hence,

r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) ≤ 2{t̄1
n
∑

i=1

Xi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n
∑

i=1

X2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)}

+Op(ǫn).(A.14)

Our next step shows that

ǫn = op(n)
{

4
∑

l=1

t̄2l

}

,

which is the immediate consequence of the following lemma.

Lemma 8. Assume the same conditions as in Lemma 6. Under null

distribution N(0, 1) and for h = 1, 2,

θ̄5
h = op

{

4
∑

l=1

|t̄l|
}

, θ̄h(σ̄2
h − 1)2 = op

{

4
∑

l=1

|t̄l|
}

, and (σ̄2
h − 1)3 = op

{

4
∑

l=1

|t̄l|
}

.

Proof. Clearly, the consistency result given in Lemma 6 implies that

t̄l = op(1), l = 1, 2, 3, 4. Let β̄h = θ̄2
h + σ̄2

h − 1 for h = 1, 2. By the definitions

of t̄1 and t̄2, we obtain

θ̄2 = {t̄1 − (1 − ᾱ)θ̄1}/ᾱ,(A.15)

β̄2 = {t̄2 − (1 − ᾱ)β̄1}/ᾱ.(A.16)

Plugging (A.15) and (A.16) into the definitions of t̄3 and t̄4 in (A.13), and

because ᾱ is bounded away from 0 and 1, we get

t̄3 = 3
1 − ᾱ

ᾱ

{

θ̄1β̄1 −
2(2ᾱ − 1)

3ᾱ
θ̄3
1

}

+ op(t̄1) + op(t̄2),(A.17)

t̄4 = 3
1 − ᾱ

ᾱ

{

β̄2
1 − 2(1 − 3ᾱ + 3ᾱ2)

3ᾱ2
θ̄4
1

}

+ op(t̄1) + op(t̄2).(A.18)

Hence,

{

β̄1 +
2(2ᾱ − 1)

3ᾱ
θ̄2
1

}

t̄3 − θ̄1t̄4 =
2(1 − ᾱ)(1 − ᾱ + ᾱ2)

3ᾱ3
θ̄5
1 + op(t̄1) + op(t̄2).
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Since θ̄h and β̄h are all op(1), and the coefficient of θ̄5
1 is bounded away from

0, we conclude from this equation that

(A.19) θ̄5
1 = op

(

4
∑

l=1

|t̄l|
)

.

Applying this result to θ̄1t̄4, we also get θ̄1β̄
2
1 = op

(

∑4
l=1 |t̄l|

)

. By the defi-

nition of β̄1, it is further seen that

|θ̄1(σ̄
2
1 − 1)2| ≤ 2|θ̄1|(β̄2

1 + θ̄4
1) = op

(

4
∑

l=1

|t̄l|
)

.

Applying (A.17) and (A.18) to β̄1t4 +{2(1−3ᾱ+3ᾱ2)/(3ᾱ2)}θ̄3
1t4 and from

the order assessment given by (A.19), we get

|β̄1|3 = op

(

4
∑

l=1

|t̄l|
)

.

Finally, we have

|(σ̄2
1 − 1)3| = |β̄1 + θ2

1|3 = Op(|β̄1|3 + |θ̄1|6) = op

(

4
∑

l=1

|t̄l|
)

.

The same conclusions for θ̄2 and σ̄2 are true by symmetry.

The order result about ǫn simplifies (A.14) into

r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) ≤ 2{t̄1
n
∑

i=1

Xi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n
∑

i=1

X2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)}.(A.20)

Applying some of the classic results about regular models, we have

(A.21) r2n = −(
∑n

i=1 Xi)
2

∑n
i=1X

2
i

− (
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+ op(1).

Next we work on r3n. By the mean value theorem on pn(σ̄h) − pn(1),
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h = 1, 2, and Conditions C0 and C4, we get

r3n(σ̄1, σ̄2) ≤ op(n
1/6)(|σ̄2

1 − 1| + |σ̄2
2 − 1|)

≤ op(1) + op(n
1/2){(σ̄2

1 − 1)3 + (σ̄2
2 − 1)3}

= op(1) + op(n
1/2)

{

4
∑

l=1

|t̄l|
}

≤ op(1) + op(n)
{

4
∑

l=1

t̄2l

}

.(A.22)

In the second step above, we used the fact that |x| ≤ 1 + |x|3, and in the

third step, we applied the results of Lemma 8. Combining (A.20) and (A.22),

we have

r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) + r3n(σ̄1, σ̄2)

≤ 2{t̄1
n
∑

i=1

Xi + t̄2

n
∑

i=1

Zi + t̄3

n
∑

i=1

Ui + t̄4

n
∑

i=1

Vi}

−{t̄21
n
∑

i=1

X2
i + t̄22

n
∑

i=1

Z2
i + t̄23

n
∑

i=1

U2
i + t̄24

n
∑

i=1

V 2
i }{1 + op(1)} + op(1).(A.23)

Inequality (A.23) implies that r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) + r3n(σ̄1, σ̄2) is stochasti-

cally bounded by the maximum of the following quadratic function:

Q(t1, t2, t3, t4) = 2{t1
n
∑

i=1

Xi + t2

n
∑

i=1

Zi + t3

n
∑

i=1

Ui + t4

n
∑

i=1

Vi}

−{t21
n
∑

i=1

X2
i + t22

n
∑

i=1

Z2
i + t23

n
∑

i=1

U2
i + t24

n
∑

i=1

V 2
i }.

