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ABSTRACT

This report presents the first of two exploratory analyses of climate data for the
Province of Alberta, specifically precipitation and temperature with the ultimate
goal of developing new stochastic models for the processes involved. The data ad-
dressed in this report, Part I, has not been homogenized, that is enhanced to over-
come the anomalies due to such things as changes in instrumentation and recording
errors. However, on the positive side it comes from a very large number of moni-
toring sites that cover the Province extensively. The report uses standard tools for
exploratory data analysis and presents findings about such things as extreme values,
the temporal aggregation of climate data series, spatial as well as temporal trends.



1 Introduction

Recent years have seen an emerging worldwide concern about the state of the climate
and undesirable trends that imply increasing environmental risk. Managing that risk
is now seen as essential for health and welfare. Agriculture in particular contributes
greatly to the latter and hence, ultimately to the former.

However, the great complexity of the processes confronted in environmental
risk assessment and management along with the technological improvements in data
capture, now imply the need for sophisticated new stochastic models for extracting
and exploiting the information in those data for climate variables (such as precipi-
tation and temperature). Yet the needed theory for space - time processes is only
now being developed, despite the generally mature state of stochastic processes and
spatial statistics. Thus we are led to develop the new theory for such processes
reported in subsequent reports.

That work begins in this report, with a preliminary analysis of climate data
obtained for the Province of Alberta, not because our ultimate focus is Alberta, but
because that data provide a good base for out investigation, covering a long time
period and a wide range of climatic regimes. That base will guide the choices made
in developing that theory, in particular for temperature and precipitation (PCPN).
Our specific motivation comes from agriculture largely because this work arose out of
collaboration with scientists in that domain. There the environmental risks involve
extreme events such as flooding and drought. That in turn leads us to look at
extremes in the measurable responses representing the relevant environmental space–
time processes.

This report using standard tools in exploratory data analysis such as graphical
displays to investigate the climate variable. We leave inference to future reports a
after suitable models have been developed. In fact the purpose of this report is to
find reasonable assumptions on which to base such models. We believe that the
analysis will also assist investigators working in other contexts. Some examples of
investigations of climate variables in Canada and in particular Alberta are given
in the bibliography. We have also included selectively previous work done on the
modelling such processes where the work is deemed of relevance to our own.

However, as an important caveat, the dataset addressed in this report here
has not been enhanced to remove anomalies such as those due to a change in instru-
mentation or more simply, a recording error. Such enhanced data are the subject of
Part II in our series. However, of necessity, the latter involves a very small number
of monitoring stations and hence, does not represent the spatial domain nearly as
well as the data considered here in Part I.

To conclude, Section 2 describes the dataset. Section 3 is devoted to the
exploratory analysis of daily, monthly and annual as well as extreme values. The long
term trends, daily values distributions, spatial-temporal correlation and extreme
value distributions are the main topics of this section.
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2 The Data

The data used in this report were downloaded from the environment Canada website
(http://www.weatheroffice.ec.gc.ca/) on two CDs giving daily temperature, precip-
itation, and snow on the ground measurements for various geographical locations
in Canada. The National Climate Data and Information Archive, operated and
maintained by Environment Canada, contains “official climate and weather obser-
vations for Canada” (quoting from the website). One of the CDs contains the data
for eastern Canada (hereafter “2002East”), the other for western Canada (hereafter
“2002West”). 2002East (108 MB ZIP) contains data for 6,774 locations in Ontario,
Quebec, the Atlantic Provinces, Yukon Territory, Nunavut and the Northwest Terri-
tories while 2002West (106 MB ZIP) contains the data for 4,442 locations in British
Columbia, Alberta, Saskatchewan, Manitoba, Yukon Territory, and the Northwest
Territories.

The website includes amongst other things information about the CDs and a
glossary of terms in climate literature including “precipitation” in particular:

Precipitation: The sum of the total rainfall and the water equivalent of
the total snowfall observed during the day.

