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Abstract

In health research and other fields, the observational data available to researchers often
fall short of the data that would ideally be available, due to inherent limitations of study
design and data acquisition. Were they available, the ideal data might readily be analyzed
via straightforward statistical models with desirable properties such as parameter identifi-
ability. Conversely, realistic models for the available data, which incorporate uncertainty
about the link between ideal and available data, may be nonidentified. While there is
no conceptual difficulty in implementing Bayesian analysis with nonidentified models and
proper prior distributions, it is important to know to what extent data can be informative
about parameters of interest. Determining the large-sample limit of the posterior distribu-
tion is one way to characterize the informativeness of data. In some nonidentified models
it is relatively straightforward to determine the limit, via a particular reparameterization
of the model. In other nonidentified models, however, there is no such obvious approach.
Thus an algorithm is developed to determine the limiting posterior distribution for at least
some such harder models. The work is motivated by two specific nonidentified models
which arise quite naturally, and the algorithm is applied to reveal how informative data
are for these models.
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1 Introduction

In many scientific arenas where statistical methods are applied, resource limits and ethical

concerns constrain study design and measurement quality. For instance, when observational

epidemiological studies are conducted, seldom can concerns about measurement error, selection

bias, and unobserved confounding be entirely mollified. Realistic statistical models for such

studies then ought to involve two components: a model for the ideal but unavailable data, and

a model linking this unattainable data to the available data. Typically one or more parameters

in the former model are of scientific interest. However, particularly when faced with limited

knowledge about the link between ideal and available data, concern about identification of

the overall model may arise. Formally, a statistical model is nonidentified if multiple sets of

parameter values correspond to the same distribution of observables. Identification is of course

a key assumption underlying nice properties of model-based parameter estimators. Without

it, for instance, one cannot expect root-n consistent estimation of parameters, even in highly

parametric models. This is an inconvenient truth in light of the strong argument that realistic

models for observational data will often be nonidentified. For general discussion of this point,

see Greenland (2003, 2005).

From the mechanical perspective of transforming a proper prior distribution into a posterior

distribution via the acquisition of data, lack of model identification presents no conceptual

difficulties for a Bayesian analysis. Thus Bayesian analysis is often advocated in settings where

study and data limitations do indeed lead to a nonidentified model (see, for example, Dendukuri

and Joseph 2001; Georgiadis et. al. 2003; Gustafson and Greenland 2006; Hanson et. al. 2003;

Menten, Boelaert and Lesaffre 2008; Scharfstein, Daniels and Robins 2003). It still seems very

important, however, to gain theoretical understanding of how such inferential procedures will

perform. And the situation is not very clear. For instance, the large-sample theory which

guarantees similar performance for maximum likelihood and Bayesian procedures is clearly not

applicable in a nonidentified model context. Thus a stand-alone theory is needed to elucidate

the large-sample behaviour of Bayesian inferences arising from a nonidentified model.

To be more specific, given a nonidentified model, a proper prior distribution for its param-

eters, and a given set of true values for these parameters, we seek the limit of the posterior

distribution as the sample size tends to infinity. Particularly, it would be helpful to know where

the limiting posterior marginal distribution on a parameter of interest lies on the spectrum
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between the extremes of (i), the corresponding prior distribution, and (ii), a point-mass at the

true value. This would indicate the utility of collecting data for learning about the target pa-

rameter. Other proposals for measuring the informativeness of data in various nonidentified

model contexts can be found in Neath and Samaniego (1997), Poirer (1998), and Xie and Carlin

(2006).

1.1 The easier case

Toward understanding the ramifications of nonidentifiability for a Bayesian analysis, say that the

nonidentified statistical model in question for observable data D is parameterized in scientific

terms via a parameter vector λ, and a proper prior distribution π(λ) has been specified. In

some cases the identification issue can be understood via a special reparameterization from λ

to (φ,ψ), such that the distribution of D is completely determined by φ alone (but not by any

lower-dimensional function of φ). This is termed a transparent reparameterization in Gustafson

(2005a). Presuming the ‘induced’ model for (D|φ) obeys regular asymptotics, the posterior

marginal distribution for φ will asymptotically tend to a point mass at the corresponding true

value. In contrast, the posterior conditional distribution of (ψ|φ,D) will not depend on the

data or sample size. Rather, it will simply be the same as the prior conditional distribution

for (ψ|φ). Thus it immediately follows that the large-sample limit of the posterior marginal

distribution for ψ will equal the prior conditional given the true value of φ. Moreover, because

(φ,ψ) arises as a one-to-one reparameterization of λ, determining the joint prior density for

(φ,ψ), and hence the prior conditional density for (ψ|φ), is typically quite straightforward, as

long as the mapping from λ to (φ,ψ) can be inverted explicitly, or at least computationally.

This approach to examining how informative data are within a given nonidentified model has

been applied in Gustafson (2005b, 2006, 2007), Gustafson and Greenland (2006), and Gustafson,

Le and Saskin (2001). Interestingly, in many nonidentified models the transparent reparameter-

ization is such that a sensible prior for λ induces substantial prior dependence between φ and

ψ. In fact, often the support of ψ depends on φ, inducing a structural dependence no matter

what prior is specified in the original parameterization. Consequently the large-sample limit of

the posterior marginal on ψ may be quite different from, and particularly more concentrated

than, the prior marginal.

Overall then, an infinite data sample contains complete information about φ and partial

information about ψ. Together this determines the limiting posterior distribution for a given

3



parameter of interest (often a function of both φ and ψ). Without actually carrying out such

determinations though, it is hard to intuit the extent to which inferences arising from a non-

identified model might be usefully narrow versus uselessly wide. On balance, the nonidentified

modelling contexts studied in previous work are characterized by narrower limiting posterior

distributions than might be anticipated, particularly given the common view that identification

is a basic requirement for useful statistical inference.

1.2 The Harder Case

Unfortunately, not all nonidentified models are amenable to the determination of limiting pos-

terior distributions via reparameterization as described above. In some nonidentified models, a

transparent reparameterization does not exist. In others there may be a mapping from λ to a

‘candidate’ (φ,ψ) pair which might constitute a transparent reparameterization. However, it

may not be possible to verify that the mapping is actually invertible. Moreover, a verification

of invertibility is not enough. It must be possible to actually evaluate the inverse mapping in

order to determine large-sample limits. Thus we seek an alternative approach to determining

large-sample limits of posterior distributions arising from nonidentified models. In particular,

an algorithm is developed which is applicable to at least some nonidentified models falling into

the ‘harder’ category. The amount of analytic structure concerning parameters required to

operationalize this algorithm is less than that of identifying a transparent reparameterization.

To motivate the work, Section 2 provides two examples of models which arise naturally,

are nonidentified because of limitations on what variables can be observed, and do not admit

a transparent reparameterization. Then Section 3 describes a Monte Carlo based algorithm

for determining limiting posterior distributions when the structure that can be elucidated falls

short of a transparent reparameterization. In Section 4 the algorithm is applied to both mo-

tivating examples. This addresses the question of what potential there is for useful inference

notwithstanding the lack of identification. Some concluding remarks appear in Section 5. Three

appendices provide technical details.
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2 Motivating Examples

2.1 Two imperfect assessments for a binary trait applied to multiple
populations

Consider a binary trait X, coded as absent (X = 0) or present (X = 1). Say that the prevalences

of X in each of k populations, denoted by ri = Pri(X = 1), for i = 1, . . . , k, are of interest.

However, X can only be measured with error on individuals sampled from these populations. In

particular, say that two imperfect diagnostic or screening tests are available, so that while X is

unobservable, (X∗1 , X
∗
2 ) is observable. The quality of each test can be described by its sensitivity

and specificity, denoted SNj = Pr(X∗j = 1|X = 1) and SPj = Pr(X∗j = 0|X = 0), for j = 1, 2.

