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Abstract

Rizvi and Sobel (1967) give procedures for selecting, from k distribution functions
F1, . . . , Fk, a subset containing the one with the largest α-quantile. The sizes of
the samples taken from these Fi are equal and the authors give conditions on
the Fi under which the probability of correct selection is at least P ∗ for a given
P ∗ ∈ (1/k, 1). In this 1967-paper, Rizvi and Sobel also give a procedure for
selecting a subset containing the Fi with the smallest α-quantile. In the present
paper these Rizvi-Sobel procedures are extended to the case where the sample
sizes are not necessarily equal.
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1 Introduction

Let, for k ≥ 2 and i = 1, . . . , k, X1,i, . . . , Xni,i be independent samples from
distributions Fi. Rizvi and Sobel (1967) (RS from now on) give a subset
selection procedure for selecting the Fi with the largest α-quantile, as well as
a procedure for selecting the one with the smallest α-quantile. Their sample
sizes are equal and under conditions on the Fi their procedures have a prob-
ability of correct selection ≥ P ∗ for a given P ∗ ∈ (1/k, 1). In the present
paper the RS procedures are extended to the case where the sample sizes are
not necessarily equal.

Several results on subset selection with unequal sample sizes have been ob-
tained for models other than the RS one. For Xj,i ∼ N (θi, σ2) with σ known
and the goal of a subset containing the population with the largest θi, Sitek
(1972) generalizes, to unequal sample sizes, a procedure of Gupta (1956) (see
also Gupta and Sobel (1957)). However, Dudewicz (1974) shows that Sitek’s
derivation is incorrect. But Gupta and Huang (1974) give a procedure for
this normal-mean problem with unequal sample sizes, as well as one for the
case when σ is unknown. Chen, Dudewicz and Lee (1976) also consider the
Gupta-Huang (1974) case. They study a procedure which is different from
the Gupta-Huang procedure and make comparisons between the two meth-
ods with respect to average subset size and ease of implementation. They
find that their procedure is the better one on both points.
There are several non-parametric procedures, namely by Gupta and Mcdon-
ald (1970), by Hsu (1981) and by Kumar, Mehta and Kumar (2002). Gupta
and McDonald consider a stochastically increasing family and base their pro-
cedure on rank statistics where the ranks are from the pooled samples. Ku-
mar, Mehta and Kumar consider the location problem and use U-statistics,
while Hsu considers a stochastically increasing family and uses two-sample
rank statistics - one for each pair of samples. Only Gupta-McDonald and
Hsu look at models that are not too far from the RS one, where Hsu does
not refer to RS while Gupta and McDonald do.

The two procedures extending the two RS-procedures as well as their for-
mulas for the probability of correct selection are given in the sections 2 and
3. Section 4 gives numerical values for the probability of correct selection
for the case of the largest α-quantile for several values of k, the ni and α
and in Section 5 some properties of the probability of correct selection of our
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extensions are compared with those of the RS procedures. Section 6 contains
some comments on the fact that the RS procedures as well as our extensions
of them are not sign-invariant. Our proofs are generalizations of those of RS.

2 The procedure for the largest quantile

The conditions on the distribution functions Fi are the same as those of RS.
So the Fi satisfy

min
1≤i≤k

F[i](y) = F[k](y) for all y, (2.1)

where F[i] is the distribution with the i-th smallest α-quantile, the Fi are
continuous and have a unique α-quantile. Further, ri and ci, i = 1, . . . , k,
are integers satisfying

1 ≤ ri ≤ (ni + 1)α < ri + 1 ≤ ni + 1 and 0 ≤ ci ≤ ri − 1 (2.2)

and Yj,i, j = 1, . . . , ni, i = 1, . . . , k is the j-th order statistics of the sample
from Fi.