We will use 2002West since it includes Alberta, the focus of our interest
which arose out of collaboration with agricultural scientists (although this is purely
incidental to our eventual purpose). The data is stored in a binary format in several
files. Therefore the CD includes packages and their manuals to assist the user:
“cdcd”; “cdex”. cdcd helps the user visualize the data while “cdex” extracts it.
However, “cdex” can only extract the data for one climate monitoring station at
a time in a specific formats that are not always convenient for use in R (the well
known statistical package used in our analysis) and other statistical softwares. These
formats omit longitude, latitude and elevation. Hence, to get the data in a desired
form, we need to read the binary files using another program written in Python by
Bernhard Reiter and available online at:
http://www.intevation.de/∼bernhard/archiv/uwm/canadian climate cdformat/.
However, for unknown reasons this code fails to get the data for a lot of stations
leading us to modify it significantly. The modified code is available at:
http://bayes.stat.ubc.ca/∼reza/Python%20code/.
After getting the data, we used our program to put the data into our desired formats.
Moreover we included many new Python functions for other extraction purposes
(Hosseini 2009).

A total of 1264 of the stations represented in 2002West lie in Alberta and
they record: maximum temperature, minimum temperature, one-day rainfall, one-
day snowfall, one-day precipitation, and snow depth at both a daily and monthly
level. For each station, the data are aggregated and given for various time intervals.
The earliest year for which data are reported in Alberta is 1877, the latest 2002. Of
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Figure 1: Location of the weather stations in Alberta. The red shows the stations
with over 100 years of data and the blue the stations with more than 50 years.

the 1264 stations in Alberta, 1253 include precipitation (PCPN) data. The station
with the longest PCPN data record includes 123 years of data. The average of
number of years with PCPN data for Alberta is 20 years.

In all 96 stations have recorded more than 50 years of data, 34 more than 75
years and only 6 stations, more than 100.

Figure 1 shows the location of the available stations over Alberta. Figure 2
is the same plot, but with the number of the available years plotted as the height.
In Figure 1, the locations with more than 100 years of PCPN data are shown in red
and the stations with more than 50 years in blue. It can be seen in the plot that
although stations over 100 years are centered at one corner, stations with over 50
years are rather spread out over the province.

The following stations have recorded more than 100 years of data in Alberta:

• Calgary Airport

• Fort MacLeod

• Gleichen

• High River

• Medicine Hat
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Availabe years for stations over Alberta
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Figure 2: The number of available PCPN years for Alberta is represented by the
height of the “skyscrapers” in this plot.

• Banff

3 Data analysis

For our analysis, we mostly use stations with a long time series of data, including
the six noted above with more than 100 years of record. Two of these stations are
the Calgary and Banff sites. We have singled out these stations in some parts of
our analysis as representing two quite different physical environments within the
Province. However for analyzing spatial patterns including spatial correlation more
stations are needed. We picked the (102) stations which have complete data records
from 1960 to 2000 for both daily PCPN and Maximum daily temperature and used
all their data.

The daily maximum temperature (MT) and minimum temperature (mt) are
given in degrees Celsius. Missing data are denoted by ‘NA’.

The daily PCPN data has three possible values, Numeric (millimeters), NA
and Trace, the latter meaning a day with 0 <PCPN< 0.2. We investigated the
percentage of days with ‘Trace’ amounts of precipitation notably for the Calgary
site and found the latter had 11.15% of such days (excluding NA). To see if 0.2 is
a significant amount compared to a wet day (i.e. a day with a recorded PCPN),
we looked at the 5-number summary for wet days at two stations, Calgary’s airport
and Gleichen. The results are given in Table 1.
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Figure 3: Calgary’s airport monthly average precipitation over all the years.

Station Min 1st Quartile Median Mean Third Quartile Max

Calgary airport 0.200 0.800 1.800 4.226 5.100 95.300
Gleichen 0.200 1.300 2.500 5.154 6.100 91.400

Table 1: The precipitation (mm) summary for wet days of two stations

That table shows the mean PCPN for a wet day to be more than 4 mm, a
very large amount compared to 0.2 mm. Even the median is about 10 times larger
than 0.2. On that basis ‘Trace’ amounts do indeed seem negligible. Thus in a lot of
our modeling applications, we have for technical simplicity put the threshold at 0.2
instead of zero.

