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Abstract

Partially identified models typically involve set identification rather
than point identification. That is, the distribution of observables is con-
sistent with a set of values for the target parameter, rather than a single
value. Interval estimation procedures therefore behave differently than
for identified models. For instance, a Bayesian credible set arising from a
proper prior distribution will tend to a non-degenerate set as the sample
size goes to infinity. A natural question arising is for what parameter
values does the limit of the Bayesian credible interval fail to cover its tar-
get? Intuition suggests this would arise for parameter values which are
not very consistent with the prior distribution. The aim of this paper is
to quantify this intuition.

Keywords: Bayesian inference; credible interval; partial identification

1 Introduction

Limitations in the form of discrepancies between ideal data and available data
can lead to partial identification, such that learning the distribution of observ-
able variables only reveals a set of possible values for the target parameter, not
a single value. The set of target parameter values consistent with the distri-
butional law of the observables is often termed the identification region. The
recent literature on interval estimation in partially identified models includes
Imbens and Manski [8], Vansteelandt et al. [15], Romano and Shaikh [14], and
Zhang [16]. An interesting distinction arises in this literature. In frequentist
terms, interval estimators can be designed to have at least nominal probability
of containing the true value of the target, or to have at least nominal probability
of containing the entire identification region.
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From the Bayesian perspective, starting with a proper prior distribution over
all parameters one can interpret a posterior credible set as being likely to contain
the true value of the target, given the combination of observed data plus prior
beliefs. Work considering Bayesian interval estimators in partially identified
models includes Moon and Schorfheide [11], Liao and Jiang [10], and Gustafson
and Greenland [7]. As emphasized in the latter paper, the usual calibration
property of Bayesian procedures is unaffected by the lack of identification. That
is, the average frequentist coverage of the Bayesian credible set, taken with
respect to the prior distribution over the parameter space, equals the nominal
coverage. In contrast, approaches such as that of Vansteelandt et al. [15] aim
to achieve nominal coverage at ‘worst-case’ spots in the parameter space, with
better than nominal coverage, paid for via extra length, achieved elsewhere.

Another interesting distinction between Bayesian and frequentist approaches
to partially identified problems is that frequentist approaches view knowledge
of the identification region as the best that can be achieved in the large-sample
limit. Conversely, the posterior distribution on the target concentrates asymp-
totically on the identification region, but its shape may purport to distinguish
some values in the region as more plausible than others, in light of the data.
Both Liao and Jiang [10] and Gustafson [5] tout this as a strength of the Bayesian
approach in partially identified settings, though Moon and Schorfheide [11] are
more circumspect.

In the partially identified context, interval estimators generally, and Bayesian
credible sets specifically, will tend to a non-degenerate set as the sample size
increases. Toward a full understanding of Bayesian credible sets in partially
identified contexts, a natural question to ask is when does the limiting set con-
tain its target? More particularly, the parameter space can be cleaved into
parameter values under which the limiting credible set does and doesn’t contain
its target. Initial intuition suggests that the choice of prior distribution should
play a role in this regard, with failure-to-cover occurring when the true param-
eter values are less consistent with the specified prior distribution. As well, the
values of parameters which are less informed by the data might be suspected to
play a bigger role. Through theory and examples, this paper aims to quantify
these intuitions.

2 Methodology

Let π(θ,D) denote the joint density of a parameter vector θ ∈ Θ and observable
data D, as arises as the product of a proper prior density π(θ) and a statisti-
cal model density π(D|θ). Assume that θ comprises a ‘scientifically intuitive’
parameterization of the model, such that investigators would feel comfortable
specifying a prior distribution for θ, as opposed to specifying a prior in some
other parameterization. Also assume that the primary inferential interest lies
in some scalar aspect of θ, denoted as the estimand ψ = g(θ).

When useful, we write Dn to emphasize observable data comprised of n
observations which are independent and identically distributed given θ. To
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consider interval estimation, let I(α)
π (Dn) denote a credible set for ψ of some

type, having posterior probability 1−α of containing ψ under prior π. The two
primary examples of ‘types’ would be equal-tailed intervals and highest posterior
density (HPD) sets.

