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ABSTRACT

We prove a representation theorem for {Xt} (t denotes time), an r-th order categor-
ical Markov chain. We prove that the conditional probability P (Xt|Xt−1, · · · , Xt−r)
can be written as a linear combination of the monomials of past process responses
Xt−1, · · · , Xt−r. Simulations show that the “partial likelihood estimation” and the
representation together give us satisfactory results. We also check the performance
of “BIC” criterion for selecting optimal models and find that to be quite satisfac-
tory. An advantage of this model over pre-existing models is its capacity to admit
covariates as linear terms by extension. For example, we can add some seasonal
processes to get a non-stationary chain for daily precipitation values.



1 Introduction

In this report, we study r-th order categorical Markov chains and more generally,
categorical discrete-time stochastic processes. By “categorical”, we mean chains
that have a finite number of possible states at each time point. Such chains have
important applications in many areas, one of which is modeling weather processes
such as precipitation over time, the genesis of the paper. In fact, we use these chains
to model the binary process of precipitation as well as dichotomized temperature
processes. In r-th order Markov chains, the conditional probability of the present
given the past is modeled. Such a conditional probability is a function of the past r
states, where each one of them only takes finite possible values.

It is useful and intuitively appealing to specify or model a discrete process over
time by the conditional probabilities rather than the joint distribution. However, one
must check the consistency of such a specification i.e. to prove that it corresponds
to a full joint distribution. In the case of discrete-time categorical processes, we
prove a theorem that shows the conditional probabilities can be used to specify
the process. Also we prove a representation theorem which states that every such
conditional probability after an appropriate transformation can be written as a linear
summation of monomials of the past processes. In fact, we represent all categorical
discrete-time stochastic processes over time, in particular r-th order Markov chains
and more particularly stationary r-th order Markov chains. For the binary case the
result is a consequence of an expansion theorem due to Besag [2]. However, Besag
did not provide a rigorous proof and the statement of the theorem is flawed as also
pointed out by Cressie et al. in [4]. We provide a rigorous statement and proof
in Section 5. To generalize the result to arbitrary categorical Markov chains, we
prove a new expansion theorem which generalizes the result to the case of arbitrary
categorical r-th order Markov chains (rather than binary only).

The result simplifies the task of modeling categorical stochastic processes.
Since we have written the conditional probability as a linear combination, we can
simply add other covariates as linear terms to the model to build non-stationary
chains. For example, we can add seasonal terms or geographical coordinates (lon-
gitude and latitude). The theory of partial likelihood allows us to estimate the
parameters of such chain models for the binary case. By restricting the degree of
those polynomials or by requiring that some of their coefficients be the same, we can
find simpler models. Simulation studies show that the “BIC” criterion (Bayesian
information criterion) combined with the partial likelihood works well in that they
recover the correct simulation model.

2 Markov chains

Let {Xt}t∈T be a stochastic process on the index set T , where T = Z, T = N (the
integers or natural numbers respectively) or T = {0, 1, · · · , n}. It is customary to
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call {Xt}t∈T a chain, since T is countable and has a natural ordering. {Xt}t∈T is
called an rth-order Markov chain if:

P (Xt|Xt−1, · · · ) = P (Xt|Xt−1, · · · , Xt−r), ∀t such that t− r ∈ T.

We call the Markov chain homogenous if

P (Xt = xt|Xt−1 = xt−1, · · · , Xt−r = xt−r) =

P (Xt′ = xt|Xt′−1 = xt−1, · · · , Xt′−r = xt−r),

∀t, t′ ∈ T such that t − r and t′ − r are also in T . Note that Markovness can be
defined as a local property. We call {Xt}t∈T locally r-th order Markov at t if

P (Xt|Xt−1, · · · ) = P (Xt|Xt−1, · · · , Xt−r).

Hence, we can have chains with a different Markov order at different times.
Let Xt be the binary random variable for precipitation on day t, with 1 de-

noting the occurrence of precipitation and 0 non-occurrence. In particular, consider
the precipitation (PN) for Calgary site from 1895 to 2006. This process can be
considered in two possible ways:

1. Let X1, X2, · · · , X366 denote the binary random variable of precipitation for
days of a year. Suppose we repeatedly observe this chain year–by–year from
1895 to 2006 and take these observed chains to be independent and identically
distributed from one year to the next. With this assumption, techniques de-
veloped in [1] can be applied in order to infer the Markov order of the chain.
However, this approach presents three issues. Firstly independence of the
successive chains seems questionable. In particular, the end of any one year
will be autocorrelated with the beginning of the next. Secondly this model
unrealistically assumes the 0-1 precipitation stochastic process is identically
distributed over all years. Thirdly and more technically, leap years have 366
days while non-leap years have 365. We can resolve this last issue by for-
mally assuming a missing data day in the non-leap years, by dropping the last
day in the non-leap year or by using other methods. However, none of these
approaches seem completely satisfactory.

2. Alternatively, we could consider the observations of Calgary daily precipitation
as coming from a single process that spans the entire time interval from 1895
to 2006. In this case, we will show below that we can still build models that
bring in the seasonality effects within a year.
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3 Consistency of the conditional probabilities

To represent a stochastic process, we only need to specify the joint probability
distributions for all finite collections of states. The Kolmogorov extension theorem
then guarantees the existence and uniqueness of an underlying stochastic process
from which these distributions derive, provided they are consistent as described
below. (See [3] for example.)

To state the version of that celebrated theorem we require, let T denote some
interval (that can be thought of as “time”), and let n ∈ N = {1, 2, . . . , }. For each
k ∈ N and finite sequence of times t1, · · · , tk, let νt1···tk be a probability measure on
(Rn)k. Suppose that these measures satisfy two consistency conditions:

1. Permutation invariance. For all permutations π (a bijective and one-to-one
map from a set to itself) of 1, · · · , k and measurable sets Fi ⊂ Rn,

νtπ(1)...tπ(k)
(F1 × · · · × Fk) = νt1...tk

(
Fπ−1(1) × · · · × Fπ−1(k)

)
.

2. Marginalization consistency. For all measurable sets Fi ⊆ Rn, m ∈ N :

νt1...tk (F1 × · · · × Fk) = νt1...tktk+1,...,tk+m
(F1 × · · · × Fk × Rn × · · · × Rn) .

Then there exists a probability space (Ω,F ,P) and a stochastic process X :
T ×Ω → Rn such that: νt1...tk (F1 × · · · × Fk) = P (Xt1 ∈ F1, . . . , Xtk ∈ Fk) for
all ti ∈ T , k ∈ N and measurable sets Fi ⊆ Rn, i.e. X has the νt1...tk as its
finite-dimensional distributions. (See [6] for more details.)

Remarks:

1. Note that Condition 1 is equivalent to

νtπ(1)...tπ(k)

(
Fπ(1) × · · · × Fπ(k)

)
= νt1...tk (F1 × · · · × Fk) .

