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Abstract

This paper presents a non-parametric procedure for selecting a subset of a set of k populations,
which contains the one with the largest (L) or smallest (S) αth quantile, as specified by the
user, when independent samples are available from each and one population is the uniformly
correct choice whatever be α. The result, an extension of a method previously proposed for the
case of equal sample sizes, includes population i, if its αth sample quantile exceeds (in the case
of L) the largest of all the other sample (α − β)th quantiles for the other populations, where
0 < β < α. The selection index β is specified by the user. An obvious adaptation of this
rule covers S. The paper includes an asymptotic theory for the method, which gives a practical
way of selecting the selection index by optimizing an objective criterion, a linear combination of
the probability of correct selection, which ideally should be large, and the expected subset size,
which ideally should be small. Furthermore, the criterion provides a way of selecting the sample
sizes in practical situations where the cost of obtaining the samples will differ for the different
populations.
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1 Introduction

This paper presents an extension of a subset selection method proposed by Rizvi and Sobel
(1967). It also includes strategies for implementing the method. Before introducing the
work in this paper below, we describe its genesis, a problem encountered by the second
author in work performed under a nondisclosure agreement involving proprietary data.
That work concerned the grouping of populations of manufactured lumber for the purpose
of marketing them under a single engineering design standard. These populations could for
example represent different geographical regions. Creating such groups is done according to
protocols specified in a standards document published by the American Society for Testing
and Measurement and labelled ASTM D 1990. The protocols stipulate that a subset of
the populations, the so–called “controlling species”, be formed. Engineering design values
are then based on the controlling species, the idea being that they represent the most
conservative choice from a reliability perspective. This approach builds robustness into the
published design values against the possibility of species being withdrawn from the overall
collection of populations.
The protocols prescribe statistical methods for finding the controlling species. These are
nonparametric in nature to assure that ASTM D 1990 is broadly applicable. Moreover,
they are based on combinations of statistical testing procedures such as the chi-squared
test, the Kruskal - Wallis nonparametric method for the analysis of variance and Tukey’s
method of paired comparisons. Which combination is used depends on whether the design
values are based on the median or the 5th percentile. Although ASTM D 1990 has served
effectively for a long time, it was recently found to produce unexpected results, leading to
a search for alternatives.

The subset selection procedure of Rizvi and Sobel (1967) (RS from now on) is based on
k ≥ 2 independent samples X1,i, . . . , Xni,i from distributions Fi, i = 1, . . . , k. They give a
subset selection procedure for selecting the Fi with the largest αth quantile, as well as a
procedure for selecting the one with the smallest αth quantile. Their sample sizes are equal
and under conditions on the Fi their procedures have a probability of correct selection ≥ P ∗

for a given P ∗ ∈ (1/k, 1). Here “correct selection” means selecting a subset containing the
population with the largest αth quantile (resp. the smallest αth quantile). However the
RS requirement of equal samples sizes is a serious practical limitation, which is removed
in this paper.

Several other procedures for subset selection with unequal sample sizes have been proposed.
Sitek (1972) generalizes, to unequal sample sizes, a procedure of Gupta (1956) (see also
Gupta and Sobel (1957)) for selecting a subset containing the population with the largest θi

when Xj,i ∼ N (θi, σ
2) and σ is known. However, Dudewicz (1974) shows Sitek’s derivation

to be incorrect. Then Gupta and Huang (1974) give a procedure for this normal-mean
problem with unequal sample sizes, as well as one for the case when σ is unknown. Chen,
Dudewicz and Lee (1976) further consider the Gupta-Huang (1974) case. They propose
a procedure which is different from the Gupta-Huang procedure and compare the two
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methods with respect to average subset size and ease of implementation. However, these
methods are parametric in nature and hence unsuitable for the situation confronted in this
paper.
In contrast, several non-parametric procedures have been proposed, namely by Gupta
and Mcdonald (1970), by Hsu (1981) and by Kumar, Mehta and Kumar (2002). Gupta
and McDonald consider a stochastically increasing family and base their procedure on
rank statistics where the ranks are from the pooled samples. Kumar, Mehta and Kumar
consider the location problem and use U -statistics, while Hsu considers a stochastically
increasing family and uses two-sample rank statistics - one for each pair of samples. Only
Gupta-McDonald and Hsu consider models that resemble the one on which RS is based
although Hsu unlike Gupta and McDonald fails to refer to RS. These complexity of these
procedures relative to RS led to their rejection in the application addressed in the paper.
The paper is organized as follows. Section 2 describes our extension of the RS procedure.
Section 3 lays out the asymptotic foundations we need and these are implemented in Section
4, which leads to a practical way of implementing our extension of the RS method. The
next section (5) demonstrates through numerical examples how the asymptotic theory can
be used. Lessons learned from the numerical results are summarized in Section 6. The
paper wraps up with Section 7 save for some technical details in the Appendix.

2 Procedure for the largest quantile

This section describes our extensions of the RS procedures to the case where the sample
sizes are not necessarily equal, and it presents their needed properties. Only partial proofs
are given. Complete proofs can be found in van Eeden (2009).

The basic conditions on the distribution functions Fi are the same as those of RS. In
particular, we assume

Assumption 2.1 The Fi are continuous and strictly increasing and there exists a τ ∈
{1, . . . , k} such that, for all y,

Fτ (y) < Fj(y), j 6= τ. (2.1)

For continuous, strictly increasing Fi, Assumption 2.1 holds if and only if for all u ∈ (0, 1)
and j 6= τ ,

Fτ (F
−1
j (u)) < u < Fj(F

−1
τ (u)). (2.2)

In the notation of RS, Fτ = F[k], where for, i = {1, . . . , k}, F[i] is the distribution with the
ith smallest αth quantile.
Further, ri and ci, i = 1, . . . , k, are integers satisfying

1 ≤ ri ≤ (ni + 1)α < ri + 1 ≤ ni + 1 and 0 ≤ ci ≤ ri − 1 (2.3)

and Yj,i, j = 1, . . . , ni, i = 1, . . . , k is the j-th order statistics of the sample from Fi.
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The proposed procedure is described as follows:

R1 : put Fi in the subset ⇔ Yri,i ≥ max
1≤j≤k, j 6=i

Yrj−cj ,j, (2.4)

so that, when F[k] = Fτ for some (unknown) τ ∈ {1, . . . , k}, the probability of correct
selection is given by given by

Pτ,dτ (CS|R1)

= P (Yrτ ,τ ≥ maxj 6=τ Yrj−cj ,j) = P (Yrj−cj ,j ≤ Yrτ ,i, j 6= τ)

=
∫∞
−∞

∏
j 6=τ IFj(y)(rj − cj, nj − rj + cj + 1)dIFτ (y)(rτ , nτ − rτ + 1).