The proposed procedure is

R1 : put Fi in the subset ⇔ Yri,i ≥ max
1≤j≤k, j #=i

Yrj−cj ,j. (2.3)

Then, when Fi = F[k], the probability of correct selection given by

Pi,di(CS|R1) = P (Yri,i ≥ max
j #=i

Yrj−cj,j) = P (Yrj−cj ,j ≤ Yri,i, j '= i), (2.4)

where, for i = 1, . . . , k, di = (c1, . . . , ci−1, ci+1, . . . , ck). We now need, for
U1, . . . , UN independent with continuous distribution function G, the distri-
bution of the ν-th order statistic Zν which is given by

P (Zν ≤ z) =
N∑

l=ν

(
N

l

)
G(z)l(1 − G(z))N−l = IG(z)(ν, N − ν + 1), (2.5)

where, for u ∈ (0, 1) and positive a and b, Iu(a, b) is the standard incomplete
beta function given by

Iu(a, b) =
1

B(a, b)

∫ u

0
ta−1(1 − t)b−1dt. (2.6)
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This gives, for j = 1, . . . , ni and i = 1, . . . , k,

P (Yj,i ≤ x) =
ni∑

l=j

(
ni

l

)
Fi(x)l(1 − Fi(x))ni−l = IFi(x)(j, ni − j + 1), (2.7)

implying that (2.4) can be written as

Pi,di(CS|R1)

= P (Yri,i ≥ maxj #=i Yrj−cj ,j) = P (Yrj−cj ,j ≤ Yri,i, j '= i)

=
∫ ∞
−∞

∏
j #=i IFj(y)(rj − cj, nj − (rj − cj + 1)dIFi(y)(ri, ni − ri + 1).






(2.8)

Further, (see (2.6)) Iu(a, b) is, for all (a, b) with a > 0 and b > 0, strictly
increasing in u, which implies by (2.1) that, when Fi = F[k], F[j](x) ≥ Fi(x)
for all j and all x. So, with Li,di(CS|R1) = min(F1,...,Fk) Pi,di(CS|R1), where
the minimum is taken over all (F1, . . . , Fk) satisfying (2.1),

Pi,di(CS|R1) ≥ Li,di(CS|R1) =

∫ ∞
−∞

∏
j #=i IFi(y)(rj − cj, nj − (rj − cj + 1)dIFi(y)(ri, ni − ri + 1) =

∫ 1
0

∏
j #=i Iu(rj − cj, nj − (rj − cj) + 1)dIu(ri, ni − ri + 1).






(2.9)

Next note that for u ∈ (0, 1)

Iu(r, n − r + 1) − Iu(r + 1, n − r) =
(

n

r

)
ur(1 − u)n−r > 0 (2.10)

implying that Iu(r, n− r + 1) is decreasing in r for fixed u ∈ (0, 1) and fixed
n ≥ 1. Then, using (2.10) and the fact that 0 ≤ ci ≤ ri − 1, gives, for
i = 1, . . . , k,

Ai ≤ Li,di(CS|R1) ≤ Bi, i = 1, . . . , k, (2.11)

where

Ai =
∫ 1

0

∏

j #=i

Iu(rj, nj − rj + 1)dIu(ri, ni − ri + 1) (2.12)

and

Bi =
∫ 1

0

∏

j #=i

Iu(1, nj)dIu(ri, ni − ri + 1). (2.13)
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Now we need to find (c1, . . . , ck) and the possible P ∗’s such that

min
1≤i≤k

Li,di(CS|R1) ≥ P ∗. (2.14)

To solve this problem, first note that the subset size is increasing in each of
the ci, so the c’s should be chosen as small as possible. Further note (from
(2.13)) that min1≤i≤k Bi < 1 and from (2.12) (see the Appendix for a proof)
that

k∑

1

Ai = 1 for all ni and ri satisfying (2.2), (2.15)

implying that min1≤i≤k Ai ≤ 1/k.
Now let Ai0 = min1≤k Ai and let Bi1 = min1≤i≤k Bi. Then Ai0 < Bi1 and the
following theorem holds

Theorem 2.1 From the above it follows that

1) when P ∗ < Ai0, Li,di(CS|R1) > P ∗ for all (i, di), but with P ∗ = Ai0 one
gets Li,di(CS|R1) ≥ Ai0 for all (i, di);

2) when P ∗ > Bi1, then (by (2.11)

Pi1,di1
(CS|R1) < P ∗ for all di1;

3) when Ai0 ≤ P ∗ ≤ Bi1 there exists (by (2.11) and the monotonicity in ci

of Li,di(CS|R1)) a di such that Pi1,di1
(CS|R1) ≥ P ∗ for all di1.