We see that Q(t1, t2, t3, t4) is maximized at tl = t̂l, l = 1, 2, 3, 4, with

(A.24) t̂1 =

∑n
i=1 Xi

∑n
i=1X

2
i

, t̂2 =

∑n
i=1 Zi

∑n
i=1Z

2
i

, t̂3 =

∑n
i=1 Ui

∑n
i=1U

2
i

, and t̂4 =

∑n
i=1 Vi

∑n
i=1V

2
i

and

Q(t̂1, t̂2, t̂3, t̂4) =
(
∑n

i=1 Xi)
2

∑n
i=1X

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

.

This implies that

r1n(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) + r3n(σ̄1, σ̄2)

≤ (
∑n

i=1 Xi)
2

∑n
i=1X

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).(A.25)
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We now summarize (A.21) and (A.25) into the following lemma.

Lemma 9. Assume the same conditions as in Lemma 6. Then under null

distribution N(0, 1),

2{pln(ᾱ, θ̄1, θ̄2, σ̄1, σ̄2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)}

≤ (
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).(A.26)

Proof of Theorem 4

The conclusion of Theorem 3 implies that the upper bound given by (A.26)

is applicable to EM
(K)
n . Now we show that the EM

(K)
n asymptotically equals

this upper bound. Since the EM-iteration increases the penalized likelihood,

we need only show that for a given α value not equaling 0 or 1, there exists

a set of feasible θ1, θ2, σ1, and σ2 values at which (A.25) and hence (A.26)

become equalities. This is equivalent to finding a set of values such that

tj = t̂j + op(n
−1/2), for j = 1, 2, 3, 4, where tj and t̂j are defined in (A.13)

and (A.24). Considering the case where α̃ = 0.5 and ignoring the op(n
−1/2)

terms, these equations are

(A.27)























1/2(θ1 + θ2) = t̂1
1/2(β1 + β2) = t̂2

3/2(θ1β1 + θ2β2) = t̂3
3/2(β2

1 + β2
2) − (θ4

1 + θ4
2) = t̂4

.

Furthermore, we may replace the third and fourth equations by (A.17) and

(A.18):

(A.28)

{

3θ1β1 = t̂3
3β2

1 − 2θ4
1 = t̂4

.

The equations in (A.28) imply that

g(θ1) = 6θ6
1 + 3t̂4θ

2
1 − t̂23 = 0.

Note that g(0) < 0 and g(θ1) → ∞ as θ1 → ∞, therefore there exists a

positive solution for θ1. Let θ̃1 be the smallest positive solution and β̃1 be

the corresponding solution for β1. We then solve (A.27) to get θ̃2 and β̃2.
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Note that there are practically no restrictions on the range of θ and β. Thus

we have shown that a feasible solution to (A.27) exists.

Additional simple algebra shows that the above solutions satisfy t̃j =

t̂j + op(n
−1/2), θ̃h = Op(n

−1/8), β̃h = Op(n
−1/4), and σ̃2

h − 1 = Op(n
−1/4),

for h = 1, 2. With this order information, we can easily expand and obtain

r1n(α̃, θ̃1, θ̃2, σ̃1, σ̃2) =
(
∑n

i=1 Xi)
2

∑n
i=1X

2
i

+
(
∑n

i=1 Zi)
2

∑n
i=1Z

2
i

+
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+op(1)

and hence

2{pln(α̃, θ̃1, θ̃2, σ̃1, σ̃2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)}
= r1n(α̃, θ̃1, θ̃2, σ̃1, σ̃2) + r2n + r3n(σ̃1, σ̃2)

=
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).

Because the EM-iteration always increases the penalized likelihood, we must

have

EM (K)
n ≥ 2{ sup

(θ1,θ2,σ1,σ2)
pln(0.5, θ1, θ2, σ1, σ2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)}

≥ 2{pln(α̃, θ̃1, θ̃2, σ̃1, σ̃2) − pln(0.5, θ̂0, θ̂0, σ̂0, σ̂0)}

=
(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).

That is, the asymptotic upper bound of EM
(K)
n is also a lower bound. Hence

EM (K)
n =

(
∑n

i=1 Ui)
2

∑n
i=1U

2
i

+
(
∑n

i=1 Vi)
2

∑n
i=1V

2
i

+ op(1).

Consequently, the limiting distribution of EM
(K)
n is given by the χ2

2.
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