(2.5)

Here, for u ∈ (0, 1) and positive a and b, Iu(a, b) is the standard incomplete beta function
given by

Iu(a, b) =
1

B(a, b)

∫ u

0
ta−1(1− t)b−1dt. (2.6)

The problem now is to find c1, . . . , ck and all possible P ∗ ∈ (0, 1), such that Pτ,dτ (CS|R1) ≥
P ∗ for all (F1, . . . , Fk) satisfying Assumption 2.1 and all τ ∈ {1, . . . , k}, i.e. we need

Li,di
(CS|R1) = min

(F1,...,Fk)
Pi,di

(CS|R1) ≥ P ∗, (2.7)

where the minimum is taken over all (F1, . . . , Fk) satisfying Assumption 2.1. That assump-
tion implies for all (F1, . . . , Fk) that

Pi,di
(CS|R1) ≥ Li,di

(CS|R1) =

∫∞
−∞

∏
j 6=i IFj(y)(rj − cj, nj − (rj − cj) + 1)dIFi(y)(ri, ni − ri+1) =

∫ 1
0

∏
j 6=i Iu(rj − cj, nj − (rj − cj) + 1)dIu(ri, ni − ri + 1).


(2.8)

Now note that, for fixed u ∈ (0, 1) and fixed n ≥ 1, Iu(r, n− r + 1) is strictly increasing in
r. Also for each i ∈ {1, . . . , k}, 0 ≤ ci ≤ ri − 1, so that

Ai ≤ Li,di
(CS|R1) ≤ Bi, i = 1, . . . , k, (2.9)

where

Ai =
∫ 1

0

∏
j 6=i

Iu(rj, nj − rj + 1)dIu(ri, ni − ri + 1) (2.10)

and

Bi =
∫ 1

0

∏
j 6=i

Iu(1, nj)dIu(ri, nτ − ri + 1). (2.11)

So we need to find c1, . . . , ck and the possible P ∗’s such that

min
1≤i≤k

Li,di
(CS|R1) ≥ P ∗. (2.12)

4



To find these quantities note that the subset size is increasing in each of the c’s, so they
should be chosen as small as possible. Further note that min1≤i≤k Bi < 1 and

k∑
1

Ai = 1 for all ni and ri satisfying (2.3), (2.13)

implying that min1≤i≤k Ai ≤ 1/k.
Now let Ai0 = min1≤i≤k Ai and let Bi1 = min1≤i≤k Bi. Then Ai0 < Bi1 and the following
theorem holds.

Theorem 2.1 The results above imply that

1) when P ∗ < Ai0, Li,di
(CS|R1) > P ∗ for all (i, di), but with P ∗ = Ai0 one gets Li,di

(CS|R1)
≥ Ai0 for all (i, di);

2) when P ∗ > Bi1, then (by (2.9)

Pi1,di1
(CS|R1) < P ∗ for all di1 ;

3) when Ai0 ≤ P ∗ ≤ Bi1, the monotonicity of Li,di
(CS | R1) in each of c1, . . . , ci−1, ci+1, . . . , ck

and (2.9), imply that there exists, for each i, a di such that Li,di
(CS | R1) ≥ P ∗.

For the case where the ni are equal, we have ri = r, Li,di
(CS|R1) = L(CS|R1), Ai =

A = 1/k and Bi = B < 1. So, the interval (2.9) is the interval [1/k, B] ⊂ [1/k, 1) and
Theorem 2.1 tells us that in this case there exists, for each P ∗ ∈ [1/k, 1) at least one c
such that P (CS|R1) ≥ P ∗. And this is essentially the RS solution for this case - they take
P ∗ ∈ (1/k, 1). But who would use P ∗ = 1/k?

Some of the questions that need looking into when designing an experiment to be analyzed
using RS, or using the RS procedure with possibly unequal sample sizes, are:

1. In cases where the cost of getting observations varies between the populations and
we know these costs, which set of possibly unequal sample sizes is the cheapest way
to get the needed P ∗? This kind of question will be looked into in Section 4.

2. Is the probability of correct selection P (CS|R1) larger than P (ICS|R1), the proba-
bility of an incorrect selection, that is a selection containing only populations whose
αth quantile is not the largest? RS showed that for equal sample sizes P (CS|R1) ≥
P (ICS|R1). However, for unequal sample sizes this is not the case. An example can
be found in van Eeden (2009). She looked at the case where k = 2 with (see Table
1) n1 = 4, n2 = 6, c1 = 1, c2 = 2, P ∗ = .8333 and

F1(x) = 1− e−θ1x and F2(x) = 1− e−θ2x.