The immutable calibration property of Bayesian interval estimation is as
follows. With respect to the joint distribution π on (θ,Dn),

prπ

{
ψ ∈ I(α)

π (Dn)
}

= 1− α. (1)

This can be interpreted in the following manner. With respect to a sequence
of studies arising under different conditions (i.e., a different ‘true value’ of θ
each time), the 1−α credible interval contains its target in proportion 1−α of
the studies, under a strong proviso. Particularly, (1) assumes the distribution
generating the sequence of true θ values coincides with the distribution used by
investigators as a prior distribution. Put another way, if ‘nature’s prior’ and the
investigators’ prior match, then the investigators’ interval estimation procedure
is well calibrated. It is worth reinforcing that (1) is exact for any n, and does
not require model identification.

Of course identified and correctly specified parametric models yield nicely
behaved credible intervals, under weak regularity conditions. As n increases,
I
(α)
π (Dn) converges to the correct value of ψ, with the interval width behaving

as n−1/2. On the other hand, partially identified models typically have the
feature that the posterior distribution on the target of inference does not shrink
to a point-mass as the sample size grows. Rather, for a fixed underlying value
of θ, the distribution of (ψ|Dn) will converge to a non-degenerate distribution
as n increases. Commensurately, I(α)

π (Dn) will converge to a non-degenerate set
as n → ∞. Emphasizing that this limit depends on the underlying parameter
values, we denote the limiting credible set as J (α)

π (θ).
Whereas model identification plus weak regularity conditions imply that

Bayesian credible intervals have approximately correct frequentist coverage for
large n, this cannot apply in the partially identified case. A non-degenerate
J

(α)
π (θ) either contains ψ = g(θ) or it doesn’t. Consequently, for a given θ value

the large-n limit of the frequentist coverage of the Bayesian interval estimator
is either 0% or 100%. On the other hand, from (1) it follows that

prπ

{
ψ ∈ J (α)

π (θ)
}

= 1− α. (2)

That is, the subset of the parameter space for which the limiting frequentist
coverage is zero must have probability mass α with respect to the prior π.

Let B(α)
π =

{
θ : g(θ) /∈ J (α)

π (θ)
}

be the ‘bad’ subset of the parameter space
on which the limiting credible interval fails to cover its target. Equivalently, this
is the subset on which the limiting frequentist coverage of the credible interval
is zero. As stated above, it is immediate that B(α)

π is small in the sense of
having probability α under the prior π. What this paper investigates, however,
is where B(α)

π lies in the parameter space. A first intuition is that the bad set
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will lie in the tails of the prior distribution, i.e., failure-to-cover will arise when
the true parameter values are not very compatible with the prior distribution.
A second thought might be that compatibility of prior and true values may be
more important for parameters that aren’t well informed by the data. The aim
of this paper is to make these ideas more precise.

As emphasized in Gustafson [4], the posterior structure in many partially
identified models can be laid bare upon reparameterizing from θ to φ = (φI , φN )
such that (i) Dn ⊥ φN |φI , and (ii) (Dn|φI) comprises a ‘regular’ model admit-
ting root-n consistent estimation of φI . Gustafson [4] calls this a transparent
parameterization. The limiting posterior distribution of φ decomposes into a
point-mass at the true value of φI combined with the prior conditional dis-
tribution of (φN |φI). One can then determine the induced limiting posterior
distribution on ψ = g(θ(φ)). In Section 3 we pursue transparent parameteriza-
tions as a route to determining limiting credible intervals, and hence the bad
set B(α)

π , in several examples. First, however, we point out a general result.
Theorem 1: Let λ = h(θ) be any identified quantity, i.e., with respect to

a transparent parameterization, h(θ(φI , φN )) does not vary with φN . Then, for
any value of λ0 in the support of the induced prior π(λ), we have

prπ(θ ∈ B(α)
π |λ = λ0) = α. (3)

In this sense, the performance of the limiting credible interval cannot be driven
by the compatibility of identified parameters and their priors, i.e., the bad sets
corresponding to a priori likely and unlikely values of λ are of equal ‘size’ in the
conditional probability sense of (3).

Proof. For a given λ0, let B(α)
0 be the set of θ values for which the limiting

1 − α credible interval arising from the prior π(θ|λ = λ0) fails to cover the
target. Now note that for any θ satisfying h(θ) = λ0, θ ∈ B

(α)
0 ⇐⇒ θ ∈

B
(α)
π . This happens because for data generation under such a θ, the same

limiting credible interval for ψ arises under π(θ) as under π(θ|λ = λ0). That
is, since asymptotically the data already reveal the value of φI , correct a priori
conditioning on some function of φI will have no effect whatsoever in the large-n
limit. Thus

prπ

(
θ ∈ B(α)

π |λ = λ0

)
= prπ

(
θ ∈ B(α)