We make the assumption of nondifferential misclassification, which posits that the distribution

of (X∗1 , X
∗
2 |X) is the same in each population.

There is a rich literature on this problem; see, for instance, Goetghebeur et. al. (2000), Hui

and Zhou (1998), and Qu, Tan and Kutner (1996) for quite general discussions. If sensitivities

and specificities are unknown, then identification is typically a concern. Consider the case of

k = 2 populations, for instance. The general situation involves eight unknown parameters:

(r1, r2, SN1, SN2, SP1, SP2) plus two further parameters describing the conditional dependence

between X∗1 and X∗2 , given X = 0 or X = 1. The data structure, comprised of a 2 × 2 table

for (X∗1 , X
∗
2 ) in each population, involves six degrees-of-freedom. Thus identification is ruled

out. However, under the assumption that the two tests are conditionally independent given the

trait, i.e., (X∗1 ⊥ X∗2 |X), the number of parameters is reduced to six. Hui and Walter (1980)

verify that this model is identified, by explicitly inverting the mapping from the parameters to

the cell probabilities underlying the data tables. As a caveat though, this inversion breaks down

if the trait prevalence is the same in both populations, and Gustafson (2005a,b) emphasizes

that correspondingly poor estimation can result if the trait prevalences are similar in both

populations.

Unfortunately, the assumption that X∗1 and X∗2 are conditionally independent given X can

be problematic in many applications. For instance, consider the setting where the two tests are

based on two different biologic assays. Any degree of commonality in the chemical bases of the

two assays is likely to induce a positive conditional dependence. Or, in the setting of ascertaining

X via both subject questionnaires and examination of subject medical records, dependence could

arise if subjects who are more prone to give erroneous answers on a questionnaire are also more
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prone to provide incomplete or wrong information to their physicians.

Given these sorts of concerns, Vacek (1985), Torrance-Rynard and Walter (1998), and Albert

and Dodd (2004) look at the robustness of inferences when the conditional dependence structure

of the tests is misspecified. Others have proposed models incorporating conditional dependence

between tests, including the Bayesian models of Dendukuri and Joseph (2001), Hanson et. al.

(2003), and Menten, Boelaert and Lesaffre (2008). With such modelling, however, identification

issues are of paramount importance.

To focus on a specific question, say that data from k = 3 populations are available, and

the conditional independence assumption is not invoked. Consequently there are nine unknown

parameters: six to describe (X∗1 , X
∗
2 |X) plus three trait prevalences. Commensurately, there are

nine degrees-of-freedom represented in the three (X∗1 , X
∗
2 ) data tables for the populations. Thus

the parameter count is compatible with identification. However, Hanson and Johnson (2005)

prove that this model is nonidentified nonetheless. Moreover, the form of this nonidentification

cannot be addressed via a transparent reparameterization; the dimensions of λ and φ would

be the same, leaving no component ψ. Thus a different tack must be followed to discover the

extent to which the data are informative about parameters in this model.

2.2 Instrumental variable analysis with binary response

Say we wish to make inferences about an X-Y relationship adjusted for potential confounding

variables C = (C1, . . . , Cp) and U , with the difficulty that U is not observable. We can attempt

this task if we can observe an instrumental variable W that is associated with X and satisfies

two conditional independencies. Specifically,

W ⊥ Y | (X,C, U), (1)

W ⊥ U | C. (2)

Conceptually, (1) says that the instrument itself does not ‘drive’ the outcome, while (2) says

that within levels of the observed confounders, the instrument is independent of the unobserved

confounder.

It is straightforward to understand how IV inference proceeds in the presence of linear mean

structures. Say that E(Y |X,U,C) = β0+β1X+β2U+β3C
′, with β1 being of primary inferential

interest. Also, say E(X|W,C) = α0 + α1W +α2C
′, and E(U |C) = γ0 + γ1C

′. Then assuming
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(1) and (2) leads to

E(Y |W,C) = E{E(Y |X,W,U,C)|W,C}

= E{E(Y |X,U,C)|W,C}

= E{β0 + β1X + β2U + β3C
′|W,C}

= β0 + β1E(X|W,C) + β2E(U |C) + β3C
′

= δ0 + δ1W + δ2C
′,

where, in particular, δ1 = α1β1. Since δ1 and α1 are clearly estimable from the regressions

corresponding to (Y |W,C) and (X|W,C) respectively, β1 can be consistently estimated as

β̂1 = δ̂1/α̂1.

It is also instructive to consider the further specialized case where (i) W is binary, and (ii)

there are no measured confounders, i.e., C is absent. Then the estimator of β1 specializes to

β̂1 =
Ê(Y |W = 1)− Ê(Y |W = 0)

Ê(X|W = 1)− Ê(X|W = 0)
. (3)

In this case it is very apparent that the IV estimator operates by measuring change in Y with

X as the ratio of change in Y with W to change in X with W .

By way of contrast, consider the situation, common in health research settings, where Y , X,

W and U are all binary. Then a natural analogue to the linear models discussed above would be

logistic regression models with main effect terms. To contrast with (3) in particular, consider

the case where C is absent. Logistic regression models of the form

logitPr(Y = 1|X,U,W ) = β0 + β1X + β2U, (4)

logitPr(X = 1|U,W ) = α0 + α1W + α2U, (5)

Pr(U = 1|W ) = γ, (6)

could be employed in lieu of linear models.

As a whole, the model arising from (4) to (6) is nonidentified. It contains 7 unknown pa-

rameters, whereas the observable data take the form of two 2 × 2 tables corresponding to the

distribution of (Y,X|W ) for W = 0 and W = 1. Since 6 cell probabilities cannot determine 7

unknown parameters uniquely, the model is nonidentified. More particularly, we will see that β1,

the parameter of typical interest, is not uniquely determined by the distribution of (Y,X|W ).

Hence there is a marked qualitative difference. This target quantity is consistently estimable in
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the linear model case via the simple and intuitive estimator (3), but is not consistently estimable

in the logistic regression case. Both Terza (2006) and Johnston et. al. (2008) offer related com-

ments on the challenges in translating instrumental variable methods from continuous outcome

settings to binary outcome settings. We also note that more complex and sophisticated models

have been put forth for the binary IV setting (for instance, see Pearl 2000, Ch. 8). For present

purposes though, the important point is that the model defined by (4) through (6) is nonidenti-

fied, and it does not seem possible to obtain a transparent reparameterization. Thus we resort

to the algorithm described in the next section, in order to understand the extent to which data

are informative about the target parameter.

3 Determining the Large-Sample Behaviour

In what follows we give a Monte Carlo based algorithm for determining the large-sample be-

haviour of the posterior distribution in a nonidentified model, when a transparent parameteri-

zation cannot be determined but some lesser amount of structure can be elucidated. We express

the algorithm in quite general terms, as we suspect it, or variants, may be useful in a range of

nonidentified model settings.

Let θ ∈ Θ represent the p-dimensional parameter vector, with the parameterization perhaps

chosen specially for the purpose of applying the following algorithm (hence may differ from

the initial scientific parameterization λ). Let D represent the observable data, assumed to be

generated under a specific true value of the parameter vector, denoted by θ∗. In recognition

of the lack of identification, say that the distribution of D depends on θ only through the q-

dimensional parameter vector φ = t(θ), with q ≤ p. Moreover, this reduction is assumed to be

minimal, i.e., any function of φ which completely determines the distribution of the data would

necessarily be bijective. In the parlance of Barankin (1961), φ is a ‘minimal sufficient parameter’;

see also Florens, Mouchart and Rolin (1990) for discussion of sufficiency on the parameter space.