To get an idea of the seasonal patterns for the Calgary station, we computed
the average monthly PCPN over the years. Table 2 displays the results.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

334 442 501 564 926 1120 844 754 590 377 359 336

Table 2: Monthly average precipitation (mm)

Observe that overall the month of June has highest precipitation level of
all the months. The box plots in Figure 3 demonstrate this result even more
conclusively and also show it to be the most variable of all the monthly averages
over the years.
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Figure 4: Calgary’s maximum daily temperature (deg C), 1998-2000.

To gain further insight into the variation seen in the data we plot the daily
time series for PCPN and MT for Calgary for the years 1998-2000 (Figures 4 and
5). The seasonal pattern are seen to be stronger for MT. At the same time the
record for PCPN exhibits a lot of zeros, as indicated by the thick band along the
x-axis. This points to the well–known need to model these two kinds of series very
differently–precipitation values come from two distinctly different populations one
consisting entirely of zeros.

Next, we plot the monthly means for 1990-2000 in Figures 6–8. The plots
show the seasonal patterns for PCPN a lot better than the daily values. Finally, to
see the annual variability in precipitation, we plot yearly averages (Figures 8 and 9).
To find an appropriate time filter for seeing long term patterns, we have computed
the temporal mean successively for intervals of length 1, 2, 5 and 10 years at the
Calgary site. These figures show the decadal mean to be the best such filter–the
time trend is now seen clearly.

3.1 Precipitation, maximum and minimum temperatures

In a spatial-temporal context like the one addressed by this report, it is not reason-
able to assume that responses at different temporal and spatial points are identically
distributed. Thus for example, we need to parameterize them accordingly so that
for example we denote the maximum temperature for Calgary, January 1st, 2000 by

MT (s, d, y),
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Figure 5: Calgary’s daily precipitation totals, 1998-2000. The heavy black band
along the x–axis represents zeros in the record.
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Figure 6: Monthly means of Calgary’s maximum temperature (deg C), 1995-2000.
Notice the strong seasonality in the series represented here.
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Figure 7: Monthly mean precipitation totals for Calgary, 1995-2000. These also
exhibit a well–defined seasonal pattern but one that is less clearly defined than that
for temperature even though these two variables are related.
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Figure 8: Calgary’s mean maximum temperature (deg C) based on temporal aggre-
gation intervals of 1,2,5 and 10 years. The 10 year filter seems to have removed the
short term variation and displayed well the long term trend in the series. Notice the
two peaks in this series revealing very warm conditions around 1915 and again in
the 1990’s.
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Figure 9: Like the analysis for the previous filter for Calgary’s PCPN (mm), this
figure shows the effects of filtering the precipitation series using means for time
intervals of 1,2,5 and 10 years. Once again the decadel mean seems to be needed as
a lo-pass filter to reveal long–term trends.
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where, s=Calgary, d=01 and y=2000. Yet without further assumptions, would have
at most a single observed response value at each space – time point, hardly enough
to characterize its probability distribution.

As a tentative hypothesis we could assume equality in the daily response dis-
tributions from one year to the next. For example, January 1 on successive years,
2000, 2001, · · · yields independent and identically distributed observations of the
response (random variable) X(s, d) for d = 1. In fact we might be inclined to adopt
an even stronger assumption since the autocorrelation in the precipitation series
remains significant for lags of only a few days while that for maximum temperature
remains significant for lags of less than 30 days (see Figures 20 and 22). Undoubt-
edly that working hypothesis is too restrictive due to climate change, and we need
to allow for change. Moreover, introducing a year effect would allow us separately
model the within–year and between–year responses. For instance, we could model
the year effect by the annual mean and the within year distribution by removing
that effect through subtraction, division or both, the random response variable at
the fixed location s and day d thus becoming:

Y (s, d, y) = X(s, d, y)−
365∑
i=1

X(s, i, y)/365

or

Y (s, d, y) =
X(s, d, y)∑365

i=1 X(s, i, y)/365
.