0 |λ = λ0

)
= α

as desired, where the second equality follows directly from (2) applied with the
prior π(θ|λ = λ0). �

3 Examples

3.1 Imperfect Compliance in a Randomized Trial

Here we consider a version of the imperfect compliance model with binary vari-
ables considered by various authors, including Chickering and Pearl [1], Imbens
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and Rubin [9], Pearl [12, Ch. 8], and Richardson et al. [13]. Trial subjects are
randomly sampled from a population comprised of never-takers, always-takers,
and compliers, in unknown proportions ωNT , ωAT , and ωCO = 1− ωNT − ωAT

respectively. Each subject is randomly assigned to either control or treatment.
As the labels suggest, never-takers will not take treatment regardless of their
assignment, always-takers will take treatment regardless of their assignment,
and compliers will follow their assignment. We exclude the possibility of defiers
in the population, though the general version of the problem allows for them.

Assume that a patient’s binary response is Y0 if treatment is not taken,
and Y1 if treatment is taken, regardless of treatment assignment. Then a
subject’s outcome is Y = (1 − X)Y0 + XY1, where X indicates reception of
treatment, whereas Z indicates assignment to treatment. For compliance type
C ∈ {NT,AT,CO}, let γC,i by the mean of Yi amongst the sub-population of
that type. The observed data consist of (Z,X, Y ) for sampled subjects. Assum-
ing that Z is based only on randomization (i.e., is independent of X,Y0, Y1 and
compliance type), the observed distribution of (X,Y |Z), in terms of parameters
θ = (ωNT , ωAT , γNT,0, γNT,1, γAT,0, γAT,1, γCO,0, γCO,1), is characterized by:

pr(X = 1|Z = 0) = ωAT

pr(X = 1, Y = 1|Z = 0) = ωAT γAT,1

pr(X = 0, Y = 1|Z = 0) = ωCOγCO,0 + ωNT γNT,0

pr(X = 0|Z = 1) = ωNT

pr(X = 0, Y = 1|Z = 1) = ωNT γNT,0

pr(X = 1, Y = 1|Z = 1) = ωCOγCO,1 + ωAT γAT,1.

Note that a transparent parameterization is obtained by simply cleaving θ
as

φI = (ωNT , ωAT , γNT,0, γAT,1, γCO,0, γCO,1),
φN = (γNT,1, γAT,0).

Particularly, it is easy to verify that the map from φI to the (X,Y |Z) distri-
bution is invertible. Thus a first thought is that the important consideration
for interval coverage might be compatibility between the prior and the true
values for (γNT,1, γAT,0), since these parameters are absent from the likelihood
function. This is backed up with the intuition that these are precisely the coun-
terfactual quantities that are inherently uninformed by the data, i.e., the mean
response for never-takers if they take, and the mean response for always-takers
if they don’t take.

Consider taking the prior π(θ) to be a uniform distribution, i.e., a Dirich-
let(1,1,1) prior for ω = (ωNT , ωAT , ωCO) and a uniform prior on (0, 1)6 for the
elements of γ, with a priori independence between ω and γ. Now, say the target
of inference is the (global) average causal effect (ACE), given as:

ACE = (1− ωNT − ωAT )(γCO,1 − γCO,0) + ωNT (γNT,1 − γNT,0) +
ωAT (γAT,1 − γAT,0).
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Gustafson [6] shows that for n independent and identically distributed realiza-
tions of (Y,X,Z), as n→∞, the posterior distribution of ACE converges to a
symmetric, trapezoidal density. Particularly, let

a(φI) = (1− ωNT − ωAT )(γCO,1 − γCO,0) + ωNT (1/2− γNT,0) +
ωAT (γAT,1 − 1/2),

b(φI) = (ωNT + ωAT )/2,
b∗(φI) = |ωNT − ωAT |/2.

The support of the limiting trapezoidal density is a(φI)± b(φI) and the ‘top’ is
a(φI)±b∗(φI), so consequently the height of the trapezoid is {b(φI)+b∗(φI)}−1.

Since the limiting posterior is symmetric, equal-tailed and HPD credible
intervals agree (with HPD suitably interpreted in light of the ‘flat-topped’ den-
sity). Thus the limiting level 1−α credible interval for the target will have the
form

a(φI) ± kα(ωAT /ωNT )(ωNT + ωAT )/2,

where

kα(r) =
{
{(1− α)/2}{1 + g(r)} if g(r) > (1− α)/(1 + α),
1−

√
α{1− g(r)2} otherwise,

with g(r) = |1−r|/(1+r). Note that the limiting interval is narrowest relative to
the support of the limiting posterior when ωAT = ωNT , with the limiting density
becoming triangular and kα(1) = 1−

√
α. The interval is widest when ωAT = 0

or ωNT = 0, with the limiting density becoming rectangular and kα(r) → 1−α
as r → 0 or r →∞.