This is seen by replacing F1×· · ·×Fk by Fπ(1)×· · ·×Fπ(k) in the first equality.

2. We are only concerned about the case n = 1. This is because we consider
stochastic processes, a collection of random variables from the same sample
space to R1 = R.

When working on (higher order) Markov chains over the index set N, it is
natural to consider the conditional distributions of the present, time t, given the
past instead of the finite joint distributions, in other words

Pt(x0, · · · , xt) = P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0),
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for {Xt}t∈N∪0 plus the starting distribution

P (X0 = x0).

However that raises a fundamental question – does there exist a stochastic process
whose conditional distributions match the specified ones and if so, is it unique? We
answer this question affirmatively in this section for the case of discrete-time cat-
egorical processes, in particular higher order categorical Markov chains. We also
restrict ourselves to chains for which all the joint probabilities are positive. Let
M0,M1, · · · ⊂ R be the state spaces for time 0, 1, · · · , where each one of them is
of finite cardinality. A probability measure on the finite space M0 can be repre-
sented through its density function, a positive function P0 : M0 → R satisfying the
condition ∑

m∈M0

P0(m) = 1.

The following theorem ensures the consistency of our probability model.

Theorem 3.1 Suppose M0,M1, · · · ⊂ R, |Mt| = ct < ∞, t = 0, 1, · · · . Let
b P0 : M0 → R be the density of a probability measure on M0 and more gen-
erally for n = 1, . . . , Pn(x0, x1, · · · , xn−1, .) be a positive probability density on
Mn ∀(x0, · · · , xn−1) ∈ M0 × · · · × Mn−1. Then there exists a unique stochastic
process (up to distributional equivalence) on a probability space (Ω, Σ, P ) such that

P (Xn = xn|Xn−1 = xn−1, · · · , X0 = x0) = Pn(x0, x1, · · · , xn−1, xn).

To prove this theorem, we first consider a related problem whose solution
is used in the proof. More precisely we consider stochastic processes {Xi}i∈N∪{0},
where the state space for Xi is Mi, 1 = 0, 1, 2, · · · and finite. Suppose pn : M0 ×
M1×· · ·×Mn → R is the joint probability distribution (density) of a random vector
{X0, . . . , Xn}, i.e.

pn(x0, · · · , xn) = P (X0 = x0, · · · , Xn = xn).

It is clear that given the {pn}n∈N, other joint distributions such as
P (Xt1 = xt1 , · · · , Xtk = xtk) are obtainable by summing over appropriate compo-
nents. Now consider the inverse problem. Given the {pn}n∈N and some type of
consistency between them, is there a (unique) stochastic process that matches these
joint distributions? The following lemma gives an affirmative answer.

Lemma 3.1 Suppose Mt ⊂ R, t = 0, 1, · · · are finite, p0 : M0 → R represents a
probability density function (i.e.

∑
x0∈M0

p(x0) = 1) and functions pn : M1 × · · · ×
Mn → R+ ∪ {0} satisfy the following (consistency) condition:
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∑
xn∈Mn

pn(x0, · · · , xn) = pn−1(x0, · · · , xn−1).

Then there exist a unique stochastic process (up to distributional equivalence) {Xt}t∈N∪{0}
such that

P (X0 = x0, · · · , Xn = xn) = pn(x0, · · · , xn)

Proof
Existence: By the Kolmogorov extension theorem quoted above, we only need to
show there exists a consistent family of measures (density functions)

{qt1,··· ,tk |k ∈ N, (t1, · · · , tk) ∈ Nk}
such that q1,··· ,t = pt. We define such a family of functions, prove they are measures
and consistent.

For and sequence, t1, · · · , tk, let t = max{t1, · · · , tk} and define

qt1,··· ,tk(xt1 , · · · , xtk) =
∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,tk}
pt(x1, · · · , xt).

We need to prove three things:

a) Each qt1,··· ,tk is a density function. It suffices to show that qt is a measure because
the qt1,··· ,tk are sums of such measures and so are measures themselves. But pt

is non-negative by assumption. It only remain to show that pt sums up to one.
For t = 1 it is in the assumptions of the theorem. For t > 1, it can be done by
induction because of the following identity

∑
xi∈Mi,i=0,1,··· ,t

pt(x0, · · · , xt) =
∑

xi∈Mi,i=0,1,··· ,t−1

pt−1(x0, · · · , xt)

where the right hand side is obtained by the assumption
∑

Mn
pn = pn−1.

b) In order to satisfy the first condition of Kolmogorov extension theorem, we need
to show

qt1,··· ,tk(xt1 , · · · , xtk) = qtπ(1),··· ,tπ(k)
(xtπ(1)

, · · · , xtπ(k)
),

for π a permutation of {1, 2, · · · , k}. But this is obvious since max{t1, · · · , tk} =
max{tπ(1), · · · , tπ(k)}.

c) In order to satisfy the second condition of Kolmogorov extension theorem, we
need to show

∑
xti∈Mti

qt1,··· ,ti,··· ,tk(xt1 , · · · , xti , · · · , xtk) = qt1,··· ,t̂i,··· ,tk(xt1 , · · · , x̂ti , · · · , xtk),
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where the notationˆabove a component means that component is omitted.

To prove this, we consider two cases:

Case I: t = max{t1, · · · , tk} = max{t1, · · · , t̂i, · · · , tk}, then

∑
xti∈Mti

qt1,··· ,ti,··· ,tk(xt1 , · · · , xti , · · · , xtk) =

∑
xti∈Mti

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,ti,··· ,tk}
pt(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,t̂i,··· ,tk}
pt(x0, · · · , xt) =

pt1,··· ,t̂i,··· ,tk(xt1 , · · · , x̂ti , · · · , xtk)

Case II: max{t1, · · · , t̂i, · · · , tk} = t′ < t = ti:

∑
xti∈Mti

qt1,··· ,ti,··· ,tk(xt1 , · · · , xti , · · · , xtk) =

∑
xti∈Mti

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,ti,··· ,tk}
pt(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,t̂i,··· ,tk}
pt(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t′}−{t1,··· ,t̂i,··· ,tk}

∑

xv∈Mv ,v∈{t′+1,··· ,t}
ft(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t′}−{t1,··· ,t̂i,··· ,tk}
pt′(x0, · · · , xt′) =

qt1,··· ,t̂i,··· ,tk(xt1 , · · · , x̂ti , · · · , xtk).

Uniqueness: Suppose {Yt}t∈N∪{0} is another stochastic process satisfying the condi-
tions of the theorem with the p′t1,··· ,tk as the joint measures.

p′1,··· ,t = pt = p1,··· ,t,

by the assumption. Taking the sums on the two sides, we get p′t1,··· ,tk = pt1,··· ,tk . Now
the uniqueness is a straight consequence of the Kolmogorov Extension Theorem.