For the case where the ni are equal, we have ri = r, Li,di(CS|R1) = L(CS|R1),
Ai = A = 1/k and Bi = B < 1. So, the interval (2.11) is the interval
[1/k, B] ⊂ [1/k, 1) and Theorem 2.1 tells us that in this case there exists,
for each P ∗ ∈ [1/k, 1) at least one c such that P (CS|R1) ≥ P ∗. And this is
essentially the RS solution for this case - they take P ∗ ∈ (1/k, 1). But who
would use P ∗ = 1/k?

3 The procedure for the smallest quantile

As in Section 2, the conditions on the Fi are the ones used by RS, i.e. the
Fi satisfy

max
1≤i≤k

F[i](y) = F[1](y) for all y. (3.1)
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Further, as before, the Fi are continuous and have a unique α-quantile, but
in this case the integers ri and ci satisfy

1 ≤ ri ≤ (ni + 1)α < ri + 1 ≤ ni + 1 and 0 ≤ ci ≤ ni − ri. (3.2)

The proposed procedure is then

R2 : put Fi in the subset ⇔ Yri,i ≤ min
1≤j≤k, j #=i

Yrj+cj ,j (3.3)

and when Fi = F[1] the probability of correct selection is

Pi,di(CS|R2) = P (Yri,i ≤ min1≤j≤k,j #=i Yrj+cj ,j)

= 1 − P (Yrj+cj ,j ≤ Yri,i, j '= i),





(3.4)

where, as for the case of the largest quantile, the probability of correct selec-
tion when Fi = F[1] depends on the c’s only through di = (c1, . . . , ci−1, ci+1, ck).
Using (2.5) now gives, for the case where Fi = F[1],

1 − Pi,di(CS|R2) =

∫ ∞
−∞

∏
j #=i IFj(y)(rj + cj, nj − rj − cj + 1)dIFi(y)(ri, ni − ri + 1)





(3.5)

and (3.1) then gives

1 − Pi,di(CS|R2) ≤
∫ ∞
−∞

∏
j #=i IFi(y)(rj + cj , nj − rj − cj + 1)dIFi(y)(ri, ni − ri + 1) =

∫ 1
0

∏
j #=i Iu(rj + cj, nj − rj − cj + 1)dIu(ri, ni − ri + 1).






(3.6)

Calling the lower bound on Pi,di(CS|R2) in (3.6) Li,di(CS|R2), using (2.10)
and the fact that 0 ≤ ci ≤ ni − ri, gives, for i = 1, . . . , k,

∫ 1
0

∏
j #=i Iu(rj, nj − rj + 1)dIu(ri, ni − ri + 1)

≤ 1 − Li,di(CS|R2) ≤

∫ 1
0

∏
j #=i Iu(nj , 1)dIu(ri, ni − ri + 1).






(3.7)
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Now let, for i = 1, . . . , k,

A∗
i = 1 −

∫ 1

0

∏

j #=i

Iu(nj , 1)dIu(ri, ni − ri + 1) (3.8)

and

B∗
i = 1 −

∫ 1

0

∏

j #=i

Iu(rj, nj − rj + 1)dIu(ri, ni − ri + 1), (3.9)

then we have, by the same reasoning as in Section 2,

k∑

i=1

B∗
i = k − 1, (3.10)

implying that maxB∗
i ≥ 1 − (1/k). Further, by the same reasoning as the

one that gives (2.11),

A∗
i ≤ Li,di(CS|R2) ≤ B∗

i , i = 1, . . . , k. (3.11)

Finally, Theorem 2.1 with, for i = 1, . . . , k, (Ai, Bi) replaced by (A∗
i , B

∗
i ),

gives (c1, . . . , ck) and the possible P ∗ so that min1≤i≤k Pi,di(CS|R2) ≥ P ∗.

4 Numerical results

In this section some numerical results are presented for k = 2 for the case of
the largest α-quantile.