The ‘induced’ model for (D|φ) is assumed to obey regular asymptotics, so that the posterior

distribution of (φ|D) will converge to a point mass at the true value φ∗ = t(θ∗) as the sample

size tends to infinity. And since the posterior conditional distribution of (θ|φ,D) equals the

prior conditional distribution of (θ|φ), the limiting posterior distribution is simply the prior

conditional for (θ|φ = φ∗).

To determine the limiting posterior, we wish to partition the parameter vector as θ =
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(θa,θb), such that the value of θ can be recovered from φ = t(θ) and θa. In particular, say

that dim(θa) = p− q+ u (with 0 ≤ u < q), and that the system of q equations t(θ) = φ can be

reexpressed in terms of functions g(·; ·) and h(·; ·) as

θb = g(θa;φ)

0v = h(θa;φ) (7)

for some v ∈ {0, . . . , u}. Note that if such a representation can be achieved with u = v = 0,

then (φ,θa) comprises a reparameterization of θ, and the straightforward analysis outlined in

Section 1.1 can be applied. With u > 0, however, (φ,θa) has p+u elements, and might be called

an ‘overparameterization’ from which θ can be readily determined. Note also that (7) comprises

q − (u − v) equations, allowing for the possibility that the original system of q equations may

not be in a reduced form.

The structure of (7) is exploited as follows. For a given set of true parameter values θ∗

giving rise to φ∗ = t(θ∗) and a given prior π(θ) = πa(θa)πb|a(θb|θa), the large-sample limit

of the posterior distribution on θ is identically the prior conditional π(θ|φ = φ∗). An algo-

rithm to produce an arbitrarily large Monte Carlo sample from this distribution is comprised

of the following three steps. We term this the Large-Sample Limit via Monte Carlo (LSLMC)

algorithm.

Step 1: Generate an iid sample of size m from the density:

f(θa,θb) ∝ πa(θa)I{[θa, g(θa;φ∗)] ∈ Θ}δg(θa;φ∗)(θb),

where δx() represents a point-mass at x. Thus the θa marginal under f() is the prior marginal

πa(θa) truncated to ensure that [θa, g(θa;φ∗)] ∈ Θ, while the (θb|θa) conditional is a point-mass

at g(θa;φ∗).

Step 2. Weight the sample drawn in Step 1 to make it representative of π(θ|g(θa;φ∗) = θb).

The requisite weights are readily seen to take the form

w(θ) ∝ πb|a(θb|θa).

Step 3 (only necessary if v > 0). Further weight the sample to make it (approximately)

representative of π(θ|g(θa;φ∗) = θb, h(θa;φ∗) = 0v), which in light of (7) is the desired distri-

bution. The further modified weights take the form

w̃(θ) ∝ w(θ)k [b−1‖h(θa;φ∗)‖] , (8)
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for some small bandwidth b > 0, where k() is say the standard normal density function. Thus

this kernel weighting favours points with h(θa;φ∗) close to zero. As b decreases to zero then,

the weighting becomes representative of the desired distribution.

In practice there is a tradeoff between making b small for the sake of a good approximation

to the desired conditioning, versus keeping b large enough so that the weights (8) are not too

variable to represent the desired distribution well. Overall care is required in choosing m and

b, to ensure that the approximation is sufficiently accurate. One useful notion in this regard

is that of the effective sample size with which a weighted sample represents a distribution

(see, for instance, Doucet et. al. 2001). Presuming the realized weights in (8) are normalized,

the Monte Carlo sample of size m and choice of bandwidth b give an effective sample size of

ess(m, b) = {
∑m

i=1 w̃
2
i }−1. That is, the weighted sample is as good as an iid sample of this size

in representing the limiting posterior distribution. In Appendix A we describe a scheme relying

on the effective sample size for automatically choosing m and b to be sufficiently large and small

respectively.

Note also that the v = 0 case, whereby that t(θ) = φ ⇐⇒ θb = g(θa;φ), leads to a

particularly simple form of the algorithm. Here the third step of the algorithm is not needed,

obviating the issue of bandwidth selection.

4 Examples of Limiting Posterior Distributions

4.1 Two imperfect trait assessments, continued

The model for two possibly dependent trait assessments applied to three populations of varying

trait prevalence can be parameterized in meaningful scientific terms as follows. The nine un-

known parameters are taken as λ = (r1, r2, r3, SN1, SN2, γN , SP1, SP2, γP ), where, as described

earlier, ri is the prevalence of trait X in the i-th population, while (SNj, SPj) are the sensitivity

and specificity of the j-th trait assessment X∗j . The parameters γP and γN describe depen-

dence between the two assessments. In particular, we take γP = log OR(X∗1 , X
∗
2 |X = 0) and

γN = log OR(X∗1 , X
∗
2 |X = 1). Several restrictions on the parameters are introduced. First, both

assessments are assumed to be ‘better than chance,’ as represented by the constraint

SNj + SPj > 1, (9)
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for j = 1, 2. This assumption is commonly made in diagnostic testing models, to rule out a trivial

‘label-switched’ inference, since replacing (ri, SNj, SPj) with (1− ri, 1− SNj, 1− SPj) leads to

the same observed prevalence of X∗j in the i-th population. Second, γP and γN are assumed to

be nonnegative, given the intent of allowing for possible positive dependence between the two

tests.

As alluded to earlier, Hanson and Johnson (2005) prove that this model is not identified.

In fact, Jones et. al. (2009) make more detailed statements by examining the Jacobian of

the mapping from scientific parameters to cell probabilities for observables. Their scientific

parameterization is as above, but with covariances rather than log odds-ratios describing the

between-test dependence. They show that the 9 × 9 Jacobian has two zero eigenvalues and

are able to give explicit forms for the two corresponding eigenvectors. Appealing to classical

results on local identifiability (e.g., Rothenberg 1971, Goodman 1974), they note that none of

the scientific parameters have corresponding zero entries in both eigenvectors. Thus, none of the

scientific parameters are uniquely determined by the distribution of the observable data.

Toward illustrating the available information about the scientific parameters, we start with

an initial prior distribution under which all nine parameters are independent, with U(0, 1)

marginals for all parameters, except for (γP , γN). Particularly then, we are not attempting to

infuse any prior information about prevalences, sensitivities, and specificities. The dependence

parameters γP and γN are assigned exponential priors with means µP and µN respectively. This

induces some downweighting of stronger dependence, which seems appropriate in envisioned

applications. In what follows we set the hyperparameters as µP = µC = log 2, downweighting

an odds-ratio of 2 by a factor of e ≈ 2.72 compared to an odds-ratio of 1, in terms of density

ratio on the log-OR scale. The final prior is obtained by truncating the initial prior to obey (9).

This induces some mild dependence between SNj and SPj, and results in Beta(2, 1) marginals

for these parameters.

In order to apply the LSLMC algorithm of Section 3, it is necessary to move from the scientific

parameterization to an algorithm-amenable parameterization denoted θ. In the present instance

this parameterization is based on trait prevalences and cell probabilities for the (X∗1 , X
∗
2 |X)

distribution. Full details of the parameterization and the LSLMC implementation for this model

are given in Appendix B.

To illustrate results in a detailed manner for one underlying set of parameter values, say that

the true values are r = (0.1, 0.25, 0.5), (SN1, SP1) = (0.83, 0.85), (SN2, SP2) = (0.87, 0.75),
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γP = 0.486, and γN = 1.36. Figure 1 displays the large-sample limiting posterior marginal

distribution of each parameter (in the form of a histogram given that the limiting posterior is

represented via a weighted Monte Carlo sample). The 95% central interval for the limiting pos-

terior, the true parameter value, and the corresponding prior marginal density are all indicated

as well. The extent of prior-to-posterior updating ranges from moderate to strong for these

parameters, and clearly the lack of model identification does not equate with a complete lack

of information in the data. Note that the extent of updating is particularly strong for the two

specificities and the first of the three trait prevalences, and particularly weak for the two depen-

dence parameters. Importantly, all the limiting credible intervals contain the true parameter

values. Thus a large-sample does have considerable and reliable information content under this

model, though the information does not become perfect as the sample size tends to infinity.