Remark:

3. Note that we did not impose the positivity of the functions for this case.
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Now we are ready to prove Theorem 3.1.
Proof
Existence: In Lemma 3.1, let
p0 = P0,
p1 : M0 ×M1 → R, p1(x0, x1) = p0(x0)P1(x0, x1),
...
pn : M1 ×M2 × · · · ×Mn → R, pn(x0, · · · , xn) = pn−1(x0, · · · , xn−1)Pn(x0, · · · , xn).
To see that the {pi} satisfy the conditions of Lemma 3.1, note that

∑
xn∈Mn

pn(x0, · · · , xn) =

∑
xn∈Mn

pn−1(x0, · · · , xn−1)Pn(x0, · · · , xn) =

pn−1(x0, · · · , xn−1)
∑

xn∈Mn

Pn(x0, · · · , xn) =

pn−1(x0, · · · , xn−1).

Lemma 3.1 shows the existence of a stochastic process with joint distributions
matching the pi. Furthermore, the positivity of the {Pi} implies that of the {pi}.
Thus all the conditionals exist for such a process and they match the Pi by the
definition of the conditional probabilities.
Uniqueness. Any stochastic process satisfying the above conditions, has a joint dis-
tribution that matches those of the {pi} and hence by the above theorem they are
unique.

4 Characterizing density functions and r-th order

Markov chains

The previous section saw discrete-time categorical processes represented in terms of
conditional probability density functions. However such densities on finite domains
satisfy certain restrictions that can make modeling them difficult. That leads to the
idea of linking them to unrestricted functions on R in much the same spirit as a
single probability can profitably be logit transformed in logistic regression.

To begin, let X be a random variable with probability density p defined on a
finite set M = {m1, · · · ,mn}. The section finds the class of all possible such ps with
p(mi) > 0, i = 1, · · · , n and g : R → R+, a fixed bijection. The following theorem
characterizes the relationship between p and g.

Theorem 4.1 Let g : R → R+ a bijection. For every choice of probability density
p on M = {m1, · · · ,mn}, n ≥ 2, there exists a unique function f : M −{m1} → R,
such that
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p(m1) =
1

1 +
∑

x∈M−{m1} h(x)
, (1)

p(x) =
h(x)

1 +
∑

x∈M−{m1} h(x)
x 6= m1, (2)

where h = g ◦ f . Moreover, h(x) = p(x)/p(m1). Inversely, for an arbitrary function
f : M − {m1} → R, the p defined above is a density function.

Proof
Existence: Suppose p : M → (0, 1) is given. Let h(x) = p(x)

p(m1)
, x 6= m1 and

f : M − {m1} → R, f(x) = g−1 ◦ h(x). Obviously h = g ◦ f . Moreover

1

1 +
∑

x∈M−{m1} h(x)
=

1

1 +
∑

x∈M−{m1} p(x)/p(m1)
=

1

1 + (1− p(m1))/p(m1)
= p(m1)

and
h(x)

1 +
∑

x∈M−{m1} h(x)
=

p(x)/p(m1)

1 + (1− p(m1))/p(m1)
= p(x)

thereby establishing the validity of equations (1) and (2).
Uniqueness: Suppose for f1, f2, we get the same p. Let h1 = g◦f1, h2 = g◦f2, by di-
viding 2 by 1 for h1 and h2, we get h1(x) = p(x)/p(m1) = h2(x) hence g ◦f1 = g ◦f2.
Since g is a bijection f1 = f2.

Corollary 4.1 Fixing a bijection g and m1 ∈ M , every density function corresponds
to an arbitrary vector of length n− 1 over R.

Theorem 4.2 Fix a bijection g : R → R+, mi
1 ∈ Mi. Let Mi, i = 0, 1, · · · be finite

subsets of R with cardinality greater than or equal to 2 and M ′
i = Mi − {mi

1}, ∀i.
Then every categorical stochastic process with positive joint distribution on the Mi

having starting density P0 : M0 → R and conditional probabilities Pi at stage i given
the past, can be uniquely represented by means of unique functions:

g0 : M ′
0 → R

...

gn : M0 × · · · ×Mn−1 ×M ′
n → R

...
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for n = 1, . . . , where

P0(m
0
1) =

1

1 +
∑

x∈M0−{m0
1} h0(x)

, (3)

P0(x) =
h0(x)

1 +
∑

x∈M0−{m0
1} h0(x)

, x 6= m0
1 ∈ M0, (4)

and h0 = g ◦ g0. Moreover h0(x) = P (X0=x)

P (X0=m1
0)

.

The conditional probabilities Pi are given by

Pn(x0, · · · , xn−1,m
n
1 ) =

1

1 +
∑

x∈Mn−{mn
1 } hn(x)

, (5)

Pn(x0, · · · , xn−1, x) =
h(x)

1 +
∑

x∈Mn−{mn
1 } hn(x)

, x 6= mn
1 ∈ Mn, (6)

where, hn = g ◦ gn. Moreover hn(x0, · · · , x) = P (Xn=x|Xn−1=xn−1,··· ,X0=x0)
P (Xn=m1

n|Xn−1=xn−1,··· ,X0=x0)
.

Conversely, any collection of arbitrary functions g0, g1, · · · gives rise to a unique
stochastic process by the above relations.

Proof
The result is an immediate by Theorems 3.1 and 4.1.

Remarks:

4. We can view the arbitrary functions g0, · · · , gn on M ′
0,M0×M ′

1, · · · ,M0×· · ·×
Mn−1 ×M ′

n as arbitrary functions g0 on M ′
0, g1(., x1), x1 6= m1

1 on M0

and gn(., xn), xn 6= mn
1 on M0 × · · · ×Mn−1. As a check we can compute the

number of free parameters of such a stochastic process on M0, · · · ,Mn. We
can specify such a process by c0c1 · · · cn− 1 parameters by specifying the joint
distribution on M0 × M1 × Mn. If we specify the stochastic process using
the above theorems and the gi functions, we need (m0 − 1) + m0(m1 − 1) +
m0m1(m2− 1) + · · ·+ m0m1 · · ·mn−1(mn− 1) which is the same number after
expanding the terms and canceling out.

5. In the case of r-th order Markov chains, gn(x0, · · · , xn) only depends on the last
r + 1 components for n > r.

6. In the case of homogenous r-th order Markov chains, Mi = M0, ∀i. Fix
m0 ∈ M0 and suppose |M0| = c0. We only need to specify g0 to gr, which are
completely arbitrary functions. We only need to specify g0 on M ′

0 and gr on
M0 × · · · ×M ′

r+1. This also shows every homogenous Markov chain of order
at most r is characterized by (c0 − 1)

∑r
i=0 cr

0 elements R.



– 10 –

To describe processes using Markov chains, we need to find appropriate para-
metric forms. We investigate the generality of these forms in the following section
and use the concept of partial likelihood to estimate them. We find appropriate
parametric representations of gn which are functions of n+1 finite variables. In the
next section we study the properties of such functions. We call a variable “finite” if
it only takes values in a finite subset of R.