We take α = 1/2 with

1. n1 = n2 = 4 where 0 = c1 = c2 ≤ 1

2. n1 = 4, n2 = 5 where 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 2

3. n1 = 4, n2 = 6 where 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 2.

Table 1 gives, for these n1, n2 and α, the values of Li,di(CS|R1) for all possible
values of the ci.
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Table 1: The lower bounds in (2.9) with k = 2 and i = 1, 2

n1 n2 c1 c2 L1,d1(CS) L2,d2(CS)

4 4 0 0 A1 = .5 A2 = .5

1 1 B1 = .7857 B2 = .7857

4 5 0 0 A1 = .3572 A2 = .6428

0 1 .5952 A2 = .6428

0 2 B1 = .8333 A2 = .6428

1 0 A1 = .3572 B2 = .8810

1 1 .5952 B2 = .8810

1 2 B1 = .8333 B2 = .8810

4 6 0 0 A1 = .4524 A2 = .5476

0 1 .6667 A2 = .5476

0 2 B1 = .8667 A2 = .5476

1 0 A1 = .4524 B2 = .8333

1 1 .6667 B2 = .8333

1 2 B1 = .8667 B2 = .8333

Using Theorem 2.1 for these cases gives

1. When n1 = n2 = 4, c = 0 does not give anything interesting, but c = 1
gives a probability of correct selection = .7857.

2. When n1 = 4 and n2 = 5, we have Ai0 = .3572 and Bi1 = .8333, so for
P ∗ ∈ [.3572, .8333] there exist (c1, c2) such that min1≤i≤k Pi,di(CS|R1) ≥
P ∗. For example: for .6428 ≤ P ∗ < .8333, P1,d1(CS|R1) = .8333 >
.6428 when c2 = 2 and P2,d2(CS|R1) = .6428 when c1 = 1 - and these
are the smallest c’s for which the inequality holds.

3. When n1 = 4 and n2 = 6, we have Ai0 = .4524 and Bi1 = .8333. So, for
P ∗ ∈ [.4524, .8333] there exists (c1, c2) such that min1≤i≤k Pi,di(CS|R1) ≥
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P ∗. For example: when (see Table 1) P ∗ = .6667, using c2 = 1, c1 = 1
gives P1,d1(CS|R1) = .6667 and P2,d2(CS|R1) = .8333. Here, again,
these are the smallest c’s possible.

REMARK:

For k = 2 we have (a proof is in the Appendix)

Bi = 1 − ni!(n1 + n2 − ri)!

(ni − ri)!(n1 + n2)!
, i = 1, 2. (4.1)

5 Some properties of the procedure R1.

In this section we consider three questions concerning some of the properties
of the procedure R1 with unequal sample sizes as compared with those of the
RS procedure.

Question 1:

Which is “better”:

1) unequal sample sizes n1, . . . , nk

or
2) equal sample sizes n =

∑
1≤i≤k ni/k?

As an example, take k = 2, α = 1/2 and n1 = 4, n2 = 6 and n = 5.

For n1 = n2 = 5, we have r = 3, 0 ≤ c ≤ 2 and (see 2.9)

P (CS) ≥
∫ 1

0
Iu(r − c, n − (r − c) + 1)dIu(r, n − r + 1).

This gives

• P (CS) ≥ 1
2 when c = 0;

• P (CS) ≥ .7381 when c = 1;

• P (CS) ≥ .9167 when c = 2

obtained from
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• for c = 0 the result is obvious;

• c = 1 gives

P (CS) ≥
∫ 1

0
Iu(2, 4)dIu(3, 3) =

∫ 1
0 u2(1 − u)2 ∫ u

0 t(1 − t)3dtdu

B(2, 4)B(3, 3)
,

with
∫ u
0 t(1− t)3dt = 1

2u
2 − u3 + 3

4t
4 − t5, so that (with a little algebra)

we get for this case P (CS) ≥ .7381;

• for c = 2 we have (I have a formula for this one, but have not (yet) put
it in the file);

P (CS) ≥ 1 − n!(2n − r)!

(n − r)!(2n)!
= .9167.