Then F2 has, for all αth, the largest α quantile if and only if θ1 > θ2 and she shows
that, for α = .5, P (F1 in the subset) > P (CS|R1) if and only if θ1/θ2 ≤ 1.089, i.e.
P (ICS|R1) > P (CS|R1) if and only if 1 < θ1/θ2 < 1.089.
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3. For a given N = kn, which is “better”: equal sample sizes or unequal ones - and
if unequal ones, which unequal ones? Of course, this depends on what one means
by “better”. For instance, one could ask for more and (or) larger possible values of
P ∗ or one could ask the lower bound Li,di

(CS|R1) on P (CS|R1) to be as close as
possible to one’s preferred P ∗. In the case where k = 2 and N = 10, Table 1 uses
Theorem 2.1 for n1 = n2 = 5 and n1 = 4 and n2 = 6 to make such a comparison
when α = .5. From this table we see that, if our P ∗ = .90, then we have to use
n1 = n2 = 5 which gives us, with c1 = c2 = 2, P (CS|R1) ≥ .9167, while for n1 = 4,
n2 = 6 the largest possible P (CS|R1) one can get is .8333 by using c1 = 1, c2 = 2. In
the case where we want to use P ∗ = .80, one can use either n1 = n2 = 5 or n1 = 4,
n2 = 6, giving, respectively, P (CS|R1) ≥ .9167 with c1 = c1 = 2 or n1 = 4, n2 = 6,
giving P (CS|R1) ≥ .8333 with c1 = 1, c2 = 2. However, if one wants to use P ∗ = .80
and asks that P (CS|R1) be as close as possible to .80, then n1 = 4, n2 = 6 with
c1 = 1, c2 = 2 is the only solution.

Table 1: Some lower bounds in (2.8) with k = 2 and i = 1, 2

n1 n2 c1 c2 L1,d1(CS|R1) L2,d2(CS|R1)

5 5 0 0 A1 = .5 A2 = .5

1 1 .7380 .7380

2 2 B1 = .9167 B2 = .9167

4 6 0 0 A1 = .4524 A2 = .5476

0 1 .6667 A2 = .5476

0 2 B1 = .8667 A2 = .5476

1 0 A1 = .4524 B2 = .8333

1 1 .6667 B2 = .8333

1 2 B1 = .8667 B2 = .8333

4. Let S ⊂ {F1, . . . , Fk} be the subset obtained by our extension of the RS subset-
selection procedure for the largest αth quantile. When the sample sizes are large,
approximations to P (Fj ∈ S) or computer programs to compute it are needed to
answer the above questions. Note that for j = τ this probability is the probability of
correct selection. Taking all Fi to be uniform distributions on (0, 1) gives the lower
bounds in (2.8). Approximations are given in Section 3.

Remark
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A procedure for selecting a subset containing the population with the smallest α-quantile
can be found in van Eeden (2010). That Technical Report is a corrected version of Section
3 of van Eeden (2009). The procedure described there is, essentially, the procedure for the
largest (1− α)th quantile applied to −X1,i, . . . ,−Xni,i, i = 1, . . . , k.

3 Approximations for large sample sizes

In this section large-sample-size approximations are given for the probability of correct
selection Pτ,dτ (CS|R1) and its lower bound Li,di

(CS|R1) and, more generally, for P (Fj ∈
S). Note that Assumption 2.1 implies that, for all i = 1, . . . , k, Fi(Xj,i), j = 1, . . . , ni,
are samples from uniform distributions on (0, 1). So, the needed approximations can be
obtained from approximations to the distributions of the order statistics from such uniform
distributions. Further, the r-th order statistic of a sample of size n then has a B(r, n− r)
distribution, i.e. it has density is given by

1

B(r, n− r + 1)
ur−1(1− u)n−r 0 < u < 1.

An approximation to the B(ν1, ν2) distribution for large values of the νi is given in the
next lemma.

Lemma 3.1 Let T have a B(ν1, ν2) distribution, i.e., let T have density

1

B(ν1, ν2)
uν1−1(1− u)ν2−1 0 < u < 1.

Then, as ν1 and ν2 converge to infinity,

P (T ≤ t) → Φ

 −ν1(1− t) + ν2t√
ν1(1− t)2 + ν2t2

 0 < t < 1. (3.1)

Proof. As is well-known, when Γν1 and Γν2 are independent random variables with densities

1

Γ(νi)
xνi−1e−x, x > 0, i = 1, 2,

then

Zν1,ν2 =
Γν1

Γν1 + Γν2

has a B(ν1, ν2) distribution, i.e. Zν1,ν2 has density

1

B(ν1, ν2)
zν1−1(1− z)ν2−1, 0 < z < 1.
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Using the fact that, for large ν, Γν is approximately N (ν, ν), it follows that, as ν1 and ν2

go to ∞ and z ∈ (0, 1)

P (Zν1,ν2 ≤ z) → Φ

 −[ν1(1− z)− ν2z]√
ν1(1− z)2 + ν2z2

 . (3.2)

♥
The approximation (3.2) can be used to find, for given k, n1, . . . , nk, P ∗ and α, approxi-
mations to the ci such that, approximately, P (CS|R1) ≥ P ∗. By (2.8), we have

Li,di
(CS|R1) = P (Urj−cj ,j ≤ Uri,i, j 6= i),

where, by Lemma 3.1,

P (Urj−cj ,j ≤ t) ≈ Φ

 −[(rj − cj)(1− t)− (nj − (rj − cj) + 1)t]√
(rj − cj)(1− t)2 + (nj − (rj − cj) + 1)t2


and

P (Uri,i ≤ t) ≈ Φ

 −[ri(1− t)− (ni − ri + 1)t]√
ri(1− t)2 + (ni − ri + 1)t2

 ,

so that

Li,di
(CS|R1) ≈∫ 1

0

∏
j 6=i Φ

(
−[(rj−cj)(1−u)−(nj−(rj−cj)+1)u]√

(rj−cj)(1−u)2+(nj−(rj−cj)+1)u2

)
dΦ

(
−[ri(1−u)−(ni−ri+1)u]√

ri(1−u)2+(ni−ri+1)u2

)
.

(3.3)

Remarks:

1. The exact expression for Li,di
(CS|R1) is increasing in each of the ci. As shown in

the Appendix, the approximation (3.3) has this same property.

2. Note that the approximation (3.2) to the beta distribution, which is a distribution on
the interval (0, 1), is a distribution on the interval (−εν1 , εν2) for positive ενi

which
converge to 0 as the νi converge to infinity.