5 Functions of r variables on a finite domain

In this section, we study the properties of functions of r variables with finite domain.
First, we present a result of Besag [2] who studied such functions in the context of
Markov random fields. However the statement of the result in his paper is inaccu-
rate and moreover it gives no rigorous proof of his result. We present a rigorous
statement, proof of the result and generalization of Besag’s theorem.

5.1 First representation theorem

Theorem 5.1 Suppose, f :
∏

i=1,··· ,r Mi → R, Mi being finite with |Mi| = ci and
0 ∈ Mi, ∀i, 1 ≤ i ≤ r. Let M ′

i = Mi − {0}. Then there exist a unique family of
functions

{Gi1,··· ,ik : M ′
i1
×M ′

i2
× · · · ×M ′

ik
→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r},

such that

f(x1, · · · , xr) = f(0, · · · , 0) +
r∑

i=1

xiGi(xi)+

∑
1≤i1<i2<···<ik≤r

(xi1 · · · xik)Gi1,··· ,ik(xi1 , · · · , xik) + · · ·+ (x1x2 · · · xr)G12···r(x1, · · · , xr).

Proof Denote by IA the indicator function of a set A and Nk = {(x1, · · · , xr) :∑r
i=1 I{0}(xi) ≤ k}.

Existence: The proof is by induction. For i = 1, · · · , r, define

Gi : M ′
i → R

Gi(xi) =
f(0, · · · , 0, xi, 0, · · · , 0)− f(0, · · · , 0)

xi

,

where xi is the ith coordinate. Then let f1(x1, · · · , xr) = f(0, · · · , 0)+
∑r

i=1 xiGi(xi).
Note that f1 = f on N1.
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Next define Gi1,i2 : M ′
i1
×M ′

i2
→ R by

Gi1,i2(xi1 , xi2) =

f(0, · · · , 0, xi1 , 0 · · · , 0, xi2 , 0, · · · , 0)− f1(0, · · · , 0, xi1 , 0 · · · , 0, xi2 , 0, · · · , 0)

xi1xi2

,

where, xi1 , xi2 are the ith1 and ith2 coordinates, respectively. Using the {Gi1,i2},
we can define f2 on N2 by

f2(x1, · · · , xr) = f(0, · · · , 0) +
r∑

i=1

xiGi(xi) +
∑

1≤i1<i2≤r

xi1xi2Gi1,i2(xi1 , xi2).

Or equivalently,

f2(x1, · · · , xr) = f1(x1 · · · , xr) +
∑

1≤i1<i2≤r

xi1xi2Gi1,i2(xi1 , xi2).

It is easy to see that f2 = f on N2.
In general, suppose we have defined Gi1,··· ,ik−1

and fk−1, let

Gi1,··· ,ik(xi1 , · · · , xik) =

f(0, · · · , 0, xi1 , 0 · · · , 0, xik , 0, · · · , 0)− fk−1(0, · · · , 0, xi1 , 0 · · · , 0, xik , 0, · · · , 0)

xi1 · · ·xik

,

for (xi1 , · · · , xik) ∈ M ′
i1
× · · · ×M ′

ik
.

Also let

fk(x1, · · · , xr) = fk−1(x1, · · · , xr) +
∑

1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik)

We claim f = fk on Nk.

To see that, fix x = (x1, · · · , xr). If x has less than k nonzero elements, the
second term in the above expansion will be zero and

fk(x1, · · · , xr) = fk−1(x1, · · · , xr) = f(x1, · · · , xr),

by the induction hypothesis and we are done.
However if x has exactly k nonzero elements

x = (x1, · · · , xr) = (0, · · · , 0, xj1 , 0, · · · , 0, xjk
, 0 · · · ),

Then
∑

1≤i1<i2<···<ik≤r

xi1 · · ·xikGi1,··· ,ik(xi1 , · · · , xik) =

xj1 · · · , xjk
Gj1,··· ,jk

(xj1 , · · · , xjk
).
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Hence

fk(x1, · · · , xr) = fk−1(x1, · · · , xr) + (xj1 , · · · , xjk
)Gj1,··· ,jk

(xj1 , · · · , xjk
)

= fk−1(x1, · · · , xr)+

xj1 · · · xjk

f(· · · , 0, xj1 , 0, · · · , 0, xjk
, 0, · · · )− fk−1(· · · , 0, xj1 , 0, · · · , 0, xjk

, 0, · · · )
xj1 · · · xjk

= f(x1, · · · , xr)

By induction, f = fr on Nr =
∏

i=1,··· ,r Mi. Hence, the family of functions satisfies
the conditions.
Uniqueness: To prove uniqueness, suppose

{Gi1,··· ,ik : M ′
i1
×M ′

i2
× · · · ×M ′

ik
→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r}

and

{Hi1,··· ,ik : M ′
i1
×M ′

i2
× · · · ×M ′

ik
→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r}

are two families of functions satisfying the equation. Also assume fG
k and fH

k are the
summation functions as defined above corresponding to the two families. We need to
show Gi1,··· ,ik = Hi1,··· ,ik on M ′

i1
×· · ·×M ′

ik
. We use induction on k. It is easy to verify

the result for the case k = 1. Now suppose, x = (xi1 , · · · , xik) ∈ M ′
i1
×M ′

i2
×· · ·×M ′

ik
.

Then by definition

Gi1,··· ,ik(xi1 , · · · , xik) =

f(0, · · · , 0, xi1 , 0 · · · , 0, xik , 0, · · · , 0)− fG
k−1(0, · · · , 0, xi1 , 0 · · · , 0, xik , 0, · · · , 0)

xi1 · · · xik

and

Hi1,··· ,ik(xi1 , · · · , xik) =

f(0, · · · , 0, xi1 , 0 · · · , 0, xik , 0, · · · , 0)− fH
k−1(0, · · · , 0, xi1 , 0 · · · , 0, xik , 0, · · · , 0)

xi1 · · · xik

But by induction hypothesis, fG
k−1 = fH

k−1 so we are done.

We can think of this representation of f as an expansion around (0, · · · , 0).
However, (0, · · · , 0) has no intrinsic role and we can generalize the above theorem
as follows.
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Theorem 5.2 Suppose, f : M =
∏

i=1,··· ,r Mi → R, Mi being finite and |Mi| = ci.
For any fixed (µ1, · · · , µr) ∈ M , let M ′

i = Mi − {µi}. Then there exist unique
functions

{Hi1,··· ,ik : M ′
i1
×M ′

i2
× · · · ×M ′

ik
→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r}

such that

f(x1, · · · , xr) = f(µ1, · · · , µr) +
r∑

i=1

(xi − µi)Hi(xi)+

∑
1≤i1<i2<···<ik≤r

(xi1 − µi1) · · · (xik − µik)Hi1,··· ,ik(xi1 , · · · , xik)+

· · ·+ (x1 − µ1)(x2 − µ2) · · · (xr − µr)H12···r(x1, · · · , xr).