However to keep things simple for our exploratory analysis we adopt the tenta-
tive hypothesis above as a working assumption. With that starting point we plotted
histograms of observed yearly responses for successive days d = 1, . . . , 366 and lo-
cations s. We then fitted Gaussian distributions to maximum daily temperature
(MT; Figure 10) and Gamma distributions to daily precipitation (PCPN) above
threshold (Figure 12) in accord with common practice. The qq-plots for MT and
PCPN in Figures 11 and 14, respectively, show the fits of the assumed distributions
to be reasonably good.

3.2 Spatial correlation

This subsection explores spatial correlation patterns for both daily precipitation
(PCPN) and the daily maximum temperature (MT) against the geodesic intersite
distances between the monitoring sites (i.e. stations) for a fixed day of the year.
Figures 15 and 16 show that correlation. However, plotting the dark cloud of all
the available points would obscure that pattern. Thus each figure depicts just 500
points randomly picked from among the large number available. The plots show
a decreasing trend in spatial correlation with respect to the distance as one might
intuitively expect. However they also show that distance alone fails to capture all
of the spatial structure.
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Figure 10: Histograms for Calgary’s maximum daily temperature (C) for the first
day of each month, based on data collected over the years. Also seen are the best
Gaussian fits to these histograms.
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Figure 11: Normal qq-plots for Calgary’s maximum daily temperature (C) data for
the first day of 6 selected months. Generally the Gaussian approximation seems
satisfactory for these data.
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Figure 12: Gamma distribution fits to the histograms of Calgary’s PCPN (mm)
data for the first day of each month after deleting the zeros.
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Figure 13: The Gamma distribution fitted to the Calgary’s total precipitation
(PCPN in mm) for the first day of April after removing the zeros. A good ap-
proximation is seen.
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Figure 14: The Gamma distribution’s qq-plots for Calgary’s daily precipitation
(PCPN) data over the years broken down by month. Overall the approximation
seems satisfactory.
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Figure 15: This figure displays for selected days and stations, the estimated spatial
correlation for daily precipitation (mm) plotted as a function of intersite Geodesic
distance (km). The data come from the years 1960 to 2000. Note the monotone
decreasing trend with some evidence of anisotropy, perhaps due to the effect of
elevation.

In contrast. MT’s plot shows a persistently high correlation over the entire
spatial domain, again in agreement with intuition. The line y = 0 helps to show
that MT’s spatial correlation is positive over the entire spatial domain despite the
effects of sampling error. In contrast spatial correlation for PCPN turns out to be
negative although of small magnitude and hence likely the result of sampling error.
(Note: We for each fixed day d, we have computed the intersite spatial correlations
only between stations that share at least 40 common observations over the years.)

3.3 Correlation patterns over time

This subsection looks at correlation trends over days of the year for selected pairs
of monitoring sites. First we compute those correlations for fixed dates Jan 1st,
Jan 2nd, ... for both PCPN and MT (Figures 17 and 18). These figures show
the estimated correlation for Calgary paired with each of 5 other locations. PCPN
shows a rather irregular (non-constant) trend, possibly due to the small number of
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Figure 16: The estimated spatial correlation of maximum daily temperature (C) for
selected days as well as well as stations, plotted against Geodesic intersite distance
(km) and computed from data from the years 1960 to 2000. Note the persistence of
the correlation over the spatial domain.



– 16 –

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

Co
rre

lat
ion

0 100 200 300

0.
2

0.
4

0.
6

0.
8

Day

Co
rre

lat
ion

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

Co
rre

lat
ion

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

Co
rre

lat
ion

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

Co
rre

lat
ion

Figure 17: Estimated spatial correlations between Calgary’s daily precipitation
(mm) above the threshold and that at 5 other selected sites based on more than
100 years of data. Note the apparent lack of trend in these correlations over days of
the year.

available data points (100 roughly including many zeros). In contrast, for MT we
see a fairly constant intersite correlation over time. Note however, the apparently
weaker spatial correlation during the summer.