In Section 4, an approximation to P (Fl ∈ S | R1), for l = 1, . . . , k, is needed. First note
that this probability is given by (see (2.4))

P (Fl ∈ S|R1) = P (Yri−ci,i ≤ Yrl,l, i 6= l), (3.4)

where, for ν = 1, . . . , ni and i = 1, . . . , k, Yν,i are the order statistics of a sample of size ni

from the distribution Fi. So, with Hil(u) = Fi(F
−1
l (u)), (3.4) can be written as

P (Hli(Uri−ci,i) ≤ Url,l, i 6= l) = P (Uri−ci
≤ Hil(Url,l)),
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where, for i = 1, . . . , k and ν = 1, . . . , ni, Uν,i are the order statistics of a sample of size ni

from a uniform distribution on (0, 1). As a result,

P (Fl ∈ S|R1) =
∫ 1

0

∏
i6=l

P (Vi ≤ Hil(u)dP (Wl ≤ u), (3.5)

where, for i = 1, . . . , k, Vi are independent Beta(ri− ci, ni− (ri− ci)+1) random variables
and for, l = l, . . . , k, Wl are independent Beta(rl, nl +1) random variables. So (3.2) implies
that

P (Vi ≤ Hil(u)) ≈ Φ
(
−[(ri−ci)(1−Hil(u))−(ni−(ri−ci)+1)Hil(u)]√

(ri−ci)(1−Hil(u))2+(ni−(ri−ci)+1)Hil(u)2

)

= Φ
( √

ni+1(Hil(u)−Ki,ni
)√

Ki,ni
(1−Hil(u))2+(1−Ki,ni

)Hil(u)2

)
,

 (3.6)

where Ki,ni
(ni + 1) = ri − ci for i = 1, . . . , k.

As well, Lemma 3.1 implies

P (Wl ≤ u) ≈ Φ

 −[rl(1− u)− (nl − rl + 1)u]√
rl(1− u)2 + (nl − rl + 1)u2

 . (3.7)

Since Hil(u) is increasing

P (Vi ≤ Hil(u)) ≈ I{Hil(u) > Ki,ni
}

where I denotes the indicator function.
Thus, with Gl = maxi6=l H

−1
il (Ki,ni

) = maxi6=l Hli(Ki,ni
),

P (Fl ∈ S) =

∫ 1

0
Πi6=lI{Hil(u) > Ki,ni

}dP (Wl ≤ u) =

∫ 1

0
Πi6=lI{u > H−1

il (Ki,ni
)}dP (Wl ≤ u) =

∫ 1

0
I{u > Gl}dP (Wl ≤ u) =

P [Wl > Gl] ≈

1− Φ

−[rl(1−Gl)− (nl − rl + 1)Gl]√
rl(1−Gl)2 + (nl − rl + 1)G2

l

 ≈

1− Φ

 −α(nl + 1) + (nl + 1)Gl√
α(nl + 1)(1−Gl)2 + (nl − α(nl + 1) + 1)G2

l

 =
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1− Φ


√

(nl + 1)[−α + Gl]√
α[1−Gl]2 + (1− α)G2

l

 .

The previous expression gives, by (3.5), (3.6) and (3.7), the following approximation to
P (Fl ∈ S|R1):

P (Fl ∈ S|R1) ≈

1− Φ
( √

(nl+1)[−α+maxi6=l Hli(Ki,ni
)]√

α[1−maxi6=l Hli(Ki,ni
)]2+(1−α)[maxi6=l Hli(Ki,ni

)]2

)
.

 (3.8)

Now assume that, for i = 1, . . . , k, ci/ni → βi for β1, . . . , βk satisfying 0 < βi < α. Then
(ri − ci)/ni → α− βi > 0 for i = 1, . . . , k and the approximation (3.8) becomes

P (Fl ∈ S|R1) ≈

1− Φ
( √

(nl+1)[−α+maxi6=l Hli(α−βi)]√
α[1−maxi6=l Hli(α−βi)]2+(1−α)[maxi6=l Hli(α−βi)]2

)
.

 (3.9)

These approximations are used in Section 4.

4 Optimal subsets

Recall that in our extension of the Rizvi - Sobel method, S is found according to the rule:

Fi ∈ S ⇔ Yri,i ≥ max
1≤j≤k, j 6=i

Yrj−cj ,j (4.10)

for integers ri and ci, satisfying (2.3) that must be specified by the user who may also need
to specify the ni. An ideal subset selection procedure would maximize the probability of
correctly selecting the one labelled τ ∈ {1, . . . , k}, whose αth quantile ξτ is the largest
(or smallest depending on the context). That goal could be achieved by selecting cj =
rj − 1, j ∈ {1, . . . , k}, were it not for the further competing objective of minimizing
the expected size of the subset S. This second objective could be met by including just
1 population in S by choosing cj = 0, j ∈ {1, . . . , k} but at the cost of minimizing the
chances of correctly including τ . A constraint may also arise in some cases due to cost
considerations: data may be more difficult to obtain from some of the populations than
others.
This section presents a practical approach to optimizing the Rizvi - Sobel selection proce-
dure depending on the number, one or two of the above objectives specified by the user,
possibly subject to a sampling cost constraint. To make optimization practical, concessions
are needed. Thus the quest for a fully distribution free method has had to be abandoned.
Moreover we have had to rely on asymptotic approximation theory using the approxima-
tions presented in Section 3. Finally we need a strengthened version of Assumption 2.1
obtained by adding the requirement that the population Fτ be separable at or below ξτ

when α is small, more precisely we now assume::
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Assumption 4.1 There exists β0 ∈ (0, 1) such that for all u ∈ (0, α] and j 6= τ

Fτ (F
−1
j (u)) < u < Fj(F

−1
τ (u))(1− β0/α). (4.11)

To conclude we simplify the notation by leaving off the R1 in expressions like P (j ∈ S | R1)
and turn to the specification of the objective function. That function has two components.