Proof Let Ni = Mi − µi (meaning that we subtract µi from all elements of
Mi) so that Ni and Mi have the same cardinality. Also let N =

∏
i=1,··· ,r Ni and

N ′
i = Ni − {0}. Then define a bijective mapping

φi : Ni → Mi,

φi(xi) = xi + µi.

This will induce a bijective mapping Φ between N and M that takes (0, · · · , 0) to
(µ1, · · · , µr). Now consider f ◦ Φ :

∏
i=1,··· ,r Ni → R. By the previous theorem,

unique functions

{Gi1,··· ,ik : N ′
i1
×N ′

i2
× · · · ×N ′

ik
→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r}

exist such that

f ◦ Φ(x1, · · · , xr) = f ◦ Φ(0, · · · , 0) +
r∑

i=1

xiGi(xi)+

∑
1≤i1<i2<···<ik≤r

xi1 · · ·xikGi1,··· ,ik(xi1 , · · · , xik) + · · ·+ x1x2 · · ·xrG12···r(x1, · · · , xr).

Hence,

f(φ1(x1), · · · , φr(xr)) = f(φ1(0), · · · , φr(0)) +
r∑

i=1

xiGi(xi)+

∑
1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik) + · · ·+ x1x2 · · · xrG12···r(x1, · · · , xr)
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We conclude,

f(x1 + µ1, · · · , xr + µr) = f(µ1, · · · , µr) +
r∑

i=1

xiGi(xi)+

∑
1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik) + · · ·+ x1x2 · · · xrG12···r(x1, · · · , xr)

This gives:

f(x1, · · · , xr) = f(µ1, · · · , µr) +
r∑

i=1

(xi − µ1)Gi(xi − µi)+

∑
1≤i1<i2<···<ik≤r

(xi1 − µi1) · · · (xik − µik)Gi1,··· ,ik(xi1 − µi1 , · · · , xik − µik)+

· · ·+ (x1 − µ1)(x2 − µ2) · · · (xr − µr)G12···r(x1 − µ1, · · · , xr − µr).

To prove the existence, let

Hi1,··· ,ik(xi1 , · · · , xik) = Gi1,··· ,ik(xi1 − µi1 , · · · , xik − µik).

The uniqueness can be obtained as in the previous theorem.
We call this expression the Besag expansion around (µ1, · · · , µr).

Corollary 5.1 In the case of binary {0, 1} variables, the G functions are simply
real numbers, since M ′

i1
× · · · ×M ′

ik
has exactly one element: (1, · · · , 1). Hence, we

have found a linear representation of f in terms of the xi1 · · · xik .

Corollary 5.2 Suppose that {Xt} is an r-th order Markov chain, Xt taking values
in Mt = {0, 1} and the conditional probability

P (Xt = 1|Xt−1, · · · , X0),

is well-defined and in (0,1). Let g : R → R+ be a given bijective transformation.
Then

gt(xt−1, · · · , x0) = g−1{P (Xt = 1|Xt−1 = xt−1, · · · , X0 = x0)

P (Xt = 0|Xt−1 = xt−1, · · · , X0 = x0)
},

is a function of t variables, (xt−1, · · · , x0), for t < r and is a function of r variables,
(xt−1, · · · , xt−r), for t > r. Hence there exist parameters αt

0, {αt
i1,··· ,it}1≤i1,··· ,it≤t for

t < r and αt
0, {αt

i1,··· ,ir}1≤i1,··· ,ir≤r for t ≥ r such that for t < r
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g−1{P (Xt = 1|Xt−1, · · · , X0)

P (Xt = 0|Xt−1, · · · , X0)
} =

αt
0 +

t∑
i=1

Xt−iα
t
i + · · ·

∑
1≤i1<i2<···<ik≤t

αt
i1,··· ,ikXt−i1 · · ·Xt−ik + · · ·+

αt
12···tXt−1Xt−2 · · ·X0.

and for t ≥ r

g−1 ◦ P (Xt = 1|Xt−1, · · · , X0)

P (Xt = 0|Xt−1, · · · , X0)
=

αt
0 +

r∑
i=1

Xt−iα
t
i + · · ·

∑
1≤i1<i2<···<ik≤r

αt
i1,··· ,ikXt−i1 · · ·Xt−ik + · · ·+

αt
12···rXt−1Xt−2 · · ·X0.

In the case of homogenous Markov chains the αt
0, αt

i1,··· ,ik do not depend on t for
t > r.

The above corollary shows that the conditional probability of a Markov chain after
an appropriate transformation can be uniquely represented as a linear combination
of monomial products of previous states.

One might conjecture that the same result holds for all categorical-valued
Markov chains (with a finite number of states) using the above theorem. This is
not true in general since the {Gi1,··· ,ik} are functions. In the next section, we prove
another representation theorem which paves the way for the categorical case. As it
turns out, we need more terms in order to write down the transformed conditional
probability as a linear combination of past processes.

5.2 Second representation theorem

In this section, we prove a new representation theorem for functions of r finite
variables. We start with the trivial finite-valued one-variable function and then
extend the result to r-variable functions. The proof for the general case is non-
trivial and is done again by induction.

Lemma 5.1 Suppose f : M → R, M ⊂ R being finite of cardinality c. Let d = c−1.
Then f has a unique representation of the form

f(x) =
∑

0≤i≤d

αix
i, ∀x ∈ M
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Remark.

7. The lemma states that, if we consider the vector space V = {f : M → R}, then
the monomial functions {pi}0≤i≤d, where pi : M → R, pi(x) = xi form a basis
for V .

Proof First note that the dimension of V is c. To show this, suppose M =
{m1, · · · ,mc} and consider the following isomorphism of vector spaces,

I : V → Rc

f 7→ (f(m1), · · · , f(mc)).

It only remains to show that {pi}0≤i≤d is an independent set. To prove this suppose,

∑

0≤i≤d

αix
i = 0, ∀x ∈ M.

That would mean that the d-th degree polynomial p(x) =
∑

0≤i≤d αix
i has at least

c = d + 1 disjoint roots which is greater than its degree. This contradicts the fun-
damental theorem of algebra.

Theorem 5.3 Suppose Mi is a finite subset of R with |Mi| = ci, i = 1, 2, · · · , r.
Let di = ci − 1,M =

∏
i=1,··· ,r Mi and consider the vector space of functions over

R, V = {f : M → R} with the function addition as the addition operation of the
vector space and the scalar product of a real number to the function as the scalar
product of the vector space. Then this vector space is of dimension C =

∏
i=1,··· ,r ci

and {xi1
1 · · · xir

r }0≤i1≤d1,··· ,0≤ir≤dr forms a basis for it.

Proof To show that the dimension of the vector space is C, suppose M =
{m1, · · · ,mc} and consider following the isomorphism of vector spaces:

I : V → RC ,

f 7→ (f(m1), · · · , f(mC)).