To gain some intuition, we simulate draws from the prior π(θ) and ascertain
which realizations fall in B(α)

π , for α = 0.05. Theory tells us that the proportion
of draws falling in this ‘bad’ set is α, but the results in Figure 1 show that the
location of B(α)

π in the parameter space is not understood trivially. First, mem-
bership in B

(α)
π is not driven exclusively by the values of φN = (γAT,0, γNT,1).

Plots show that a necessary, but not sufficient, condition for failure-to-cover is
that these two parameters take on extreme values in opposite directions. That
is, ‘failures’ are found to have φN values in the bottom-right or upper-left cor-
ners of the unit-square. However, ‘successes’ are found in these regions as well,
with no smooth boundary in φN -space to separate B(α)

π from its complement.
The other feature evident from Figure 1 is that failure-to-cover is not strongly

driven by the value of the target. The prior distribution of (ψ|θ ∈ B(α)
π ) is more

dispersed than that of (ψ|θ /∈ B
(α)
π ), but not to a great extent. Put more

succinctly, many θ values for which failure occurs have ψ = g(θ) values near
the middle of the prior for ψ, and many of the θ values yielding ψ values in the
tails of the prior correspond to successful coverage. Thus there is not a direct
explanation for failure-to-cover in terms of the unidentified parameters alone,
nor in terms of the target parameter alone.
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Figure 1: Exploration of coverage in Example 1, via simulated draws from the
prior. The upper-left panel gives the (γAT,0, γNT,1) values of the draws, with
success/failure to cover indicated by ‘o’/‘x’. The upper-right panel focuses only
on the shaded corner region of the upper-left panel. The lower panels depict
simulated values of the target ACE, stratified by failure/success to cover.
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To explore in more depth, from the form of the ACE and the form of the
limiting credible interval, it is apparent that failure to cover occurs when

|(γNT,1 − 1/2)− (ωAT /ωNT )(γAT,0 − 1/2)| > kα

(
ωAT

ωNT )

)
1 + ωAT /ωNT

2
.

This underscores that failure is not determined exclusively by the values of of
nonidentified parameters φN = (γNT,1, γAT,0), since the failure region depends
on identified parameters via the ratio r = ωAT /ωNT . Particularly, the failure
region intersected with a fixed value of r ∈ (0, 1) corresponds to equal-sized
triangles in the lower-right and upper-left corners of the unit-square describing
(γAT,0, γNT,1) ∈ [0, 1]2. More particularly, these triangles are formed via the
parallel lines of slope r,

γNT,1 − 1/2 = r(γAT,0 − 1/2)± kα(r)(1 + r)/2, (4)

passing through the unit square. While the size of the triangles could be deduced
from (4), direct appeal to Theorem 1 immediately gives the areas as α/2 each.

Figure 2 gives a pictorial representation of how the failure-to-cover region
for φN varies with r = ωAT /ωNT . In the r = 0 limit the region devolves to
rectangles defined by γNT,1 < α/2 and γNT,1 > 1−α/2. This is intuitively sen-
sible: when there are fewer (or no) always-takers, success/failure of the interval
will be determined more (or exclusively) by the value of γNT,1. Congruently,
γAT,0 plays a larger role as r becomes large. This behaviour explains the lack
of separation between B(α)

π in terms of φN alone, i.e., how it is possible to have
successes lying ‘south-east’ of failures in the top right panel of Figure 1.

Roughly put, the situation with this example can be summarized as fol-
lows. Failure-to-cover arises when the nonidentified parameters lie in ‘a tail’
of their prior distribution, but ‘which tail’ depends on a particular aspect of
the identified parameters. This interaction between nonidentified and identified
components is more complicated than simply seeing failure-to-cover when the
value of the inferential target is extreme compared to its prior. However the
interaction is quite understandable, in terms of which nonidentified parameter
is a bigger determinant of failure-to-cover when the relevant identified quantity
is smaller or larger.

3.2 Example: Prevalence of Misclassified Trait

Say that X is a binary trait, with interest lying in its population prevalence
r = Pr(X = 1). However, the observable binary variable is X̃, which is subject
to misclassification, i.e., Pr(X̃ = 1) = rγN+(1−r)(1−γP ), where γN = Pr(X̃ =
1|X = 1) and γP = Pr(X̃ = 0|X = 0) are the sensitivity and specificity of the
classification scheme respectively.