Having examined spatial correlation patterns over time, we now turn to tem-
poral correlation over space. More precisely, we investigate the persistence of tem-
poral correlation over time (days) in the responses at different specified locations.
For definiteness we pick a specific day, Jan 1 and see how strongly responses on
that day autocorrelate with those on Jan 2nd, Jan 3rd,... in the same year. We can
even go beyond that year and see if Jan 1st of the next year is autocorrelated with
the same response a year earlier. Thus for both PCPN and MT we estimate the
autocorrelation of Jan 1st’s responses with each of the following 732 (2 years) days
up to Jan 1 two years hence. In other words we investigate days as far apart as two
years. Figures 19 and 21 show the results. For the PCPN process we use all the
values including the zero’s. They indicate that autocorrelation for PCPN remains
significant for only a few days and that of MT for less than 20 days. This supports
our assumption of response independence from year–to–year.
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Figure 18: Estimated spatial correlations between Calgary’s daily maximum tem-
perature (C) and that at 5 other selected sites based on more than 100 years of
data. Unlike precipitation, the maximum temperature field does display some trend
over the year, with some evidence of a weakening in the spatial correlation in the
summer.
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Figure 19: The estimated autocorrelation of Calgary’s daily maximum temperature
(C) on Jan 1st with each of 732 subsequent days. Notice the sharp decline to near
zero as the time lag approaches 20 days.

The previous analysis was done for only Jan 1st. To see if the same properties
hold for other days of the year, we examine four more days during the year. Figures
20 and 22 display the results, confirming our findings for Jan 1st.

3.4 Extreme events

This subsection addresses the final topic in our exploratory analysis, extreme events
for climate data, specifically daily precipitation (PCPN in mm) and maximum daily
temperature (MT in degrees C). In particular, our analysis seeks a foundation for
a peak–over–threshold (POT) on which to build a models for those extremes. Such
models commonly model the height of those peaks above a specified threshold, as a
generalized Pareto distribution (GPD). But the threshold much be found by ad hoc
methods. After experimenting with various options, we settled on the quantiles of
the large datasets for PCPN and MT coming from all 102 stations described earlier
and all years. Tables 3 and 4 give the results for various quantile levels.

Percentile 95 90 80 70 60

Threshold (mm) 9.7 5.1 1.6 0.3 0

Table 3: Thresholds for PCPN (mm) estimated as quantiles of the PCPN dataset
for all 102 stations used in our analysis and all years, 1960 to 2000.
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Figure 20: The estimated autocorrelation function for Calgary’s maximum daily
temperature (C) using 4 different selected start days. These results confirm that
the process has a relatively short memory of less than 20 days.
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Figure 21: The estimated autocorrelation of Calgary’s daily precipitation (mm) on
Jan 1st with each of 732 subsequent days. Notice the sharp decline to near zero
after just a few days.
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Figure 22: The estimated autocorrelation function for Calgary’s daily precipitation
(mm) using 4 different selected start days and only when precipitation exceeds the
threshold. These results confirm that the process has a relatively short memory of
just a few days.

Percentile 99 98 95 90 85 80

Threshold (C) 31 29.4 27 24.4 23 21.5

Table 4: Thresholds for MT (C) estimated as quantiles of the MT dataset for all
102 stations used in our analysis and all years, 1960 to 2000.

We must now determine which of these quantiles to use in order to ensure
that the GPD approximates the POT sample distribution well. In fact, we found
not only that the fit was fairly robust under varying thresholds, but as well, that
the exponential distribution, the simplest GPD, provides a good approximation for
various thresholds. Figures 23 and 25 give Calgary’s results. Figures 24 and 26
confirm the accuracy of that approximation.