We also examine the bivariate behaviour of the limiting posterior distribution. There is

substantial positive dependence amongst the three trait prevalences (Figure 2). Also, there is

deterministic bivariate dependence amongst elements of (SN1, SN2, γ), and amongst elements

of (SP1, SP2, γP ), as evidenced in Figure 3. This is not surprising given that knowledge of

the dependence parameters (γN , γP ) should result in an identified model. That is, the limiting

posterior distribution on θ should reduce to a point mass when conditioned on specific values

of the dependence parameters.

Of course studying inferential performance for a single set of true parameter values is not

necessarily indicative of performance for other values. In fact it seems that extra caution is

required in this regard. In other nonidentified model contexts the extent to which the posterior

concentrates as the sample size goes to infinity has been seen to vary substantially across the

parameter space (see, for instance, Gustafson 2005ab, 2007). Thus we must consider the limiting

posterior marginal distribution arising from a given prior distribution for a large ensemble of true

parameter values. It is convenient to simulate this ensemble of values from a chosen distribution,

which we refer to as a parameter generating distribution (PGD). One possibility is to equate the

PGD and the prior distribution. The common distribution would then both (i) dictate where in

the parameter space inferential performance is to be assessed, and (ii) provides this information

as an input to guide the analysis that is carried out for each (infinite-sized) dataset. On the

other hand, as stressed by Wang and Gelfand (2002), one may be more comfortable in ascribing

a relatively narrow swath of the parameter space as the region where performance is of interest

than one is in providing the same swath as an input to guide the analysis of a given dataset.

12



In their (our) terminology, one may wish to specify a more concentrated sampling prior (PGD)

than fitting prior (prior).

We proceed with a PGD based on simulating prevalences from the U(0.05, 0.95) distribution,

sensitivities and specificities from the U(0.6, 0.95) distribution, and dependence parameters γN

and γP from the U(0, log 2) distribution. In contrast, the prior distribution specification is the

same as given earlier. To reiterate the point made above, the PGD is chosen to study inferential

performance under somewhat typical conditions. In contrast, to mimic practice and for reasons

of conservatism, the prior specification is arguably ‘wider’ than typical-use conditions. Also,

the PGD specification avoids extreme points in the parameter space, involving prevalences,

sensitivities, or specificities which are near zero or one, which can be problematic for the LSLMC

algorithm. Particularly, the Step 2 weights can be too variable to be relied upon in such cases.

In fact, even with the chosen PGD we discard 20 of the 500 simulated parameter vectors, since

they give Step 2 weightings with effective sample size less than 500 when the Step 1 sample is

of size m = 20000.

Table 1 describes the aggregate inferential performance (with respect to the PGD) of the

limiting posterior marginal distributions. For prevalences, sensitivities, and specificities we see

quite small average absolute discrepancy between the true value and the limiting posterior mean.

That is, point estimators of these parameters tend to have moderate asymptotic biases as a result

of the nonidentification. Biases for the dependence parameters are much larger. Average widths

of limiting 95% credible intervals speak to data being quite informative for sensitivities and

specificities, but less so for prevalences. While the average widths for the dependence parameters

are quite high, it is worth pointing out that they are about half the width of the corresponding

prior intervals, so even these parameters are somewhat informed by data. Importantly, coverage

(in the sense of proportion of parameter values generated by the PGD for which the limiting

interval contains the true value) is near nominal. Thus the asymptotic bias of the Bayesian

point estimator is acknowledged in the Bayesian interval estimator, obviating concern about

reporting falsely precise results.

To be clear, Table 1 summarizes how well parameters could be inferred upon collecting an

infinite amount of data, and thus represent ‘best possible’ bounds on what a finite dataset can

achieve. Since the asymptotic bias of the point estimator is fundamental consequence of the

lack of identification, the issue at hand is not whether a different procedure might have more

attractive properties. Rather, the issue is whether the best-possible results are sufficiently good
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AAD ALEN COV
ri 0.076 0.369 0.997

SNj 0.061 0.165 0.935
SPj 0.060 0.161 0.929
γN 0.415 1.213 0.935
γP 0.396 1.190 0.935

Table 1: Aggregate properties of the limiting posterior marginal distributions, with respect to the
PGD described in the text. The columns give the average absolute discrepancy (AAD) between
the limiting posterior mean and the true value, the average length (ALEN) of the limiting 95%
central credible interval, and the coverage (COV) in terms of proportion of parameter values for
which the limiting 95% central credible interval contains the true value.

to merit the allocation of resources to implementing a study under the specified conditions.

While results such as those in Table 1 could inform such a decision, they cannot be used in

isolation. The decision would necessarily involve subject-area considerations, such as the utility

of a given magnitude of uncertainty about the target parameter and the per-unit cost of collecting

data. In general, a formal scheme for linking study design (which includes ‘no study’ as one

option) and inferential performance under nonidentified models remains to be developed. See

Gustafson (2006), however, for some work in this direction.

In a related vein, it should be mentioned that some investigators might not view good

average (across the parameter space) performance as sufficient justification to launch a study, if

this average involves poor performance in a minority region under the PGD (offset by very good

performance elsewhere). Thus Figure 4 reinforces Table 1 by showing the relationships between

the true parameter values and their limiting posterior means, across the PGD. Figure 5 then

sheds some light on regions in the parameter space where the limiting posterior distribution

is a better or worse inferential quantity. When inferring trait prevalences, for instance, the

discrepancy between the limiting posterior mean and the true value and the width of the limiting

posterior credible interval both tend to be smaller when the the smallest gap between the three

true prevalences is larger. That is, two populations having similar prevalences leads to less

posterior information about these prevalences. This is in keeping with the findings of Gustafson

(2005a) in the context of two conditionally independent tests. Figure 5 also shows that inferences

about specificities tend to improve when the true prevalences are smaller (and symmetrically,

inferences about sensitivities tend to improve when the true prevalences are larger). This makes

sense, as lower prevalences correspond to more trait-absent subjects whose data can inform the

specificities.
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male < 90kg female < 90kg male > 90kg
X∗2 = 0 X∗2 = 1 X∗2 = 0 X∗2 = 1 X∗2 = 0 X∗2 = 1

X∗1 = 0 92 49 49 13 40 26
X∗1 = 1 10 8 1 5 5 9

Table 2: Data on imperfect assessment of haemodynamically obstructive disease, from Kosinski
and Flanders (1999). The two surrogates X∗1 and X∗2 for true status X are as described in the
text.

A referee raised the question of how much information is contributed by data from the

population having the middle prevalence amongst the three, since the geometric arguments of

Hanson and Johnson 2005 suggest that the inference will be driven by the populations with lowest

and highest trait prevalence. Assume without loss of generality that r1 < r2 < r3. In Appendix

B we show that indeed the limiting posterior distribution on (r1, r3, SN1, SN2, γN , SP1, SP2, γP )

arising from observable data from all three populations coincides with the limiting posterior from

observable data on the first and third populations only. This illuminates some structure in the

problem, and might provide an alternate route to determining the limiting posterior distribution

in the original problem with three populations.

To underscore the connection between real study data and large-sample limiting posteriors,

consider the data in Table 2 from Kosinski and Flanders (1999). A study sample of patients with

multi-vessel coronary artery disease are stratified according to weight (compared to a threshold

of 90 kg) and gender. For purposes of connecting with the theory, the smallest stratum (8

female, > 90kg patients) is ignored, leaving 307 subjects across three strata. The trait of

interest X is whether the subject’s coronary artery disease is haemodynamically obstructive or

not. (In fact all subjects had haemodynamically obstructive disease at study entry, but the trait

assessment is carried out after treatment, which renders some patients free of this condition.)