Probability of correct selection. For the probability of correct selection we need P (Fτ ∈
S) > LB(n, β) with n = (n1, . . . , nk) and β = (β1, . . . , βk). Such a bound has
already been obtained in Section 2. However, one can use (3.9) to get an approximate
lower bound that conforms with the bound we derive below for the expected subset size.
Since by assumption, H−1

iτ (u) = Hτi(u) = Fτ (F
−1
i )(u) < u for u < α, that approximation

gives:

P (Fτ ∈ S) ≈ 1− Φ


√

(nτ + 1)[−α + maxi6=τ Hτi(α − βi)]√
α[1−maxi6=τ Hτi(α − βi)]2 + (1− α) maxi6=τ Hτi(α − βi)

2


> 1− Φ


√

(nτ + 1)[−α + maxi6=τ (α − βi)]√
α[1 −maxi6=τ (α − βi)]2 + (1− α) maxi6=τ (α − βi)2


= 1− Φ

 −
√

(nτ + 1)[mini6=τ βi]√
α[(1 − α)−mini6=τ βi]2 + (1− α)(α − mini6=τ βi)2

 ,

where the inequality follows from the fact that this approximate expression for P (Fτ ∈ S)
is decreasing in maxi6=τ Hτi(α − βi). In summary asymptotically as (n1, . . . , nk) →∞

P (Fτ ∈ S) >

1− Φ
(

−
√

(nτ+1)[mini6=τ βi]√
α[(1 − α)−mini6=τ βi]2+(1−α)(α − mini6=τ βi)2

)
 . (4.12)

Note that through (4.12), Assumption 4.1 implies that P (Fτ ∈ S) → 1 as the ni go
to infinity. However that bound depends on the unknown τ leaving us with competing
objectives, depending on the true τ . The situation is the one confronted in classical sta-
tistical decision theory where, since “the true state of nature” is unknown, the objective
becomes that of maximally reducing, in some aggregate sense, the risk function over all
possibilities for the unknown state. That led in particular cases to the minimax criterion
and the Bayes risk criterion. We choose the latter for definiteness and reasons of personal
preference. Thus we obtain the objective function:

k∑
τ=1

ωτ

1− Φ

 −
√

(nτ + 1)[mini6=τ βi]√
α[(1 − α)−mini6=τ βi]2 + (1− α)(α − mini6=τ βi)2

 ,

where
∑k

τ=1 ωτ = 1 and ω ≥ 0.

11



Remark. In a Bayesian context ωτ could represent the probability that τ is the correct
selection, although we need not think of it that way. Moreover in the context of setting
policy ωτ ≡ 1/k would seem a natural choice.

Expected subset size. Let | S | be the subset size. Then, conditional on the unknown
population distributions {F1, . . . , Fk} including the correct one labelled i = τ ,

E[ | S |] =
k∑

i=1

P (Fi ∈ S). (4.13)

We add the additional assumption that Fτ (F
−1
i u) < u for all u ∈ (0, 1). Then, as all

ni → ∞, lim P ( Fτ ∈ S ) < 1. For the remaining i 6= τ we use the approximation (3.9)
and the fact that H−1

il = Hli, but now with βj < β0, j = 1, . . . , k. This gives

P (Fl ∈ S) ≈

1− Φ


√

(nl + 1)[−α + Hlτ (α − βτ )]√
α[1−Hlτ (α − βτ )]2 + (1− α)Hlτ (α − βτ )

2

 <

1− Φ


√

(nl + 1)[−α + α(α − β0)
−1(α − βτ )]√

α[1− α(α − β0)−1(α − βτ )]2 + (1− α)α(α − β0)−1(α − βτ )
2

 =

1− Φ


√

(nl + 1)[α(α − β0)
−1(β0 − βτ )]√

α[1− ακτ ]2 + (1− α)[ακτ ]2

 ,

where κτ = (α − βτ )/(α − β0) < 1 whatever be τ under our assumption that βj < β0

for all j.
Thus asymptotically

E[| S |] < 1 +
∑

l 6= τ

1− Φ


√

(nl + 1)[α(α − β0)
−1(β0 − βτ )]√

α[1− ακτ ]2 + (1− α)[ακτ ]2

 .

Once again we confront the unknown τ by taking a weighted average to get an upper bound
for E[| S |], that is

k∑
τ=1

ωτ

1 +
∑

l 6= τ

1− Φ


√

(nl + 1)[α(α − β0)
−1(β0 − βτ )]√

α[1− ακτ ]2 + (1− α)[ακτ ]2




= k −
k∑

τ=1

ωτ

∑
l 6= τ

Φ


√

(nl + 1)[α(α − β0)
−1(β0 − βτ )]√

α[1− ακτ ]2 + (1− α)[ακτ ]2


≡ UB(n, β)].
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Objective function for optimization. Treating our problem as a multicriteria decision prob-
lem, we get the following objective function by using the bounds we have established:

max
n,β
{LB(n, β)− λUB(n, β)},

subject to a cost contraint (Cost1 n1 + . . . + Costk nk < C), where C is the cost
ceiling. A particular choice of interest is C = n, the total sample size, and Costj ≡ 1, so
that the final term expresses the desirability of keeping the sample size under a prescribed
sample size.

5 Numerical results

This section demonstrates the use of the extended Rizvi - Sobel method as well as our
approach to optimizing it. In the process, we investigate the effects of changing the inputs in
various ways. To begin, recall that the user must fix an upper bound β0 for the range of the
available βj’s, as required by the supplementary Assumption 4.1. It constrains the family
of allowable population distributions by requiring for u < α that Fj(Fτ (u)) > α/(α −
β0)u, u ∈ (0, 1). That will be a strong constraint when β0 is close to α, with the effect
that the correct population, the one with the (unknown) label by τ ∈ {1, . . . , }, is easier
to find. That means that if the βj’s are fixed, the upper bound for the expected size of the
Rizvi - Sobel subset of populations will decrease towards 1 when β0 increases towards α.
Another way of looking at this situation is that Assumption 4.1 leads to the constraint
βj < β0 for all j. Thus, restricting the space of distributions gives us more latitude in
our choice of the βj’s. Thus, restricting the domain of applicability by that assumption,
increases the number of available Rizvi - Sobel subsets. But recall that while small β values
tend to yield small subsets, large values favour high correct selection probabilities. So we
see the competition that plays out in the optimization procedure as when we specify β0.
We now turn to our numerical results.

The effect of increasing sample size for varying βs.