We we come to an issue of fundamental importance in modeling the environ-
mental field of extreme values for our climate variables, more specifically their POT
values. How do the (estimated) rate parameters for their exponential distributions
vary over space? Recall that an exponential density function is given by

f(x; λ, u) = λ exp−λ(x− u); x > u, λ > 0

where, u, x−u and λ are respectively the threshold, the POT and the rate parame-
ter. Intuition suggests stations in close proximity have similar λ̂ estimates. To check
our intuition, we use stations with PCPN and MT data records for 1960 to 2000.
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Figure 23: Exponential distributions fitted to POTs for Calgary’s PCPN and differ-
ent choices for the quantiles. The distribution fits well thereby bypassing the need
to resort to the more class of generalized Pareto distributions.
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Figure 24: qq-plots for exponential fits to the peak–over–threshold values observed
for different thresholds and Calgary’s PCPN. This plot confirms the quality of fit
observed in the previous figure.
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Figure 25: Exponential distributions fitted to POTs for Calgary’s MT and different
choices for the quantiles. The distribution fits well thereby bypassing the need
to resort to generalized Pareto distributions with even more parameters than the
exponential.
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Figure 26: qq-plots for exponential fits to the peak–over–threshold values observed
for different thresholds and Calgary’s MT. This plot confirms the quality of fit
observed in the previous figure.
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For estimates generated from these data we use the semivariance, a standard geosta-
tistical tool, to assess their spatial structure. In general the empirical semivariance
is given by

γ(h) =

∑
d(x,y)≈h(z(x)− z(y))2

2n(h)
,

where z(s) denotes a datum at location s, h, an intersite distance between any two
points on the Earth’s surface, and n(h), the number of data point pairs at a distance
of approximately h units apart.

Figures 27 and 28 display the variogram plots for PCPN and MT. Note that
the mean numbers of data points available for estimating the parameters for the
POT distributions for PCPN and MT are respectively, 2786 and 143, well above the
minimum of 10 usually specified for estimating λ at any given single location. The
means of the estimated parameter λ̂ for PCPN and MT are respectively, 0.19 and
0.77 while the variances of λ̂ for PCPN and MT are respectively, 0.04 and 30.23.
Note the in the plots the distance is standardized (between 0 and 1).

The variogram plots confirm our intuition and show that indeed the estimates
for the exponential approximations are close to one another over very wide spatial
ranges. Notice the generally strong continuity implied by the plot, especially for
small intersite distances. At the same time the big blips in the plot at certain
distance point to possible irregularities in the field for certain distances.

3.5 Maximum yearly temperatures and precipitation.

This section looks at the maximum daily temperature (MT) and precipitation (PCPN)
over the year. We also look at the dates during the year at which extreme values of
these variables are realized. To be precise, define

Y MT (s, d, y) = max
d=1,2,··· ,366

MT (s, d, y)

and YPCPN, the annual maximum of daily precipitation, in the same fashion. Al-
though other time intervals may be of interest, we restrict ourselves to the year in
this preliminary analysis as that will be the period of principal interest.

We start by looking at the YMT time series for Calgary and Banff given in
Figure 29. Figure 30 shows the same kind of results for six other selected sites for
comparison and they show similar patterns to the previous two. Thus for YPCPN
we present just the analogous plots the first two stations are these are seen in Figure
32. Overall the plots show YMT to be less variable through the years than YPCPN.

Next, we look at the date that these extreme happens over the years (Figures
31 and 33). The date seems to be more variable than the actual values.

Finally Figure 34 displays histograms of YMT for six selected stations while
Figure 36 does the same for its logarithmic transformation. Figures 35 and 37 show
normal qq-plots for these two variables. They show the Gaussian to be a better
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Figure 27: Variogram plot for the estimates of the exponential distribution parame-
ter λ̂ that best fits the height of the peaks of daily precipitation (PCPN in mm) over
a threshold of 0.2 (mm). Notice the generally strong continuity implied by the plot,
especially for small intersite distances. At the same time the big blips in the plot at
certain distance point to possible irregularities in the field for certain distances.

approximation of the untransformed data than the untransformed. In both cases
the distributions seem to be symmetric.