For measurement of this trait, the first imperfect surrogate X∗1 arises from an exercise stress test.

The second surrogate X∗2 arises from a single-photon-emission computed tomography (SPECT)

thallium test. It is clear from the data that the two surrogates are discordant for a substantial

proportion of study subjects.

The model is fit to these data using a Markov Chain Monte Carlo algorithm. Note that

Bayesian inference problems involving unobserved variables are often tackled by applying MCMC

to the joint posterior distribution of unobserved variables and parameters, given observed vari-

ables. However, for both the present model and other nonidentified models we have found this
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strategy to be ineffective due to very poor MCMC mixing. Thus we instead work directly with

the posterior distribution of parameters given observed variables. Specifically, we apply random

walk Metropolis-Hastings updates to three blocks of parameters: r, (SN , γN), and (SP , γP ).

For further discussion of MCMC applied to nonidentified models, see, Gelfand and Sahu (1999).

Posterior marginal densities for all parameters appear in Figure 6, indicating that these

data are somewhat informative. By way of contrast, posterior marginals arising from dividing

all observed data cell counts by four (i.e., pretending one has only a quarter of the data)

are also displayed. These are actually not much less peaked than the full-data posteriors.

This ramification of nonidentifiability stands in stark contrast with the situation for identified

models with large-sample asymptotics having ‘kicked in’ (whereby a fourfold change in sample

size corresponds roughly to a twofold change in posterior width).

We could similarly multiply the cell counts by a factor larger than one to investigate the utility

of collecting further data beyond the n = 307 study subjects. In fact, we might contemplate

determining the large-sample limit of the posterior distribution when the cell probabilities match

the sample proportions in Table 2. This does not work, however, since sample proportions will

not generally lie in the image of Θ under t(). Instead we use the full data to estimate θ by its

posterior mean vector θ̂, and then determine the large-sample limit of the posterior as if this

were the true value of θ. The limiting posterior marginals are also given in Figure 6. They

suggest that further increases in sample size beyond the current level would at best have modest

impact on inferring r, but could have more impact in learning about the other parameters

governing the trait assessment.

4.2 Instrumental variable analysis with binary response, continued

The binary instrumental variable model defined earlier by (4) through (6) is initially param-

eterized by λ = (α,β, γ). As detailed in Appendix C, application of the LSLMC algorithm

requires reparameterization, from these scientific parameters to algorithm-amenable parame-

ters. This is given by θ = (γ, q00, q01, q10, p00, p01, p10), where q and p comprise cell prob-

abilities for (X|W,U) and (Y |X,U) respectively, i.e., qwu = Pr(X = 1|W = w,U = u),

pxu = Pr(Y = 1|X = x, U = u). The components of t(θ) are six cell probabilities which com-

pletely characterize the distribution of (Y,X|W ), while the required partition of θ = (θa,θb)

is based on θa = (r, q00). Details of the functions g and h which are required for the LSLMC

algorithm appear in Appendix C.
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Before proceeding further with the LSLMC algorithm, we consider what light classical identi-

fiability results shed on this model. The model as a whole must be nonidentified, since seven pa-

rameters give rise to six cell probabilities for observables. This alone, however, does not preclude

a parameter of interest, such as β1, being consistently estimable. Again motivated by Jones et.

al. (2009), we consider the Jacobian of the mapping from parameters to cell probabilities. The

Jacobian is conveniently calculated upon taking the parameters to be (β1, γ, p00, p01, q00, q01, q10).

While we are not able to obtain closed-form expressions associated with a singular value de-

composition of the Jacobian, numerical evaluation at trial values of the parameters indicates

that the Jacobian is of full rank (i.e., rank six), implying that only one singular value is zero.

Moreover, the corresponding right singular vector is seen to not have any zero entries, imply-

ing that none of these parameters are uniquely determined by the distribution of observables,

even locally. In particular then, β1, which describes the exposure-disease association, is not

consistently estimable.

To illustrate the application of the LSLMC algorithm to this model, say the specified prior

distribution involves r ∼ Beta(c, c), α0, β0 ∼ N(0, ν2
1), α1, β1, β2 ∼ N(0, ν2

2). To reflect the

‘label-switching’ constraint, we take α2 ∼ N+(0, ν2
2), i.e., a half-normal distribution. More

specifically we set c = 2.5 on the grounds that extremely low or high prevalence for U is

implausible. We set 2ν1 = −logit 0.02 = logit 0.98 to probabilistically constrain away from

the cases of zero/one prevalence for X and Y , and set 2ν2 = log 6 to reflect the notion that

extremely large associations are uncommon in observational epidemiological studies.

To describe one specific execution of the algorithm, consider true parameter values γ = 0.2,

α = (logit 0.15, 1, 0.5), β = (logit 0.1, 0.5, 0.25). To gain some geometric insight into how the

LSLMC algorithm works, the upper-left panel of Figure 7 depicts the set of θa values for which

[θa, g(θa;φ∗)] ∈ Θ. This indicates immediately that the posterior support of θa is considerably

smaller than the prior support, speaking to substantial prior-to-posterior updating which is

not driven by the particular choice of prior distribution. This plot also indicates values of θa

satisfying h(θa;φ∗) = 0. Interestingly, we see instances of two solutions to this equation having

the same value of θa,1 = γ. This implies that the initially plausible candidate (φ, γ) would not

in fact constitute a transparent reparameterization, and speaks to the difficulty of finding such

a reparameterization or verifying that one exists.

The second panel in Figure 7 plots sampled values of the target parameter β1 against

h(θa;φ∗), with the suggestion that a deterministic relationship is present (in which case con-
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ditioning on h(θa;φ∗) = 0 would produce a point-mass limiting posterior for β1). However,

plotting the relationship on a much finer scale in a neighbourhood of h = 0 (third panel) reveals

that the relationship is in fact stochastic. One cannot directly intuit the effect of conditioning

on h = 0 from the plot, since the plotted points have corresponding weights w(θ). These weights

are seen to vary only modestly near h = 0 though (fourth panel), so that the h = 0 slice of the

β1 versus h plot should roughly correspond to the limiting posterior distribution.

More formally, the automated scheme described in Appendix A selects a Monte Carlo sample

size of m = 70000, and a bandwidth of b = 6.27× 10−6. The corresponding effective sample size

associated with the w̃() weighting in Step 3 of the algorithm is ess(m, b) = 1333. The resulting

limiting marginal distribution for β1 is depicted in the last panel of Figure 7. This distribution

is sufficiently narrow (on the log odds-ratio scale) to be effectively a point mass for inferential

purposes. Moreover, its location is consistent with the true value of β1 = 0.5. Thus, at least for

the particular set of underlying parameter values considered, the lack of formal identification

has essentially no deleterious impact. As the sample size goes to infinity the posterior marginal

distribution of β1 converges to a near point-mass effectively at the true value.

As was emphasized in the previous example of Section 4.1, performance of posterior inferences

in nonidentified models may vary considerably across the parameter space. Thus we consider

other points in the parameter space as follows. We fix α0 = logit 0.1, β0 = logit 0.1, and

consider all 25 = 32 combinations arising from γ ∈ {0.1, 0.4}, α1 ∈ {0.5, 1}, α2 ∈ {0.1, 0.3},
β1 ∈ {0.2, 0.6}, β2 ∈ {0.1, 0.3}. These values are chosen to be compatible with ‘typical use’

conditions, and can be regarded as forming a discrete PGD. Using the same prior distribution

described above, the LSLMC algorithm is applied to determine the limiting posterior for every

combination of parameter values.

The limiting posterior marginal distributions for β1 arising under these parameter combi-

nations are depicted in Figure 8, via means and 95% central intervals. Across combinations,

the width of the limiting posterior marginal ranges from effectively zero in some cases (as was

seen above), to as much as 0.04 on the log odds-ratio scale. Even this widest case, however,

is extremely narrow in practical terms of knowledge about an exposure-disease relationship.