Consider the situation where the investigator commits to lower bounds on
sensitivity and specificity but applies uniform prior distributions above the
bounds and also applies a uniform prior to the target parameter r. That is

π(r, γN , γP ) = (1− a)−1(1− b)−1I(0,1)(r)I(a,1)(γN )I(b,1)(γP ).
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Figure 2: The failure-to-cover region intersected with different values of r =
ωAT /ωNT in Example 1, with α = 0.05.
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Clearly in the large-sample limit of observing independent and identically dis-
tributed realizations of X̃, conditioning on the observed data is equivalent to
conditioning on the true value of r̃ = rγN +(1−r)(1−γP ). More particularly, a
transparent parameterization is obtained by taking φI = r̃ and φN = (γN , γP ),
and the large-sample limit of the posterior distribution over the target r is iden-
tically the prior conditional distribution π(r|r̃) (where the conditioning is on the
true value of r̃). This distribution is given in Gustafson [5] as having support

r ∈
(
1− 1−r̃

b∗ ,
r̃
a∗

)
, (5)

where a∗ = max{a, r̃}, b∗ = max{b, 1−r̃}. The interval (5) is then the identifica-
tion region for the target parameter in this partially identified model. Moreover,
the conditional prior density (and equivalently the limiting posterior density)
over this support is given by:

π(r|r̃) ∝ r−1

[
min

{
r̃ − a∗r
1− r

, 1− b∗
}
−max

{
r̃ − r
1− r

, 0
}]

. (6)

For the hyperparameters a = 0.7 and b = 0.85, examples of the limiting posterior
density (6), for different values of r̃, appear in Figure 3.

The form of (6) is such that limiting credible intervals are readily computed,
but closed-form expressions for their endpoints would be cumbersome. We focus
on 90% HPD credible sets. In the case of hyperparameters (a, b) = (0.7, 0.85),
we draw values of θ = (r, γN , γP ) from the prior distribution, and check mem-
bership in B

(α)
π , for α = 0.05. The top panels of Figure 4 show that failure-

to-cover can occur when one of sensitivity and specificity is large but the other
is small. Echoing findings in the previous example, however, failure-to-cover is
not completely determined by the extremity of φN = (γN , γP ), i.e., B(α)

π is not
determined by a smooth boundary in φN -space.

Again we appeal to Theorem 1. Drawing values of θ by sampling from
π(γN , γP |r̃ = r̃0) for selected values of r̃0, we examine the intersection of B(α)

π

with {θ : r̃(θ) = r̃0}. Theorem 1 guarantees this intersection to have probability
α with respect to the conditional prior, while Figure 4 illustrates that this set
is determined by a smooth boundary in φN -space. Moreover, this boundary is
seen to vary with r̃0. Thus again we see that failure-to-cover arises when φN

lies in a tail of the prior distribution, but which tail depends on an identified
quantity. As an aside, Figure 4 also illustrates the ‘indirect learning’ that can
arise because the support of π(γN , γP |r̃ = r̃0) can, for some values of r̃0, be
smaller than the support of π(γN , γP ).

To touch briefly on finite-sample performance, using hyperparameters (a, b) =
(0.7, 0.9), we consider five successively more extreme values of θ given by r̃ =
0.25 along with (a) (γN , γP ) = (0.75, 0.95), (b) (γN , γP ) = (0.74, 0.96), (c)
(γN , γP ) = (0.73, 0.97), (d) (γN , γP ) = (0.72, 0.98), (e) (γN , γP ) = (0.71, 0.99).
For each value we numerically evaluate the frequentist coverage of the 90% equal-
tailed credible interval for r, for a variety of sample sizes. While the asymptotic
results in Figure 4 pertain to HPD intervals, it is somewhat easier to control
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Figure 3: The limiting posterior density on r in Example 2, in the cases that
r̃ = 0.1, 0.2, 0.3, 0.4. The hyperparameters, in the form of lower bounds on
sensitivity γN and specificity γP , are a = 0.7 and b = 0.85.
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Figure 4: Failure to cover in Example 2. The top panels report asymptotic
success (‘o’) or failure (‘x’) to cover, for a sample of θ values drawn from the un-
conditional prior π(θ). The remaining panels report asymptotic success/failure
to cover for a sample of θ values obtained via draws from the conditional prior
π(γN , γp|r̃), for r̃ = 0.05 (second row), r̃ = 0.15 (third row), and r̃ = 0.25
(fourth row). In each case, the right-hand plot is an enlargement of the shaded
region in the left-hand plot, along with an addition of more sampled points.
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Figure 5: Frequentist coverage of the 90% equal-tailed credible interval as a
function of n, for the five selected values of θ described in the text. The cover-
age decreases as we move from values (a) through (e), i.e., further toward the
corner of the prior support for (γN , γP ). At each selected value of n and θ,
coverage is approximated via 4000 realized data values, implying a Monte Carlo
simulation standard error for coverage evaluation of 0.008 or less. Note the use
of a logarithmic axis for n.