In summary, for k = 2, n1 = n2 = 5 and α = 1/2, we have

• P (CS) ≥ 1/2 when c = 0;

• P (CS) ≥ .7381 when c = 1

• P (CS) ≥ .9167 when c = 2.

For the case where n1 = 4, n2 = 6 and α = 1/2 we get from Table 1 that the
possible P ∗ are .4524, .5476, .6667 and .8333 with

• mini Pi,di(CS) ≥ .4524 when c1 = c2 = 0 and when (c1 = 1, c2 = 0);

• mini Pi,di(CS) ≥ .5476 when (c1 = 0, c2 = 1) when (c1 = 1, c2 = 2);

• mini Pi,di(CS) ≥ .6667 when c1 = c2 = 1;

• mini Pi,di(CS) ≥ .8333 when (c1 = 1, c2 = 2).

Now: which of these two is “better”?

Among the reasonable P ∗ we have

for n1 = n2 = 5:

P (CS) ≥ .7381 when c = 1 and P (CS) ≥ .9167 when c = 2.
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for n1 = 4 and n2 = 6:

P (CS) ≥ .6667 when c1 = c2 = 1 and P (CS) ≥ .8333 when (c1 = 1, c2 = 2).

If we want mini Pi,di(cs) ≥ .9 we can not get this with n1 = 4, n2 = 6, but
we can with n1 = n2 = 5. If we want mini Pi,di(CS) ≥ .8, we have a choice
between n1 = n2 = 5 with P ∗ = .9167 and n1 = 4, n2 = 6 with P ∗ = .8333.
But for the n1 = n2 = 5 case we then have to take a large value of c and get
a P (CS) much larger then what we asked for. So, in this case the average
subset size for n1 = n2 = 5 might well be larger than the one for n1 = 4,
n2 = 6.

QUESTION 2:

For each of their procedures, RS prove that, if Fi is the distribution with the
largest α-quantile, the probability of including it in the subset is not smaller
than the probability of including any of the other distributions in the subset.

Question: is this also the case for unequal sample sizes?

For the case where k = 2, suppose that F2 has the largest α-quantile. Then
F1(x) ≥ F2(x) for all x,

P (CS) = P (F2 is in the subset) =
∫ ∞
−∞ IF1(x)(r1 − c1, n1 − (r1 − c1) + 1)dIF2(x)(r2, n2 − r2 + 1) ≥

∫ 1
0 Iu(r1 − c1, n1 − (r1 − c1) + 1)dIu(r2, n2 − r2 + 1)





(5.1)

and c1 is chosen such that

∫ 1

0
Iu(r1 − c1, n1 − (r1 − c1) + 1)dIu(r2, n2 − r2 + 1) ≥ P ∗. (5.2)

Further,

P (F1 is in the subset) =
∫ ∞
−∞ IF2(x)(r2 − c2, n2 − (r2 − c2) + 1)dIF1(x)(r1, n1 − r1 + 1) ≤

∫ 1
0 Iu(r2 − c2, n2 − (r2 − c2) + 1)dIu(r1, n1 − r1 + 1),





(5.3)
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Finally, c2 is chosen such that, if F1 were the distribution with the largest
α-quantile, P (F1 is in the subset ) ≥ P ∗, i.e. such that

∫ 1

0
Iu(r2 − c2, n2 − (r2 − c2) + 1)dIu(r1, n1 − r1 + 1) ≥ P ∗. (5.4)

So, we get P (correct one in) ≥ P (incorrect one in) when we have equality in
(5.4). But that means that we need equality in both (5.4)and (5.2), because
we do not know which one is the one with the largest α-quantile - and from
the numerical results that is something that does not seem to be possible. In
the case of equal sample sizes, the integrals in (5.2) and (5.4) are equal. So
for that case we have P (correct one in) ≥ P (incorrect one in) - as proved in
RS for the general case of k ≥ 2 samples of equal size.

An example with k = 2 where the probabilities P (F1 is in the subset) and
P (F2 is in the subset) can be explicitly obtained is the case where

F1(x) = 1 − eθ1x and F2(x) = 1 − e−θ2x, 0 < x < ∞, θ1 > 0, θ2 > 0.