Moreover, in all cases the 95% central interval covers the true value. Thus we conclude that this

model shouldn’t be discarded because it is nonidentified. The price to be paid in terms of lack

of posterior concentration ranges from effectively none to extremely modest.

In fact, the results presented above correspond to one-eighth of a 28 factorial experiment.

18



The additional three factors are the signs of β1, β2, and α1 (all set at ‘+’ above). In order to

avoid settings corresponding to extreme cell probabilities, in the general experiment the intercept

terms are set as β0 = logit 0.1 − min{0, β1} − min{0, β2} and α0 = logit 0.1 − min{0, α1} −
min{0, α2}, so that the smallest values of Pr(Y = 1|X,U) and Pr(X = 1|U,W ) are both 0.1.

Plots describing results for the other seven settings of the additional factors are available as

supplemental material. The qualitative results are very consistent with those seen in Figure 8.

That is, the limiting posterior distributions for β1 are consistent with the true value, and the

widths range from ‘effectively’ zero in many cases, to at most 0.05 on the log odds-ratio scale.

Interestingly, in cases where the limiting posterior has appreciable width, the distribution is

always favoring larger values of |β1|. In none of the 28 = 256 cases does the limiting posterior

marginal give appreciable weight to values which are closer to the null than the true value.

5 Discussion

To return to the question posed in the title, why should we care about determining the large-

sample limits of posterior distributions arising from nonidentified models? In short, we should

care because realistic modelling of observational data will often lead to a nonidentified model,

and consequently we need to understand the extent to which data contain information about

parameters in such models.

In the example involving two imperfect measurements of a binary trait, the limiting posterior

distributions for various underlying parameter values show that data are somewhat informative

for parameters, but that very concentrated posteriors are unattainable at any sample size. In

the instrumental variable model for binary variables, the limiting posterior distributions show

that for all practical purposes this particular nonidentified model is more or less as good as an

identified model. If this model seems appropriate on scientific grounds then, it would be wasteful

to discard it because it is nonidentified. Without having evaluated the limiting posterior though,

and knowing only that the model is nonidentified, one would likely have far less confidence in

using the model for inference. The contrast between the two examples underscores that the

important issue with identification is not whether it is lacking, but rather the extent to which a

lack of identification impacts inference.

Of course simulation studies would be an alternative to evaluation of large-sample limits in

determining the informativeness of data for a given nonidentified model. However, simulation
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studies of Bayesian estimators can be computationally burdensome when MCMC is required to

fit the model to every simulated dataset. Moreover, as alluded to in Section 4.1, the MCMC

burden can be particularly great in the nonidentified model context. In fact our experience is

that algorithmic performance of standard MCMC algorithms on posterior distributions arising

from nonidentified models tends to worsen as the sample size increases. Thus simulation may

be particularly problematic for indicating what happens as the sample size grows.

Admittedly, working with nonidentified models requires a shift in statistical mindset. Result-

ing point estimators (such as posterior means of target parameters) usually have biases which

does not vanish asymptotically. Typical statistical thinking would then rule these to be ‘bad’

rather than ‘good’ estimators. Several points must be considered, however, before drawing such

conclusions. First, in general there is no hope of constructing consistent estimators for non-

identified model settings. Second, since the posterior marginal distribution does not shrink to

a single point, the estimator bias is reflected by the corresponding interval estimator. In fact, a

detailed study of interval estimator performance in nonidentified models is given by Gustafson

and Greenland (2009). Most important for present purposes, though, is the fact that we are

not in the bad asymptotic regime of being more and more confident in a wrong answer as the

sample size grows. Third, the lack of identification typically arises via real limitations on study

design and data acquisition. One strategy would be to pretend these limitations are less than

they really are, in order to obtain an identified model. This gets rid of an estimator bias due

to nonidentification, but introduces an estimation bias due to model misspecification. This bias

tradeoff is emphasized in Gustafson (2005a, 2007), and is generally seen to be unfavorable in

the contexts considered there. Moreover, the identified but misspecified model paradigm does

indeed involve becoming more and more confident about a wrong answer as the sample size

grows. In all, it seems the utility of inferences driven by nonidentified models must be studied

on a case-by-case basis. A blanket policy that nonidentified models are never usable, regardless

of how realistic they may be, is not supported by the facts.

Appendix A: Choice of Monte Carlo Sample Size and

Bandwidth

As mentioned in Section 3, one must take the Monte Carlo sample size m to be sufficiently

large, and the bandwidth b in Step 3 to be sufficiently small, to ensure that the sampled points
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under the w̃() weighting comprise a good empirical representation of the limiting posterior

distribution. The effective sample size ess(m, b) associated with the weighted sample is a key

quantity to monitor in this regard.

Our ad-hoc automated scheme for determining m and b proceeds as follows. Start with an

initial Monte Carlo sample of size m0 (we use m0 = 20000), and choose the bandwidth b0 as

small as possible subject to ess(m0, b0) ≈ m̃0 (we use m̃0 = 500). Then repeatedly:

• Increment the sample size, via mj+1 ← mj + ∆m (we use ∆m = 5000).

• If ess(mj+1, bj) > ess(mj, bj) (as will usually be the case), then choose a new smaller

bandwidth bj+1 such that ess(mj+1, bj+1) = {ess(mj, bj) + ess(mj+1, bj)}/2. Otherwise,

set bj+1 ← bj.

The rationale for this scheme for moving from (mj, bj) to (mj+1, bj+1) is that half of the

potential improvement in ess when enlarging the sample is actually realized, while the other half

is sacrificed toward the purpose of reducing the bandwidth. Hence at each iteration typically

there is a meaningful improvement in ess and a meaningful reduction in bandwidth.

Of course such an iterative scheme requires a stopping criterion. We have found it effective

to keep iterating until the total variation distance between the empirical marginal distribution of

the target parameter at successive iterations falls below a threshold. In particular, we evaluate

the empirical cdf of β1 based on both the smaller (size mj) and larger (size mj+1) weighted

samples, at the β1 values realized in the smaller sample. We stop if the maximum absolute

difference in cdfs across these points does not exceed 0.005.

Appendix B: Details for the two imperfect assessments

model

The LSLMC algorithm in Section 3 is applicable to this model via reparameterizing from

(r,SN , γN ,SP , γP ) to θ = (r,p, q), where p and q denote cell probabilities which describe

the joint distribution of (X∗1 , X
∗
2 ) conditioned on X = 0 and X = 1 respectively. That is,

pij = Pr(X∗1 = i,X∗2 = j|X = 0) and qij = Pr(X∗1 = i,X∗2 = j|X = 1). Thus both p and q

must have nonnegative entries which sum to one. Using a ‘dot’ notation to indicate summation,

we have SP1 = p0·, SP2 = p·0, SN1 = q1·, SN2 = q·1, while γP = log(p00p11) − log(p01p10) and
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γN = log(q00q11)− log(q01q10). We write (p, q) ∈ R to denote the constraints introduced in the

original parameterization, as outlined in Section 4.1. Thus the parameter space Θ is (0, 1)3×R.

Now let φ = t(θ) denote the cell probabilities underlying the observed data tables, with

φ
(a)
ij = Pra(X∗1 = i,X∗2 = j) in the a-th population. Clearly

φ(a) = (1− ra)p+ raq, (10)

for a = 1, 2, 3. Now, we can partition θ as θa = (r1, r2) and θb = (r3,p, q). Given φ and θa,

from (10) we see that the mapping θb = g(θa;φ) is given by

p =
r1φ

(2) − r2φ(1)

r1 − r2

q =
(1− r1)φ(2) − (1− r2)φ(1)

r2 − r1

r3 =
φ

(3)
00 − p00

q00 − p00

.