The demonstration looks at the effect of increasing the total sample size in the case of
k = 2 populations in the unbalanced case where 60% of the sample is allocated to
Population 2. Furthermore, for simplicity we look at eight cases where α ∈ (0.05, 0.5),
β0 ∈ (0.4α, 0.8α) for each α and β1 = β2 = β ∈ (0.5β0, 0.9β0) for each β0. For each of these
cases we calculate the lower bound for the probability of correctly selecting Population 2
as well as our upper bound for the expected subset size. In all cases we make the mixing
weights equal, i.e. w1 = w2 = 0.5 The results are seen in the Table 2.
We discuss the lessons learned from this analysis in Section 6.

The effect of increasing the number of populations

This subsection looks at the effect of increasing the number of populations from k = 2
to k = 7. For the βs and αs, we make the same choices as in the previous subsection
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Table 2: This table presents the lower bounds for the probability of correct selection and
upper bounds for the expected sample size when the quantile of interest are for α = 0.05
and α = 0.5. Here we have two populations with selection indices β1 = β2 = β and sample
sizes n1 = 0.4n and n2 = 0.6n for various values of n.

α = 0.05 α = 0.5

β0 β n PCS ESS β0 β PCS ESS

0.02 0.010

10 0.55 1.43

0.20 0.10

0.73 1.22
100 0.63 1.29 0.96 1.01
300 0.72 1.18 1.00 1.00
600 0.79 1.10 1.00 1.00

0.02 0.018

10 0.58 1.49

0.20 0.18

0.91 1.44
100 0.73 1.46 1.00 1.32
300 0.85 1.43 1.00 1.21
600 0.93 1.40 1.00 1.13

0.04 0.020

10 0.59 1.16

0.40 0.20

0.95 1.02
100 0.75 1.00 1.00 1.00
300 0.88 1.00 1.00 1.00
600 0.95 1.00 1.00 1.00

0.04 0.036

10 0.67 1.41

0.40 0.36

1.00 1.18
100 0.89 1.26 1.00 1.01
300 0.98 1.13 1.00 1.00
600 0.98 1.06 1.00 1.00

thereby making our results more directly comparable with those in the previous section. In
other words α ∈ (0.05, 0.5), β0 ∈ (0.4α, 0.8α) for each α and βj = β ∈ (0.5β0, 0.9β0), j ∈
{1, . . . , 7} for each β0. We distribute the sample over the seven populations in the
proportions, 0.04, 0.08, 0.12, 0.14, 0.18, 0.20, 0.24 and beginning with a sample size of 100
to ensure that there are enough items to cover all the populations at least somewhat
realistically.
Once again we defer discussion of these results to the following section.

Optimizing the Rizvi – Sobel procedure.

We amend the general form of the objective function proposed in Section 4 by dividing the
expected subset size by the total number of populations k to get a fraction that is then
more directly comparable to the probability of correct selection, which is then on the same
scale, (0, 1). Then without loss of generality we can represent that function as

max
n,β
{η [LB(n, β)]− (1 − η)[ UB(n, β)/k ]}

14



Table 3: This table presents the lower bounds for the probability of correct selection and
upper bounds for the expected sample size when the quantile of interest are for α = 0.05
and α = 0.5. Here we have two populations with selection indices βj ≡ β and total sample
sizes of 100, 300, 600 distributed across the seven populations in the successive proportions
0.04, 0.08, 0.12, 0.14, 0.18, 0.20, 0.24 .

α = 0.05 α = 0.5

β0 β n PCS ESS β0 β PCS ESS

0.02 0.010
100 0.57 3.32

0.20 0.10
0.82 1.74

300 0.62 2.88 0.93 1.21
600 0.66 2.49 0.97 1.07

0.02 0.018
10 0.63 3.86

0.20 0.18
0.98 3.02

300 0.71 3.77 1.00 3.01
600 0.78 3.67 1.00 2.66

0.04 0.020
100 0.64 1.41

0.40 0.20
0.98 1.02

300 0.73 1.08 1.00 1.00
600 0.80 1.02 1.00 1.00

0.04 0.036
100 0.75 3.19

0.40 0.36
1.00 1.54

300 0.86 2.68 1.00 1.13
600 0.93 2.26 1.00 1.03

with η ∈ [0, 1], subject to the cost constraint Cost1 n1 + . . . + Costk nk < C.
Thus η = 1 would put all the weight on correct selection while η = 0 would mean putting
it on on expected sample size. The ultimate choice would be context-dependent, but a
reasonable default might be η = 1/2. Furthermore, we choose: k = 7, α = 0.05, β0 =
0.04, and wj = 1/7, j = 1, . . . , 7. Finally we consider two cost scenarios. In the first
Costj = 1 for each population while in the second, Costj = 1, j = 1, 2; Costj = 4, j =
3, 4, 5; Costj = 20, j = 6, 7. For these two scenarios we explore various total cost limits,
beginning with C = 280 in the first case and C = 1200 in the second. Finally the cases
η ∈ {0, 0.5, 1} are considered.
Outputs from the optimization are the sample sizes and the subset selection indices, βj < β0

and we now turn to the results. These were obtained using constrOptim with the Nelder
Mead option in version 2.12.0 of R. Convergence was extremely slow when the maximum
cost was high. By the time the convergence criterion (outer.eps = 1e-06) was reached after
sometimes hundreds of iterations, the cost constraint was not attained. However, by that
time the probability of correct selection and the expected sample size had already attained
their optimal values to several decimal places. The tables below report the results at the
point where the criterion was reached.
Tables 4, 5, and 6, report the results for three case when respectively, the expected sample
size gets all the weight, one - half the weight and none of the weight against the alternative
of correct selection.
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In each case the optimal values of the {βj} turns out to be the same in all cases, so a single
entry appears in the table for them.

Table 4: Optimal selection indices and sample sizes for the Rizvi - Sobel method under var-
ious scenarios. This first table concerns the case where all the emphasis is put minimizing
the expected subset size, in other words where η = 0.0.