For n1 = 4, n2 = 6, we have (see Table 1)

min Ai = min(.4524, .5476) = .4576 and min Bi = min(.8333, .8667),

so, by Theorem 2.1, for each P ∗ ∈ [.4576, .8333] there exist (c1, c2) such that
min Pi,di(CS) ≥ P ∗. Choosing P ∗ = .8333, it is seen from Table 1 that we
need to choose c1 = 1 and c2 = 2 for this P ∗.

To find the values of Pi,di(CS), note that (see (2.3))

P (F1 is in the subset) = P (Y2,1 ≥ Y1,2),

where Y2,1 and Y1,2 are independent with

Y2,1 ∼ IF1(x)(2, 3) and Y1,2 ∼ IF2(x)(1, 6).

So (see the Appendix for details)

P (F1 is in the subset) =
∫ ∞
−∞ IF2(x)(1, 6)dIF1(x)(2, 3)

=
θ2(7θ1 + 6θ2)

(θ1 + 2θ2)(2θ1 + 3θ2)
.





(5.5)
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Further,
P (F2 is in the subset) = P (Y3,2 ≥ Y1,1),

where Y3,2 and Y1,1 are independent with

Y3,2 ∼ IF2(x)(3, 4) and Y1,1 ∼ IF1(x)(1, 4)

so that

P (F2 is in the subset) =
∫ ∞
−∞ IF1(x)(1, 4)dIF2(x)(3, 4)

= 1 − 15θ3
2

(θ1 + θ2)(4θ1 + 5θ2)(2θ1 + 3θ2)
.





(5.6)

Now let λ = θ1/θ2 and let λ > 1. Then F2 has, for all α, the larger
α-quantile. Moreover (see Table 1 or use (5.5)) and (5.6)), when λ = 1,
P (F1 is in the subset) = .8667 and P (F2 is in the subset) = .8333. So, as we
already saw above, when F1(x) = F2(x) for all x, F1 is more likely to get in
the subset than F2. Question: what about λ > 1? How large does λ have to
be to get F2 more likely to get in the subset than F1? Or, for which λ is

7λ + 6

(λ + 2)(2λ + 3)
> 1 − 15

(λ + 1)(4λ + 4)(2λ + 3)
? (5.7)

First note that (5.7) is equivalent to

h(λ) = 8λ4 + 18λ3 + 10λ2 − 15λ− 30 > 0, (5.8)

which is an increasing function of λ because its derivative 32λ3 + 54λ2 +
20λ − 15 is positive for λ = 1 and increasing in λ. So, there exists exactly
one λ0 > 1 such that (see (5.8)) h(λ0) = 0 and h(λ) < 0 for λ < λ0 and
positive for λ > λ0. One easily finds that λ0 ≈ 1.089.
Further, from the above it follows that, when λ ≤ 1 (i.e. when F1 has the
largest α-quantile), the probability that F1 gets into the subset is larger than
the probability that F2 gets into the subset. So, the RS result that probabil-
ity that the F with the largest α-quantile gets into the subset is not smaller
than the probability that any of the other Fi get into the subset, does not
necessarily hold when the sample sizes are not equal.

The question now arises whether, for models other than the RS one, the
”best” population gets in the subset with a probability no less than the
probability that any particular ”non-best” gets in.
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Among the results quoted in the Introduction, neither Gupta and Huang
(1974), nor Chen, Dudewicz and Lee (1976), nor Hsu (1981) mention the
question, but Gupta and McDonald (1970) as well as Kumar, Mehta and
Kumar (2002) present models and procedures for which the inequalities hold.
And it turns out that it has nothing to do with the (in)equality of the sample
sizes - it is a question of the properties of the Fi. Gupta and McDonald
suppose that the Xi,j have distribution function Fθi, θi ∈ Θ, where Θ is
an interval on the real line and that the family of distribution functions
{Fθ1, . . . , Fθk