Note that this mapping can lead to values of (p, q) falling outside of R, or a value of r3 outside

of (0, 1). The Step 1 sampling in the LSLMC algorithm will reject such values of θa. Note also

that t(θ) = φ ⇐⇒ g(θa;φ) = θb, so we are using the u = 2, v = 0 version of the algorithm,

for which Step 3 is not needed.

As further implementation details, the prior specified in the original parameterization induces

independence between θa and θb, which simplifies the determination of weights w() in Step 2

of the algorithm. In particular, the prior marginal density of θb is determined to be

πb(r3,p, q) ∝ exp
{
−µ−1

P γP (p)− µ−1
N γN(q)

}(∑
i,j

p−1
ij

)(∑
i,j

q−1
ij

)
IR(p, q)I(0,1)(r3).

Thus the w() weights are readily computed.

As a further point concerning this model, we take up the issue of the information provided

by the population having intermediate prevalence amongst the three populations. Consider the

parameterization (r1, w, r3,φ
(1),φ(3)), where w = (r2 − r1)/(r3 − r1). Note here that φ(2) =

(1 − w)φ(1) + wφ(3), hence observing infinite samples from all three populations equates with

conditioning on true values of (w,φ(1),φ(3)). In the case that the joint prior density takes the

form π(p, q)I(0,1)(r1)I(0,1)(r2)I(0,1)(r3), via change of variables the reparameterization is seen to

induce the prior

π(φ(1),φ(3), r1, r3, w) = π
{
p(φ(1),φ(3), r1, r3), q(φ(1),φ(3), r1, r3)

}
×

I(0,1)(r1)I(0,1){(1− w)r1 + wr3}I(0,1)(r3)|r3 − r1|.
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Clearly over the range w ∈ (0, 1) this expression is constant in w. Thus we deduce that

a priori (r1, r3) and w are conditionally independent given that w ∈ (0, 1) and given the

values of (φ(1),φ(3)). Consequently, we deduce the same limiting distribution for (r1, r3)

whether we condition on just the cell probabilities for populations 1 and 3, or the cell prob-

abilities for all three populations (via the additional observation of w). Moreover, since p

and q are both functions of (φ(1),φ(3), r1, r3), it follows that the limiting distributions on

(r1, r3, SN1, SN2, γN , SP1, SP2, γP ) coincide (again, with the presumption that the prevalence

for the second population is intermediate between the first and third).

Appendix C: Details for the IV model

Let p = (p00, p01, p10) parameterize (Y |X,U) with pxu = Pr(Y = 1|X = x, U = u). Note that

(4) implies p11 = s(p), where s(a, b, c) = expit(logit b+ logit c− logit a). Note also that β0

β1

β2

 =

 logit p00

logit p10 − logit p00

logit p01 − logit p00

 . (11)

Similarly, let q = (q00, q01, q10), with Pr(X = 1|W = w,U = u) = qwu, and q11 = s(q) from (5).

The relationship between q and α follows the same pattern as (11).

Our expedient parameterization is now θ = (p, q, γ). The distribution of (Y |X,W ) is char-

acterized by φ = t(θ), where φyxw = Pr(Y = y,X = x|W = w) is given by
φ000

φ010

φ100

φ001

φ011

φ101

 = (1− γ)


(1− p00)(1− q00)

(1− p10)q00

p00(1− q00)
(1− p00)(1− q10)

(1− p10)q10

p00(1− q10)

+ γ


(1− p01)(1− q01)
{1− s(p)}q01

p01(1− q01)
(1− p01){1− s(q)}
{1− s(p)}s(q)
p01{1− s(q)}

 . (12)

Using the partition θ = (θa,θb) with θa = (γ, q00), we want to construct families of functions

functions g(·;φ) and h(·;φ) satisfying (7). Say that given values of θa = (r, q00) are consistent

with φ. It then follows from (12) that

q01 = 1− γ−1{φ000 + φ100 − (1− γ)q00}. (13)

Subsequently q10 is determined as the solution to u(z) = 0 , where

u(z) = (1− γ)(1− z) + γ{1− s(q00, q01, z))} − (φ001 + φ101). (14)
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Note that u() decreases monotonically, from 1− φ001 − φ101 when z = 0 to −(φ001 + φ101) when

z = 1. Now armed with values of both γ and q, we can determine

p00 = 1− {1− s(q)}φ000 − (1− q01)φ001

(1− γ)[(1− q00){1− s(q)} − (1− q01)(1− q10)]
(15)

and similarly

p01 = 1− (1− q00)φ001 − (1− q10)φ000

γ[(1− q00){1− s(q)} − (1− q01)(1− q10)]
. (16)

Finally, from this point we obtain p10 as the solution to v(z) = 0, where

v(z) = (1− γ)q00(1− z) + γq01{1− s(p00, p01, z)} − φ010, (17)

which is monotonically decreasing. Taken together then, (13) through (17) determine the func-

tion g(θa;φ) in (7). In practical terms, any out-of-range solution in (13) through (17) corre-

sponds to a situation where [θa, g(θa;φ)] /∈ Θ, and such values are excluded in Step 1 of the

LSLMC algorithm.

Note that (13) through (17) guarantee that all but one of the six equations in (12) must hold,

with the fifth equation for φ011 being the exception. Thus g(θa;φ) = θb is necessary, but not

sufficient, for t(θ) = φ. The decomposition (7) is completed by re-expressing the fifth equation

in the form h(θa;φ) = 0. That is, we take h(θa;φ) = h̃((θa, g(θa;φ));φ), where

h̃(θ;φ) = (1− γ)(1− p10)q10 + γ{1− s(p)}s(q)− φ011.

Armed with g() and h(), the LSLMC algorithm is immediately applicable, with u = 1, v = 1.

As remaining implementation details, the required Monte Carlo sampling in Step 1 of the

algorithm is based on sampling from the prior marginal on θa = (γ, q00) and simply rejecting

draws for which [θa, g(θa;φ∗)] /∈ Θ. The conditional prior density required to form weights in

Step 2 of the algorithm is readily determined upon transforming the joint prior density in the

original scientific parameterization (under which all components are independent) to the joint

prior density in the θ parameterization. Note in particular that the requisite Jacobian term

for the mapping from θ to the original parameter vector is q−1
00 (1− q00)

−1q−1
01 (1− q01)

−1q−1
10 (1−

q10)
−1p−1

00 (1− p00)
−1p−1

01 (1− p01)
−1p−1

10 (1− p10)
−1. Finally, the choice of bandwidth b for the w̃()

weighing in Step 3 of the algorithm is chosen in an automated manner, as described in Appendix

A.
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Supplemental Materials

Additional plots: Additional plots of results from Section 4.2 (pdf file)

References

Albert, P.S. and Dodd, L.E. (2004). A Cautionary Note on the Robustness of Latent Class

Models for Estimating Diagnostic Error without a gold standard. Biometrics 60, 427–435.

Barankin, E. (1961). Sufficient parameters: solution to the minimal dimensionality problem.

Annals of the Institute of Statistical Mathematics 12, 91-118.

Doucet, A., de Freitas, N., and Gordon, Neil (2001). Sequential Monte Carlo Methods in

Practice. Springer-Verlag: New York.

Dendukuri, N. and Joseph, L. (2001). Bayesian Approaches to Modeling the Conditional

Dependence Between Multiple Diagnostic Tests. Biometrics 57, 158–167.

Florens, J.P., Mouchart, M., and Rolin, J.M. (1990). Elements of Bayesian Statistics. Marcel

Dekker: New York.

Gelfand, A.E. and Sahu, S.K. (1999). Identifiability, improper priors, and Gibbs sampling

for generalized linear models. Journal of the American Statistical Association 94, 247–253.