the numerical error in computing finite-sample coverage in the equal-tailed case.
Details of the numerical evaluation are given in the Appendix.

For each θ value the frequentist coverage is plotted against sample size n in
Figure 5. As is consistent with theory, the coverage is seen to tend to zero or
one as n increases. Particularly, the limit is one for the less extreme cases (a)
through (c), and zero for the more extreme cases (d) and (e). In these latter
instances convergence is slow in practical terms.

4 Discussion

As illustrated in our examples, as the sample size increases we learn both the
support and the shape of the limiting posterior distribution of the target, with
the limiting support corresponding to the identification region. In the first ex-
ample, different identified quantities control the support (a(φI), b(φI)) and the
shape (b∗(φI)), such that two different distributions of observables could pro-
duce the same identification region but different limiting posterior distributions

13



over this region. In the second example, the distribution of observables is gov-
erned by a single parameter (r̃) which gives rise to both the support and shape
of the limiting posterior. In either case, the limiting credible interval is not a
‘pre-ordained’ subset of the identification region - the data have something to
say.

Both examples possess parameters which intuitively aren’t informed by the
data. In the first example these are the counterfactual average responses of
never-takers who take and always-takers who don’t take. In the second example
these are the sensitivity and specificity of the classification scheme. Intuition
suggests we can only do sensitivity analysis with respect to such parameters,
and indeed applying prior distributions to them and proceeding with Bayesian
inference is often regarded as a probabilistic form of sensitivity analysis (see,
for instance, Greenland [2, 3]). Thus we might only expect a ‘wrong’ answer to
arise if the true values of the uninformed-by-data parameters are extreme with
respect to the chosen priors. We have shown this to be correct in the main,
but with some devil lurking in the details. Notably, what constitutes extreme
can vary with identified parameters. While Theorem 1 precludes the size of the
extreme set varying with an identified quantity, our examples illustrate that the
location of the extreme set can vary with an identified quantity.

Appendix

The numerical evaluation of finite-sample frequentist coverage in Example 2
proceeds as follows. Assume the hyperparameters satisfy a+ b > 1, so that the
prior ensures 1 − γP < γN . Upon reparameterizing to (r̃, γN , γP ) we have the
prior density

π(r̃, γN , γP ) ∝ (γN + γP − 1)−1I(1−γP ,γN )(r̃)I(a,1)(γN )I(b,1)(γP ).

Then observing y out of n units to have X̃ = 1, yields updating as

π(r̃, γN , γP |y) ∝ r̃y(1− r̃)n−yπ(r̃, γN , γP ). (7)

Note that the event r < r0 can be reexpressed as r̃ < (1− r0)(1− γP ) + r0γN ,
and that integration of (7) with respect to r̃ can be expressed via the Beta(y +
1, n− y + 1) distribution function, which we denote as Gy(). Thus

pr(r < r0|y) =
E

[
Gy{(1−r0)(1−γP )+r0γN}−Gy(1−γP )

γN+γP−1

]
E

[
Gy(γN )−Gy(1−γP )

γN+γP−1

] , (8)

where the expectations are with respect to the prior distribution of (γN , γP ).
Thus a Monte Carlo sample from this distribution can be used to numerically
approximate both expectations in (8). Moreover, since this takes the form of a
ratio estimator, a Monte Carlo standard error is readily obtained to quantify the
approximation error. The results appearing in Figure 5 use 20000 realizations
of (γN , γP ).
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Thus for a given θ0 value and given sample size n, the frequentist coverage
of the 1−α equal-tailed credible interval is obtained by repeatedly simulating a
value Y = y and reporting the proportion of times for which pr(r < r0|Y = y)
lies between α/2 and 1−α/2. Note that for a given y this only requires numerical
evaluation of (8) at a single value of r0, whereas checking coverage for an HPD
interval would require evaluation over a fine grid of values.
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