To show that {xi1
1 · · · xir

r }0≤i1≤di,··· ,0≤ir≤dr forms a basis, we only need to show
that it is an independent collection since there are exactly C elements in it. We
proceed by induction on r. The case r = 1 was shown in the above lemma. Suppose
we have shown the result for r − 1 and we want to show it for r. Assume a linear
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combination of the basis is equal to zero. We can arrange the terms based on powers
of xr:

p0(x1, · · · , xr−1) + xrp1(x1, · · · , xr−1) + · · ·+ xdr
r pd(x1, · · · , xr−1) = 0, (7)

∀(x1, · · · , xr) ∈ M1 × · · · ×Mr.

Fix the values of x′1, · · · , x′r−1 ∈ M1 × · · · ×Mr−1. Then Equation (7) is zero for cr

values of xr. Hence by Lemma 5.1, all the coefficients:

p0(x
′
1, · · · , x′r−1), p1(x

′
1, · · · , x′r−1), · · · , pd(x

′
1, · · · , x′r−1),

are zero and we conclude:

p0(x1, · · · , xr−1) = 0, p1(x1, · · · , xr−1) = 0, · · · , pd(x1, · · · , xr−1) = 0,

∀(x1, · · · , xr−1) ∈ M1 × · · · ×Mr−1.

Again by the induction assumption all the coefficients in these polynomials are zero.
Hence, all the coefficients in the original linear combination in Equation (7) are zero.

Corollary 5.3 Suppose Xt is a categorical stochastic process, where Xt takes values
in Mt, |Mt| = ct = dt + 1 < ∞. Also assume that the conditional probability

P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0),

is well-defined and in (0,1). Fix m1
t ∈ Mt. Let g : R→ R+ be a bijective transforma-

tion, then there are unique parameters {αt
i0,··· ,it}t∈N,0≤i0≤dt−1,0≤i1≤dt−1,0≤i2≤dt−2,··· ,0≤it≤d0

such that

P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0) = Pt(x0, · · · , xt),

where

Pt(x0, · · · , xt−1,m
t
1) =

1

1 +
∑

y∈M−{mt
1} ht(y)

, (8)

Pt(x0, · · · , xt−1, x) =
h(x)

1 +
∑

y∈M−{m1} ht(y)
, x 6= mt

1 ∈ Mt, (9)

for ht(x0, · · · , xt) = g ◦ gt(x0, · · · , xt−1, xt) and

gt(x0, · · · , xt−1, xt) =
∑

0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0

αt
i0,··· ,itx

i0
t−0 · · · xit

t−t,

(x0, · · · , xt) ∈ M0 × · · · ×Mt−1 ×M ′
t .

On the other hand any set of parameters αt
i0,··· ,it gives rise to a unique stochastic

process with the above equations.
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Corollary 5.4 Suppose that {Xt} is an r-th order Markov chain where Xt takes
values in Mt a finite subset of real numbers, |Mt| = ct = dt +1 < ∞, the conditional
probability

P (Xt = xt|Xt−1, · · · , X0),

is well-defined and belongs to (0, 1). Fix m1
t ∈ Mt and let M ′

t = Mt − {m1
t} and

g : R→ R+ be a given bijective transformation. Then

gt(xt, · · · , x0) = g−1{ P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0)

P (Xt = m1
t |Xt−1 = xt−1, · · · , X0 = x0)

},

is a function of t + 1 variables for t < r, (xt, · · · , x0) and is a function of r + 1
variables,(xt, · · · , xt−r), for t > r. Hence there exist parameters

{αt
i0,··· ,it}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0 , for t < r

and
{αt

i0,··· ,ir}0≤i0≤dt−1,0≤i1≤dt−1,··· ,ir≤dt−r , for t ≥ r

such that for t < r

g−1{ P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0)

P (Xt = m1
t |Xt−1 = xt−1, · · · , X0 = x0)

} =

∑

0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0

αt
i0,··· ,itx

i0
t−0 · · ·xit

t−t,

(x0, · · · , xt) ∈ M0 × · · ·Mt−1 ×M ′
t ,

and for t ≥ r

g−1{ P (Xt = xt|Xt−1 = xt−1, · · · , X0 = x0)

P (Xt = m1
t |Xt−1 = xt−1, · · · , X0 = x0)

} =

∑

0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r

αt
i0,··· ,irx

i0
t−0 · · · xir

t−r

(x0, · · · , xt) ∈ M0 × · · ·Mt−1 ×M ′
t .

In the case of homogenous Markov chains the αt
i1,··· ,ir do not depend on t for t > r.

One might question the usefulness of such a representation. After all we have
exactly as many parameters in the model as the values of the original function. In
the following, we explain the importance of linear representations of such functions.

1. A vast amount of theory has been developed to deal with linear models. Gen-
eralized linear models in the case of independent sequence of random variables
is a powerful tool. As we will see in sequel, these ideas can be imported into
time series using the concept of partial likelihood.
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2. Although we have as many parameters in the model as the values of the original
function, the representation gives us a convenient framework for modeling, in
particular for making various model reductions by omitting some terms or
assuming certain coefficients are equal.

3. Although this is a representation for stationary r-th order Markov chains (or
representation for arbitrary locally r-th order chains at time t), this repre-
sentation allows us to accommodate other explanatory variables simply by as
additive linear terms and extend the model to the non-stationary cases. This
cannot be done in the same way if we try to model the original values of the
function.

Example 5.1 As an example consider a categorical response variable Y and r cat-
egorical explanatory variables

X1, · · · , Xr,

are given. Suppose the Xi takes values in the Mi which include 0. Our purpose is
to model Y based on X1, · · · , Xr. In order to do that, we consider the conditional
probability

P (Y = y|X1 = x1, · · · , Xr = xr).

Again, we assume that the conditional probability is well-defined everywhere and
takes values in (0, 1). The above theorem shows that after applying a transformation
the conditional probability can be written as a linear combination of multiples of
powers of the Xi.

Although, the theorem above shows the form of the conditional probability
in general and paves the way to the estimation of the conditional probabilities by
estimating the parameters, the large number of parameters makes this a challenging
task which might be impractical in some cases. In the next section, we introduce
some classes of r variable functions that can be useful for some applications.

5.3 Special cases of functions of r finite variables

The first class of functions we introduce are obtained by power restrictions. We
simply assume that gr can be represented only by powers less than k. Suppose Xt

takes values in 0, 1, · · · , ct − 1. Then for a k-restricted power model the gt, t > r is
given by:

∑

0≤i1≤d1,··· ,0≤ir≤dr,
P

j ij≤k

αi1,··· ,irX
i1
t−1 · · ·X ir

t−r.