Georgiadis, M.P., Johnson, W.O., Gardner, I.A., Singh, R. (2003). Correlation-adjusted

estimation of sensitivity and specificity of two diagnostic tests. Journal of the Royal Statistical

Society C 52, 63–76.

Goetghebeur, E., Liinev, J., Boelaert, M., Van der Stuyft, P. (2000). Diagnostic test analyses

in search of their gold standard: latent class analyses with random effects. Statistical Methods

in Medical Research 9, 231–248.

Goodman, L.A. (1974). Exploratory latent structure using both identifiable and unidentifi-

able models. Biometrika 61, 215-231.

Greenland, S. (2003). The impact of prior distributions for uncontrolled confounding and

response bias: a case study of the relation of wire codes and magnetic fields to childhood

leukemia. Journal of the American Statistical Association 98, 47–54.

Greenland, S. (2005). Multiple bias modeling for analysis of epidemiologic data (with dis-

25



cussion). Journal of the Royal Statistical Society A 168, 267–306.

Gustafson, P. (2005a). On model expansion, model contraction, identifiability, and prior

information: two illustrative scenarios involving mismeasured variables (with discussion). Sta-

tistical Science 20, 111–140.

Gustafson, P. (2005b). The utility of prior information and stratification for parameter

estimation with two screening tests but no gold standard. Statistics in Medicine 24, 1203–1217.

Gustafson, P. (2006). Sample size implications when biases are modeled rather than ignored.

Journal of the Royal Statistical Society A 165, 865–881.

Gustafson, P. (2007). Measurement error modelling with an approximate instrumental vari-

able. Journal of the Royal Statistical Society B 69, 797–815.

Gustafson, P. and Greenland, S. (2006). The performance of random coefficient regression

in accounting for residual confounding. Biometrics 62, 760–768.

Gustafson, P. and Greenland, S. (2009). Interval estimation for messy observational data.

Unpublished report (ftp.stat.ubc.ca/pub/gustaf/GuGr_N.pdf).

Gustafson, P., Le, N.D., and Saskin, R. (2001). Case-control analysis with partial knowledge

of exposure misclassification probabilities. Biometrics 57, 598–609.

Hanson, T.E. and Johnson, W.O. (2005). Discussion of ‘On model expansion, model con-

traction, identifiability, and prior information: two illustrative scenarios involving mismeasured

variables.’ Statistical Science 20, 131–134.

Hanson T.E., Johnson W.O., Gardner I.A., Georgiadis, M.P. (2003). Determining the infec-

tion status of a herd. Journal of Journal of Agricultural, Biological & Environmental Statistics

8, 469–485.

Hui, S.L. and Zhou, X.H. (1998). Evaluation of diagnostic tests without gold standards.

Statistical Methods in Medical Research 7, 354–370.

Hui, S.L. and Walter, S.D. (1980). Estimating the error rates of diagnostic tests. Biometrics

36, 167–71.

Johnston, K., Gustafson, P., Levy, A.R., and Grootendorst, P. (2008). Use of instrumental

variables in the analysis of generalized linear models in the presence of unmeasured confounding

with applications to epidemiological research. Statistics in Medicine 27, 1539-1556.

Jones, G., Johnson, W.O., Hanson, T.E., and Christensen, R. (2009). Identifiability of

26



models for multiple diagnostic testing in the absence of a gold standard. Unpublished report

(www-ist.massey.ac.nz/GJones/IdDiagTest_91.pdf).

Kosinski, A. S. and Flanders, W. D. (1999). Evaluating the exposure and disease relation-

ship with adjustment for different types of exposure misclassification: A regression approach.

Statistics in Medicine 18, 2795-2808.

Menten, J., Boelaert, M., Lesaffre, E. (2008). Bayesian latent class models with conditionally

dependent diagnostic tests: A case study. Statistics in Medicine 27, 4469–4488.

Neath, A.E., and Samaniego, F.J. (1997). On the efficacy of Bayesian inference for noniden-

tifiable models. American Statistician 51, 225–232.

Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge University Press:

New York.

Poirier, D.J. (1998). Revising beliefs in nonidentified models. Econometric Theory 14, 483–

509.

Qu, Y., Tan, M., Kutner, M.H. (1996). Random effects models in latent class analysis for

evaluating accuracy of diagnostic tests. Biometrics 52, 797-810.

Rothenberg, T.J. (1971). Identification in parametric models. Econometrica 39, 577-591.

Scharfstein, D.O., Daniels, M.J., Robins, J.M. (2003). Incorporating prior beliefs about

selection bias into the analysis of randomized trials with missing outcomes. Biostatistics 4,

495–512.

Terza, J.V. (2006). Estimation of policy effects using parametric nonlinear models: a con-

textual critique of the generalized method of moments. Health Services Outcomes and Research

Methodology 6, 177-198.

Torrance-Rynard, V.L. and Walter, S.D. (1998). Effects of dependent errors in the assessment

of diagnostic test performance. Statistics in Medicine 16, 2157–2175.

Vacek, P.M. (1985). The effect of conditional dependence on the evaluation of diagnostic

tests. Biometrics 41, 959–968.

Wang, F. and Gelfand, A.E. (2002). A simulation-based approach to Bayesian sample size

determination for performance under a given model and for separating models. Statistical Sci-

ence 17, 193-208.

Xie, Y. and Carlin, B.P. (2006). Measures of Bayesian learning and identifiability in hierar-

27



chical models. Journal of Statistical Planning and Inference 136, 3458–3477.

28



r1

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

r2

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

r3

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

SN1

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

SN2

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

γγn

D
en

si
ty

0.0 1.0 2.0

0
2

4

●

SP1

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

SP2

D
en

si
ty

0.0 0.4 0.8

0
20

40 ●

γγP

D
en

si
ty

0.0 1.0 2.0

0
2

4

●

Figure 1: Limiting posterior marginal distributions, for a particular set of true parameter values.
The true parameter value and the 95% central interval of the limiting posterior distribution are
indicated at the top of each panel.
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Figure 2: Limiting bivariate posterior distributions for trait prevalences.
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Figure 3: Limiting bivariate posterior distributions for trait assessment parameters.
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Figure 4: Limiting posterior mean (LPM) versus true value, for true values generated from the
PGD described in the text.
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Figure 5: Variation in limiting posterior marginals with underlying prevalence values. For
inference about the prevalences r = (r1, r2, r3), the top panels plot absolute discrepancy between
limiting posterior mean and true value, and length of limiting 95% credible interval, both as
a function of the smallest absolute difference between elements of r. For inferences about
specificities, the bottom panels plot absolute discrepancy between limiting posterior mean and
true value, and length of limiting 95% credible interval, both as a function of the median of r,
denoted r(2).
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Figure 6: Posterior marginal distributions in the haemodynamic coronary artery disease ex-
ample. The solid curves are posterior densities based on all the data. The dotted curves are
posterior densities based on one-quarter of the data (i.e., all cell counts are divided by four).
The dashed curves are large-sample limits of posterior densities, when the parameter values
equal estimated values from the full-data fit.
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Figure 7: Aspects of the LSLMC algorithm implementation in the binary instrumental variable
model. The upper-left panel depicts in grey values of θa = (γ, q00) for which [θa, g(θa;φ∗)] ∈ Θ.
The light/dark shading corresponding to negative/positive values of h(θa;φ∗). The next two
panels give plots of β1 versus h for the Monte Carlo sample, both for the whole range of h and
in a neighbourhood of h = 0. For the same neighbourhood, the fourth panel plots w̃(θ) versus
h. The last panel gives the large-sample limiting posterior marginal for β1.
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Figure 8: Limiting posterior marginal distribution of β1 for 25 = 32 different parameter com-
binations. The left/right panels correspond to true values β1 = 0.2 and β1 = 0.6 respectively.
The legend indicates which parameters are set to the larger of the two possible values.
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