} is a stochastically increasing family. That is: θ1 < θ2 implies
that Fθ1 and Fθ2 are distinct and Fθ2(x) ≤ Fθ1(x) for all x. They discuss
three subset selection procedures, all of them based on linear rank statistics,
for selecting a subset containing the population with the largest θi and show
that each has the above property of putting the best population in the subset
with a probability that is not smaller than putting any other particular Fθi in
the subset. Note that this result implies that, for the RS model with k = 2,
there exists a procedure with this property.
Kumar, Mehta and Kumar (2002) assume that the Xi,j have distribution
function F (x− θi) and present a subset selection procedure for selecting the
population with the largest θi. Their procedure is based on U-statistics and
they show that this procedure also has the property of putting the best pop-
ulation in the subset with a probability that is not smaller than putting any
other particular Fi in the subset.

QUESTION 3:

Let S be the size of the subset. Then RS show, for their procedure for the
largest α-quantile, that

ES ≤ kP (F[k] is in the subset) (5.9)

with equality in this inequality when the Fi are identical. For their procedure
for the smallest α-quantile, they show that (5.9) holds with F[k] replaced by
F[1].

Question: do these inequalities also hold for our procedures when the sample
sizes are not equal?
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RS prove their result for the largest α-quantile as follows: first note that

S =
k∑

i=1

I(Fi is in the subset).

So, ES =
∑k

i=1 P (Fi is in the subset). Further, as we saw above, for equal
sample sizes we have, for i = 1, . . . , k

P (Fi is in the subset) ≤ P (F[k] is in the subset), (5.10)

which proves their result. But, as we also saw above, the inequality (5.10)
does not necessarily hold for unequal sample sizes. For example, in the
example above where n1 = 4, n2 = 6 and α = 1/2, we find from (5.5) and
(5.6) for the case where λ = θ1/θ2 ≥ 1, i.e. when F2 has the larger α-quantile,
that the RS inequality does not hold for 1 ≤ θ1/θ2 ≤ 1.089, but it does for
λ > 1.089.

6 Some comments on the procedures

The comments on the above subset-selection procedures are concerned with
the fact that they are not sign-invariant. That is: changing the sign of the
Xj,i should change the procedure for the largest α-quantile based on the Xj,i

into the procedure for the smallest (1−α)-quantile based on the −Xi,j . That
this is not necessarily true for the two RS procedures can be seen as follows.
Suppose the ni are equal, then the procedure for the largest α-quantile based
on the Xj,i has (see (2.2))

1 ≤ r ≤ (n + 1)α < r + 1 ≤ n + 1 and 0 ≤ c ≤ r − 1 (6.1)

and (see (2.1))
min
1≤i≤k

F[i](y) = F[k](y) for all y.

Further, the procedure is (see(2.3))

put Fi in the subset ⇔ Yr,i ≥ max
1≤j≤k, j #=i

Yr−c,j. (6.2)

Now let, for j = 1, . . . , n and i = 1, . . . , k, Uj,i = −Xj,i and let, for i =
1, . . . , k, V1,i, . . . , Vn,i be the order statistics of U1,i . . . Un,i. Then, for i =
1, . . . , k,

Hi(x) = P (Uj,i ≤ x) = 1 − Fi(x), −∞ < x < ∞, j = 1, . . . , n

15



is the distribution function of the Uj,i, it satisfies

max
1≤i≤k

Hi(y) = H[1](y) for all y

and the procedure for a subset containing the smallest (1−α)-quantile based
on the the Uj,i has, for the case of equal sample sizes (see (3.2)):

1 ≤ r∗ ≤ (n + 1)(1 − α) < r∗ + 1 ≤ n + 1 and 0 ≤ c∗ ≤ n − r∗, (6.3)

or, equivalently,

0 ≤ n − r∗ < (n + 1)α ≤ n + 1 − r∗ ≤ n and 0 ≤ c∗ ≤ n − r∗. (6.4)

Further, the procedure is (see(3.3))

put Hi in the subset ⇔ Vr∗,i ≤ min
1≤j≤k, j #=i

Vr∗+c∗,j, (6.5)

or, equivalently,

put Fi in the subset ⇔ Yn−r∗+1,i ≥ max
1≤j≤k, j #=i

Yn−r∗−c∗+1,j. (6.6)

So, the two procedures (the one based on the Xi,j and the one based on the
−Xi,j) are the same if and only if n − r∗ + 1 = r and n − r∗ + 1 = r − c, or,
equivalently,

r∗ = n − r + 1 and c∗ = n − r∗ + 1 − r + c = c.