In particular, we can let k = 1 and get

β0 +
∑

i

βiXt−i.
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This is useful especially for binary Markov chains.
The second class of functions are useful in the case when relationships exist

between the states in terms of a semi-metric d. Suppose {Xt} is an r-th order
Markov chain and Xt takes values in the same finite set M = {1, · · · ,m}. Also let

d : M ×M → R,

be a semi-metric being a mapping on M that satisfies the following conditions:

d ≥ 0;

d(x, z) ≤ d(x, y) + d(y, z);

d(x, x) = 0.

Then we introduce the following model:

g−1 ◦ P (Xt = j|Xt−1, · · · , Xt−r)

P (Xt = 1|Xt−1, · · · , Xt−r)
= α0,j +

k∑
i=1

αi,jd(j, Xt−i)

for j = 2, · · · ,m. For this model

P (Xt = 1|Xt−1, · · · , Xt−r) = 1−
∑

j=1,··· ,ct−1

P (Xt = j|Xt−1, · · · , Xt−r).

Finally, we introduce a simple class for the binary Markov chain of order r.
For any bijective transformation g : R→ R+

g−1 ◦ P (Xt = 1|Xt−1, · · · , Xt−r)

P (Xt = 0|Xt−1, · · · , Xt−r)
= α0 + α1Nt−1,

where Nt−1 =
∑r

j=1 Xt−j. For example in the 0-1 precipitation process example seen
in the Introduction, Nt−1 counts the number of the days out of r days before today
that had some precipitation.

6 Generalized linear models for time series

Generalized linear models were developed to extend ordinary linear regression to
the case that the response is not normal. However, that extension required the
assumption of independently observed responses. The notion of partial likelihood
was introduced to generalize these ideas to time series where the data are dependent.
What follows in this section is a summary of the first chapter in Kedem and Fokianos
[5], which we have included for completeness.
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Definition 6.1 Let Ft, t = 1, 2, · · · be an increasing sequence of σ-fields, F0 ⊂
F1 ⊂ F2, · · · and let Y1, Y2, · · · be a sequence of random variables such that Yt is Ft

measurable. Denote the density of Yt, given Ft, by ft(yt; θ), where θ ∈ Rp is a fixed
parameter. The partial likelihood (PL) is given by

PL(θ; y1, · · · , yN) =
N∏

t=1

ft(yt; θ).

Example 6.1 As an example, suppose Yt represents the 0-1 PN process in Calgary,
while MTt denotes the maximum daily temperature process. We can define Ft as
follows:

1. Ft = σ{Yt−1, Yt−2, · · · }. In this case, we are assuming the information available
to us is the value of the process on each of the previous days.

2. Ft = σ{Yt−1, Yt−2, · · · MTt−1,MTt−2, · · · }. In this case, we are assuming we
have all the information regarding the 0-1 process of precipitation and maxi-
mum temperature for previous days.

3. Ft = σ{Yt−1, Yt−2, · · · MTt,MTt−1,MTt−2, · · · }. In this case, we add to the
information in 2 the knowledge of today’s maximum temperature.

The vector θ that maximizes the above equation is called the maximum partial
likelihood (MPLE). Wong [7] has studied its properties. Its consistency, asymptotic
normality and efficiency can be shown under certain regularity conditions.

In this report, we are mainly interested in the case: Ft = σ{Yt−1, Yt−2, · · · }.
We assume that the information Ft is given as a vector of random variables and
denote it by Zt, which we call the covariate process:

Zt = (Zt1, · · · , Ztp)
′.

Zt might also include the past values of responses Yt, Yt−1, · · · .
Let µt = E[Yt|Ft−1], be the conditional expectation of the response given the

information we have up to the time t.
Kedem and Fdokianos in [5] address time series following generalized lin-

ear models satisfying certain conditions about the so-called random and systematic
components:

• Random components: For t = 1, 2, · · · , N

f(yt; θt, φ|Ft−1) = exp{ytθt − b(θt)

at(φ)
+ c(yt; φ)}.



– 22 –

• The parametric function αt(φ) is of the form φ/wt, where φ is the dispersion
parameter, and wt is a known parameter called “weight parameter”. The
parameter θt is called the natural parameter.

• Systematic components: For t = 1, 2, · · · , N ,

g(µt) = ηt =

p∑
j=1

βjZ(t−1)j = Z ′
t−1β,

for some known monotone function g called the link function.

Example 6.2 Binary time series: As an example consider {Yt}, a binary time
series. Let us denote by πt the probability of success give Ft−1. Then for t =
1, 2, · · · , N ,

f(yt; θt, φ|Ft−1) = exp(yt log(
πt

1− πt

) + log(1− πt))

with E[Yt|Ft−1] = πt, b(θt) = − log(1 − πt) = log(1 + exp(θt)), V (πt) =
πt(1− πt), φ = 1, and wt = 1.
The canonical link gives rise to the so–called “logistic model”:

g(πt) = θt(πt) = log(
πt

1− πt

) = ηt = Z ′
t−1β.

In order to study the asymptotic behavior of the maximum likelihood esti-
mator, we consider the conditional information matrix. To establish large sample
properties, the stability of the conditional information matrix and the central limit
theorem for martingales are required. Proofs may be found in Kedem and Fokianos
[5].

Inference for partial likelihood

The definitions of partial likelihood and exponential family of distributions imply
that the log partial likelihood is given by

l(β) =
N∑

t=1

log f(yt; θt, φ|Ft−1) =

N∑
t=1

{ytθt − b(θt)

αt(φ)
+ c(yt, φ)} =

N∑
t=1

{ytu(z′t−1β)− b(u(z′t−1))

αt(φ)
+ c(yt, φ)} =

N∑
t=1

lt,

where u(.) = (g ◦ µ(.))−1 = µ−1(g−1(.)), so that θt = u(zt−1β). We introduce the
notation,

O = (
∂

∂β1

, · · · ,
∂

∂βp

)′
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and call Ol(β) the partial score. To compute the gradient, we can use the chain rule
in the following manner

∂lt
∂βj

=
∂lt
∂βj

∂θt

∂µt

∂µt

∂ηt

∂ηt

∂βj

.

Some algebra shows

SN(β) = Ol(β) =
N∑

t=1

Z(t−1)
∂µt

∂ηt

Yt − µt(β)

σ2
t (β)

,

where, σ2
t (β) = V ar[Yt|Ft−1]. The partial score process is defined from the partial

sums as

St(β) = Ol(β) =
t∑

s=1

Z(s−1)
∂µs

∂ηs

Ys − µs(β)

σ2
s(β)

.

One can show the terms in the above sums to be orthogonal:

E[Z(t−1)
∂µt

∂ηt

Yt − µt(β)

σ2
t (β)

Z(s−1)
∂µs

∂ηs

Ys − µs(β)

σ2
s(β)

] = 0, s < t.

Also, E[SN(β) = 0].
The cumulative information matrix is defined by

GN(β) =
N∑

t=1

Cov[Z(t−1)
∂µt

∂ηt

Yt − µt(β)

σ2
t (β)

|Ft−1].

The unconditional information matrix is simply

Cov(SN(β)) = FN(β) = E[GN(β)].