Scenario Max Cost Optimal βs Optimal sample sizes PCS Bd ESS Bd

1
70 0.00 10 . . . 10 0.50 1.08
140 0.00 20 . . . 20 0.50 1.00
350 0.00 44 . . . 44 0.50 1.00

2
540 0.00 18 18 13 13 13 9 9 0.50 1.05
1080 0.00 36 36 26 26 26 17 17 0.50 1.00
2700 0.00 44 44 42 42 42 32 32 0.50 1.00

Table 5: Optimal selection indices and sample sizes for the Rizvi - Sobel method under
various scenarios. This table concerns the balanced case where equal weights are put on
correct selection and expected subset size, in other words where η = 0.5.

Scenario Max Cost Optimal βs Optimal sample sizes PCS Bd ESS Bd

1
70 0.02 10 . . . 10 0.61 1.41
140 0.02 20 . . . 20 0.70 1.32
350 0.03 50 . . . 50 0.83 1.12

2
540 0.02 18 18 13 13 13 9 9 0.64 1.40
1080 0.03 39 39 26 26 26 17 17 0.74 1.31
2700 0.03 145 145 70 70 70 39 39 0.88 1.17

Table 6: Optimal selection indices and sample sizes for the Rizvi - Sobel method under
various scenarios. Here we see the results for the extreme case all the weight is put on
correct selection, in other words where η = 1.0.

Scenario Max Cost Optimal βs Optimal sample sizes PCS Bd ESS Bd

1
70 0.04 10 . . . 10 0.74 4.00
140 0.04 20 . . . 20 0.82 4.00
350 0.04 50 . . . 50 0.92 4.00

2
540 0.04 17 17 13 13 13 9 9 0.77 4.00
1080 0.04 37 37 26 26 26 17 17 0.84 4.00
2700 0.04 109 109 67 67 67 42 42 0.94 4.00

The results described above are for the relatively restricted case when the maximum value of
the selection bias is close to the maximum corresponding to α - a somewhat limited number
of population distributions would meet the assumption imposed by our assumptions when
β0 = 0.04. To complete our analysis, Table 7 presents results for the case where β0 = 0.02.
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For brevity we examine only the case when the probability of correct selection gets all the
weight. However the two scenarios are the same as those above. The lessons learned from
all these numerical results will be discussed in the Section 6.

Table 7: Optimal selection indices and sample sizes for the Rizvi - Sobel method under
various scenarios. This table again puts full weight on correct selection where η = 1.0 but
now we now β0 = 0.02 Note that the upper bound for the probability of correct selection
is smaller than in the previous table. At the same time, the bound for expected subset size
suggests the latter has been reduced.

Scenario Max Cost Optimal βs Optimal sample sizes PCS Bd ESS Bd

1
70 0.02 10 . . . 10 0.61 1.50
140 0.02 20 . . . 20 0.67 1.16
350 0.02 50 . . . 50 0.75 1.00

2
540 0.02 22 22 14 14 14 8 8 0.64 1.35
1080 0.02 47 47 28 28 28 16 16 0.70 1.10
2700 0.02 136 136 74 74 74 38 38 0.80 1.00

6 Discussion

This paper has investigated an extension of the Rizvi – Sobel procedure stated in (4.10).
Users need to specify what might be called the “selection indices”, i.e. the {cj} and possi-
bly even the sample sizes {nj}. Setting those indices close to zero will make getting into the
subset more difficult and hence will make it smaller, all at the cost of reducing the prob-
ability of correct selection. While the user must make specific choices, how to do so does
not seem to have been investigated previously. We will make make our recommendations
below.
But first recall the ideals embraced by the method. First to maximize its domain of
applicability, it should be non–parametric, i.e. the population distributions cannot have
parametric form, for example be Gaussian with parameters µ and σ. The ideal is achieved
in its formulation (2.4), which relies on the minimal sufficient statistics for the class of
non–parametric distributions, i.e. the order statistics.
Second, the properties of the method should ideally be distribution free to enable the user
to select such things as the sample sizes and selection indices, without needing to know the
true but unknown population distribution. However that ideal cannot be realized exactly.
Rizvi and Sobel (1967) recognized this fact and found the bypass route we follow in this
paper. First they add a fairly weak Assumption 2.1, which restricts the class of possible
distributions somewhat. Then they find the lower bound in (2.8) for the probability of
correct selection that is the same for all members of the class. The user can then raise that
bound by manipulating the {cj} and {nj} until a satisfactory level is attained, one that
ensures a sufficiently large probability of correct selection.
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That route does not however lead us to an analogous upper bound for the expected subset
size, that would force this size down by suitably manipulating the {cj} and {nj}. To achieve
that bound requires the further restriction on the class of population distributions imposed
by Assumption 4.1. As well, we need a more complex analysis beginning with the asymp-
totic theory presented in Section 3. To understand why, we need to revisit (4.13) for the
expected sample size and (3.5) on which it relies. The latter involves Hij(u) = Fi(F

−1
j (u)),

which when used in the former becomes Fj(F
−1
τ (u)) where j 6= τ , the correct population

choice. To get an upper bound for the expected sample size, we would therefore like to
replace Fj(F

−1
τ (u)) by something larger that is independent of the these true population

distributions. But now the seemingly reasonable assumption of separability around α fails
- it gives us a lower, not upper bound. So how can we turn this around?
Asymptotics provides both insight as well as the answer. For the insight, we examine
(2.6) with the generic parameters there replaced by the ones required for the Rizvi –Sobel
method nj (α − βj) and nj− [nj (α − βj)+1]. Then, if we apply Stirling’s approximation
for the gamma functions there, we find that the density is approximately proportional to:( t

Kj

)Kj
(

1− t

1−Kj

)1−Kj
nj

,

with Kj = α − βj, which attains its maximum value of 1 at t = Kj. Thus for large nj

the probability for this distribution is concentrated largely at the point t = Kj Revisiting
(3.5), we see that the jth factor in its integrand P [Vj ≤ Fτ (F

−1
j (u))] will be nearly 0 for

j 6= τ unless Fτ (F
−1
j (u)) > Kτ that is u > Fj(F

−1
τ (Kτ )). In fact the integrand will be

approximately 0 unless u > maxj 6=τ Fj(F
−1
τ (Kτ )). Thus the probability of including j in

the subset S, is approximately P (Wj > maxj 6=τ Fj(F
−1
τ (Kτ ))), where Wj is defined just

below Equation (3.5). Finally Assumption 4.1 can now be applied to give us the upper
bound we seek by giving us a lower bound for maxj 6=τ Fj(F

−1
τ (Kτ )).