4 Lessons learned and concluding remarks

Any conclusions reached on the basis of the analyses described in this report much
be viewed as tentative since the data include anomalies such as possible changes
due to changes in instrumentation. Moreover, it was not possible to examine all of
the stations in detail, forcing us to focus on a few representative of very different
physical environments.

Nevertheless, the data do point strongly to certain conclusions and these we
now summarize by category.

Precipitation

• For all practical purposes, we may take the lower threshold for pre-
cipitation as 2mm. Generally precipitation totals greatly exceed that
amount. Moreover, the gamma distribution approximates these measur-
able amounts rather well. Finally the autocorrelation in these amounts
remains significant for only lags of a few days.
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Figure 28: Variogram plot for the estimates of the exponential distribution param-
eter λ̂ that best fits the height of the peaks of maximum daily temperature (MT
in degrees C) over a threshold of 31 (o C). Notice the generally strong continuity
implied by the plot, especially for small intersite distances. At the same time the
big blips in the plot at certain distance point to possible irregularities in the field
for certain distances.
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Figure 29: Time series plots of the annual maxima of the daily maximum tempera-
ture series at the Banff and Calgary stations.
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Figure 30: Time series plots of the yearly maxima of the maximum daily temperature
at 6 selected Alberta monitoring stations.
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Figure 31: The day–of–the–year when the Banff and Calgary sites achieve their
overall maximum of maximum daily temperatures.
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Figure 32: A time series plot of the annual maxima of the daily total precipitation
(mm) measured at the Banff and Calgary stations.
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Figure 33: The day–of–the–year when the Banff and Calgary sites achieve their
overall maximum of daily precipitation totals.
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Figure 34: Histograms of the yearly maxima of maximum daily temperatures at six
selected sites.
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Figure 35: Normal qq-plots of the yearly maxima of daily maximum temperatures
at 6 stations. Notice that the normal distribution fits the empirical distribution
fairly well.
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Figure 36: Histograms of the yearly maxima of maximum daily temperatures after
logarithmic transformations for six selected sites.
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Figure 37: Normal qq-plots of the yearly maxima of daily precipitation at six selected
Alberta monitoring stations. Notice that the normal distribution fits the empirical
distribution fairly well.
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• Space – time precipitation models must take into account that the mea-
surable responses for this variable come from two very different popula-
tions, one consisting entirely of zeros.

• The Calgary site points to the June’s monthly average as having not only
the highest precipitation levels but also the most variable one over the
years.

• The 10 year filter seems to have removed the short term variation and
displayed well the long term trends in the series.

• The estimated intersite spatial correlation function for the space–time
field of total daily precipitation above the threshold appears to be mono-
tonically decreasing in agreement with intuition. On the other hand
evidence of anisotropy is also seen.

Temperature

• The Gaussian distribution provides a reasonably good approximation to
the observed sequence of maximum daily temperature data. Significant
autocorrelation in the observed sequence last no more than 30 days.

• The estimated spatial correlation function for maximum temperature
shows a strong persistence over the spatial domain as intuition might
suggest.

• As in the case of precipitation, the decadel average seems the best low
pass filter. We see two temperature peaks with very warm weather around
1915 and again in the 1990’s.

Extreme events

• For both temperature and precipitation, the empirical distributions of the
heights of peaks over specified threshold values are well approximated by
the exponential distribution, in accordance with the statistical theory of
extreme value.

• Geostatistical analysis shows the field of estimated parameters over the
spatial domain of the exponential distributions in the previous bullet
tends to be pretty flat. At the same intriguing blips appear for certain
pairs of locations underlying that field and this issue warrants further
investigation in future work.

• Although the size of the extremes do not vary a lot from year–to–year,
the date at which they are realized does. Moreover the annual maximum
temperature seems more variable from year–to–year than the correspond-
ing value for precipitation.
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In Part II of this analysis now in preparation, we turn to an enhanced version
of the dataset treated in this report and carry out a more followup analysis albeit
with a much smaller dataset.
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