Next let

HN(β) = −OO′l(β).

Kedem and Fokianso ([5]) show that

HN(β) = GN(β)−RN(β),

where

RN(β) =
1

αt(φ)

N∑
t=1

Zt−1dt(β)Z ′
t−1(Yt − µt(β)),

and dt(β) = [∂2u(ηt)/∂η2
t ].

St satisfies the martingale property:

E[St+1(β)|Ft−1] = St(β).
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To prove the consistency and other properties of the estimators, we need:
Assumption A:
A1. The true parameter β belongs to an open set B ⊂ R.
A2. The covariate vector Zt almost surely lies in a non random compact set Γ of
Rp, such that P [

∑N
t=1 Zt−1Z

′
t−1 > 0] = 1. In addition, Z ′

t−1β lies almost surely in
the domain H of the inverse link function h = g−1 for all Zt−1 ∈ Γ and β ∈ B.
A3. The inverse link function h-defined in (A2) is twice continuously differentiable
and |∂h(λ)/∂λ| 6= 0.
A4. There is a probability measure ν on Rp such that

∫
Rp zz′ν(dz) is positive definite,

and such that for Borel sets A ⊂ Rp,

1

N

N∑
t=1

I[Zt−1∈A] → ν(A).

Theorem 6.1 Under assumption A the maximum likelihood estimator is almost
surely unique for all sufficiently large N , and

1. the estimator is consistent and asymptotically normal,

β̂
p→ β

in probability, and

√
N(β̂ − β)

d→ Np(0, G
−1(β)),

in distribution as N →∞, for some matrix G.

2. The following limit holds in probability, as N →∞:

√
N(β̂ − β)− 1√

N
G−1(β)SN(β)

p→ 0.

7 Simulation studies

This section presents the results of some simulation studies about the partial like-
lihood applied to categorical r-th order Markov chains. We also investigate the
performance of the BIC to pick the appropriate (“true”) model. In particular, we
generate samples from a seasonal Markov chain Xt where,

Zt−1 = (1, Xt−1, cos(ωt)), ω =
2π

366
.

We consider this Markov chain over 5 years between 2000 and 2005 and assume

logit{P (Xt = 1|Zt−1)} = β′Zt−1,
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Figure 1: The distribution of parameter estimates for the model with the covariate
process Zt−1 = (1, Xt−1, cos(ωt)) and parameters (β1 = −1, β2 = 1, β3 = −0.5).

where β = (−1, 1,−0.5).
To generate samples for this chain, we need an initial value of the past two

states, which we take it to be (1, 1). We denote the process Xt−k by Xk for simplicity.
To check the performance of the partial likelihood and estimates of the vari-

ance using GN , we generate 50 chains with this initial value and then compare the
parameter estimates with the true parameters. We also compare the theoretical
variances with the experimental variances.

simulated sd theoretical sd

β̂1 β̂2 β̂3 sd(β̂1) sd(β̂2) sd(β̂3) sd(β̂1) sd(β̂2) sd(β̂3)

-0.985 1.02 -0.415 0.067 0.104 0.0730 0.061 0.121 0.0731

Table 1: The estimated parameters for the model Zt−1 = (1, Xt−1, cos(ωt)) with pa-
rameters β = (−1, 1,−0.5). The standard deviation for the parameters is computed
once using Gn and once using the generated samples.

In Kedem and Fokianos [5] other simulation studies have been done to check
the validity of this method.

To check the normality of the parameter estimates, we plot the three param-
eter estimates histograms in Figure 1.

Next we check the performance of the BIC criterion in picking the optimal
(“true”) model. We use the same model as above and then compute the BIC for a
few models to see if BIC picks the right one. We denote Xt−k by Xk and cos(ωt)
by COS for simplicity. For an assessment, we simulate a few other chains.



– 26 –

Model: Zt−1 BIC parameter estimates

1 2380.0 -0.605
1, X1 2267.12 (-1.03, 1.11)
1, X1, X2 2273.75 (-1.064,1.091,0.101)
1, X1, COS 2217.73 (-1.00,0.970,-0.558)
1, X1, SIN 2274.49 ( -1.037,1.117,0.026)
1, X1, COS, SIN 2225.087 (-1.00,0.970,-0.559,0.028)
1, X1, X2, X1X2 2281.142 (-1.055,1.0615,0.0647,0.077)
1, X1, X2, X1X2, COS 2232.424 (-0.985,0.943,-0.0870,0.0915,-0.564)
1, X1, X2, X1X2, COS, SIN 2239.834 (-0.981,0.957,-0.0946,0.0723,-0.575,0.0232)

Table 2: BIC values for several models competing for the role of the true model,
where Zt−1 = (1, X1, COS), β = (−1, 1,−0.5).

As we see in Table 2, the true model has the smallest BIC so BIC performs
well in this case. Also note that models which include the true model have accurate
estimates for the parameters associated with 1, X1, COS, while giving very small
magnitude for other parameters associated with other covariates in the full but not
true model.

Model: Zt−1 BIC parameter estimates

1 2537.353 0.0799
1, X1 2329.58 (-0.649,1.417)
1, X1, X2 2245.584 (-1.022,1.144,0.998)
1, X1, COS 2265.96 (-0.553,1.236,-0.617)
1, X1, SIN 2336.71 (-0.648,1.415,-0.0433)
1, X1, COS, SIN 2273.01 (-0.552,1.235,-0.617,-0.0480)
1, X1, X2, X1X2 2251.32 (-1.08,1.287,1.140,-0.278)
1, X1, X2, X1X2, COS 2213.706 (-0.936,1.11,0.966,-0.175,-0.511)
1, X1, X2, X1X2, COS, SIN 2221.275 (-0.927,1.101,0.940,-0.160,-0.549,-0.0441)
1, X1, X2, COS 2206.865 (-0.899,1.0263,0.875,-0.515)

Table 3: BIC values for several models competing for the role of true model given
by Zt−1 = (1, X1, X2, COS), β = (−1, 1, 1,−0.5).

Table 3 presents the true model in the last row. Ignore that row for a moment.
The smallest “BIC” corresponds to 1, X1, X2, X1X2, COS, which has an component
X1X2 added to the true model. However, the coefficients of this model are very close
to the true model and the coefficient for X1X2 is relatively small in magnitude. The
true model has the smallest BIC again and the parameter estimates are close to the
correct values.
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8 Concluding remarks

In summary, this report shows that a categorical discrete-time stochastic process
can be represented using a small number of ascending joint distributions

p0(x0), p1(x0, x1), p2(x0, x1, x2), · · · .

We showed that a categorical discrete-time stochastic process can be represented
using the conditional probabilities P0(X0), P1(X1|X0), P2(X2|X0, X1), · · · . A para-
metric form was found for the conditional probability distribution of categorical
discrete-time stochastic processes. The parameters can be estimated for stationary
binary Markov chains using partial likelihood.
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