Although the heuristic asymptotic reasoning might be formalized, say by using a saddle-
point approximation, we proceed instead to use a normal approximation that was devel-
oped in Section 3 and applied in Section 4, since it gave us as a convenient byproduct a
convenient approximation to the probabilities involved in our theory.
The two key assumptions we needed to obtain the bounds above do limit the class of
allowable population distributions and thus make them less than completely distribution
free. However, they play the important qualitative role of showing intuitive constraints on
the populations needed to make a subset selection method work properly. While it may
be possible to weaken them, we believe some sort of separability assumptions like them
will be needed for things like the optimal sample sizes. In practice, their validity can be
checked given sufficient data from each of the populations, through diagnostic plots and
so on. However, in future work we will be examining the Rizvi–Sobel method’s robustness
against their failure.
We conclude this section by summarizing the lessons learned from the numerical studies
in Section 5.

• In agreement with intuition, small βj’s or equivalently cjs produce small expected
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subsets of populations with a correspondingly diminished probability of correct se-
lection. The opposite is true when they are large.

• Large values of the upper bound for the selection indices, given by β0 in this paper’s
notation, restrict the population of allowable distributions and not surprisingly yield
both smaller expected subset sizes and greater probabilities of correct selection. Our
optimization results show that the βs tend to approach 0 or β0 according as more or
less weight is attached to minimizing the expected subset size.

• Finding the population with the largest median seems much easier than finding the
one with the largest 5th percentile. That is seen quite clearly in Table 2 by comparing
the results corresponding to these two cases. For every fixed sample size, no matter
how small or how large the βs, the method does better for both the correct selection
probability as well as the expected subset size for medians. For medians, surprisingly
small samples yield good results for correct selection and expected subset size, which
are close to their ultimate large sample limits.

• Table 3 shows that when choosing the subset from a large number of populations as
against a small number, setting a large value of β0 to restrict the class of possible
population distributions pays off. In fact it reduces dramatically the expected subset
size when the βs are chosen to be small.

• Not surprisingly when the sampling costs are the same for all populations, both the
optimal sample sizes and optimal βs are identical for all populations. Convergence
is slow in that case, requiring a large number of iterations and suggesting the choices
will be quite robust. Indeed when the optimization’s number of iterations constraint
was set to 1000, and the cost constraint was not always attained. bf The sentence
that ends here is not clear to me - do not know what it means The expected subset
size as well as the probability of correct selection reached their terminal value to
several decimal places early in the iterative sequence. Even with extremely variable
sampling costs, the optimal βs are equal across all population distributions.

• The optimal results tend to follow the weights attached to the two criteria. So for
example if correct selection gets relatively high weight, the optimal βs tend to be
equal to their upper bound β0. Future work will be needed to find ways of eliciting
the relative multi-attribute criteria weights for users in particular contexts. Equal
weighting tends to produce optimal β around one–half of β0, the natural compromise
estimator.

• The optimal sample sizes change surprisingly little even when the relative costs are
changed dramatically.
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7 Conclusions

Overall, our results lead us to recommend the extended Rizvi – Sobel procedure for use in
practice. Like the original for equal sample sizes (Rizvi and Sobel 1967), it is extremely
simple to describe and use, once the requisite sample sizes and our parameters have been
specified. Furthermore, with our normal approximations, these quantities are easily calcu-
lated. In fact we needed just a few lines of code to implement our optimization criterion.
Unlike the original, it allows the sample sizes to be unequal, making it more practical than
the original. It is quite flexible, allowing the user latitude in weighting two primary objec-
tives, a high probability of correct selection (PCS) and expected subset size (ESS). Finally
the numerical results we provide, confirm what seem to be desirable heuristic properties.
In other words, the method produces results in agreement with our qualitative heuristics
while giving a more or less complete quantitative framework for specifying the procedure.
However as with any recommendation some caveats are in order. First producing the
bounds needed for our implementation of the method led us to resort to asymptotic ap-
proximations and inevitably the quality of those approximations is an issue in particular
contexts. However the answer to that will depend on the context and on what might be
the true population distributions.
The veracity of our assumptions will also be an issue for anyone thinking of implement-
ing the method. As noted earlier, these can be diagnostically assessed in any particular
application. At the same time in future work, we intend to explore the robustness of our
procedure when the assumptions are violated.
Finally, the procedure provides little scope for expert input in contexts where lots of back-
ground knowledge is available. Indeed the nonparametric - distribution free ideals built
into its construction rule out such input by design. So we developed a Bayesian nonpara-
metric alternative method that does allow such input and that is the subject of a second
manuscript now in preparation.
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A Appendix

In this Appendix it is shown that (3.3) is monotone in each of the ci by showing that

−(ri − ci)(1− u) + (n−(ri − ci) + 1)u√
(ri − ci)(1− u)2 + (ni − (ri − ci) + 1)u2

(A.1)
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is, for each ∈ {1, . . . , k}, monotone in ci.
Proof. For notational convenience, the index i is left off, so it needs to be shown that

−(r − c)(1− u) + (n− (r − c) + 1)u√
(r − c)(1− u)2 + (n− (r − c) + 1)u2

(A.2)

is monotone in c for c ∈ [0, r − 1].
The derivative of (A.2) with respect to c multiplied by

2
√

(r − c)(1− u)2 + (n− (r − c) + 1)u2

equals

2(r − c)(1− u)2 + 2(n− (r − c) + 1)u2 +

(1− 2u)[−(r − c)(1− u) + (n− (r − c) + 1)u] =

(n + 1− 2(r − c))u + r − c.

So, the derivative of (A.2) is positive because r − c > 0 and n + 1− (r − c) > 0. ♥
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