But, by (6.4) we then have

1 ≤ r < (n + 1)α + 1 ≤ r + 1 ≤ n + 1 (6.7)

which is equivalent to (6.1) if and only if (n+1)α is an integer in which case
r = (n + 1)α. In case (n + 1)α is not an integer, r = [(n + 1)α)] by (6.1) and
r − 1 = [(n + 1)α)] by (6.7).
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A Appendix

Proof of (2.15):

Let, for 0 ≤ u ≤ 1, G(u) =
∏k

j=1 Iu(rj , nj − rj + 1). Then

∑

1≤i≤k

∫ 1

0

∏

j #=i

Iu(rj − 1, nj − rj + 1)dIu(ri, ni − ri + 1) =

∑

1≤i≤k

∫ 1

0
G(u)

dIu(ri, ni − ri + 1)

Iu(ri, ni − ri + 1)
=

∫ 1

0
G(u)d logG(u) = 1,

because G(u) is an absolutely continuous distribution function. ♥

Proof of (4.1)

From (2.13) it follows that, for k = 2, B1 is given by

∫ 1

0
Iu(1, n2)dIu(r1, n1 − r1 + 1) =

∫ 1
0 (1 − (1 − u)n2) ur1−1(1 − u)n1−r1

B(1, n2)B(r1, n1 − r1)
=

n1!

(r1 − 1)!(n1 − r1)!
(B(r1, n1 − r1 + 1) − B(r1, n1 + n2 − r1 + 1)) =

n1!

(r1 − 1)!(n1 − r1)!

(
Γ(r1)Γ(n1 − r1 + 1)

Γ(n1 + 1)
− Γ(r1)Γ(n1 + n2 − r1 + 1)

Γ(N − 1 + n2 + 1)

)

=

1 − n1!

(n1 − r1)!

(n1 + n2 − r1)!

(n1 + n2)!
.

And this implies that

B2 = 1 − n2!

(n2 − r2)!

(n1 + n2 − r2)!

(n1 + n2)!
.
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♥

Proof of (5.5)

P (F1 is in the subset) =
∫ ∞

−∞
IF2(x)(1, 6)dIF1(x)(2, 3) =

Γ(5)

Γ(2)Γ(3)

∫ ∞

−∞
F1(x)(1 − F1(x))2

(
1 − (1 − F2(x))6

)
dF1(x) =

12
∫ ∞

−∞
(1 − e−θ1x)e−2θ1xθ1e

−θ1x(1 − e−6θ2)dx =

12θ1

∫ ∞

−∞

(
e−3θ1x − e−4θ1x − e−(3θ1+6θ2)x + e(4θ1+6θ2)x

)
dx =

12θ1

(
1

3θ1
− 1

4θ1
− 1

3(θ1 + 2θ2)
+

1

2(2θ1 + 3θ2)

)

=

θ2(7θ1 + 6θ2)

(θ1 + 2θ2)(2θ1 + 3θ2)
.

♥

Proof of (5.6)

P (F2 is in the subset) =
∫ ∞

−∞
IF1(x)(1, 4)dIF2(x)(3, 4) =

Γ(5)

Γ(4)

Γ(7)

Γ(3)Γ(4)

∫ ∞

−∞
F2(x)2(1 − F2(x))3

∫ F1(x)

0
(1 − t)3dt =

6!

2!3!

∫ ∞

−∞
(1 − (1 − F1(x))4)F2(x)2(1 − F2(x))3dF2(x) =

19



60θ2

(
1

60θ2
− 1

4(θ1 + θ2)
+

2

4θ1 + 5θ2
− 1

4θ1 + 6θ2

)

1 − 15θ3
2

(θ1 + θ2)(4θ1 + 5θ + 2)(2θ1 + 3θ2)
.
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