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Abstract

Partially identified models are characterized by the distribution of ob-
servables being compatible with a set of values for the target parameter,
rather than a single value. From a non-Bayesian point of view, this set,
known as the identification region, is the target of inference. In the limit
of increasing sample size, this set is revealed to the investigator. On the
other hand, a Bayesian obtains a distribution over the identification re-
gion. This purports to convey varying plausibility of values across the
region. Taking a decision-theoretic view, we investigate the extent to
which having a distribution across the identification region is indeed help-
ful.

Keywords: Bayesian inference; partial identification; posterior distri-
bution.

1 Introduction

Limitations in the form of what variables can be observed may result in a statisti-
cal model which is not fully identified. If multiple values of the entire parameter
vector give rise to the same distribution of observables but different values of
the parameter of inferential interest, then consistent estimation of the target is
not possible. On the other hand, data may still be somewhat informative. Let
the identification region be the set of values for the target that are compatible
with a particular distribution of observables. Then the identification region may
vary with this distribution, and for a given distribution be a proper subset of
the a priori possible values for the target. Hence there can still be utility in
drawing samples to learn about the distribution of observables.

There is a considerable literature on non-Bayesian approaches to partially
identified models. See, for instance, Manski (2003); Imbens and Manski (2004);
Romano and Shaikh (2008); Vansteelandt et al. (2006); Zhang (2009); Tamer
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(2010). Typically the endeavour is split into two tasks. For a given problem, first
one determines the form of the identification region, and this set itself is viewed
as the parameter of interest. Then inference is considered as as separate exercise,
comprised of estimating the boundaries of the identification region (often the
endpoints of an identification interval), and/or reporting a confidence set for the
identification region. As a side note, there is an interesting distinction between
confidence sets designed to have nominal or better coverage for the true value
of the target versus those designed to have nominal or better coverage of the
whole identification region. More importantly for present purposes, note that
these approaches do not naturally lend themselves to a sense of some target
values being more plausible than others in light of the data. Conceptually, if
the investigator were handed an infinite number of datapoints, and hence perfect
knowledge of the distribution of observables, then the identification region would
be reported as ‘the answer.’

On the other hand, identification and inference are more integrated under a
Bayesian analysis. Based on a sample of size n, the investigator carries out prior-
to-posterior updating, yielding a marginal posterior distribution on the target
parameter. As n increases, this distribution converges to a non-degenerate dis-
tribution with support equal to the identification region. Given an infinite
number of datapoints then, inference is summarized by a relative weighting of
points in the identification region. Both Liao and Jiang (2010) and Gustafson
(2010) suggest this may be a strength of the Bayesian approach, though Moon
and Schorfheide (2011) are more circumspect.

Thus there is a fundamental discrepancy between non-Bayesian and Bayesian
inference in partially identified models, which differs from the situation in iden-
tified models (where the identification region is a single point and therefore does
not admit a weighting of its elements). Given this, we seek to understand the
utility of the posterior weighting of points in the identification region. If this
weighting were completely driven or pre-ordained by the prior distribution, then
the difference between the Bayesian and non-Bayesian answers might be argued
to be somewhat superficial. We can quickly see, however, that at least in some
problems the weighting is not pre-ordained. Some partially identified models,
including the two given as examples in this paper, have the property that dis-
tinct points in the parameter space can lead to the same identification region
for the target, but different limiting posterior distributions across this region.
Thus the situation is nuanced, and warrants investigation.

We investigate the inferential utility in the ‘shape’ of the posterior distri-
bution by taking a decision-theoretic view. In the large-sample limit, we can
compare the posterior distribution as a summary of knowledge about the target
versus an ad-hoc choice of distribution over the identification region, in terms
of Bayes risk. The difference in Bayes risk can be decomposed into a term
representing updating based on knowledge of the identification region only and
a term representing the ‘extra’ information arising because different limiting
posterior distributions can correspond to the same identification region. This
decomposition is worked out for two examples. One involves a model for im-
perfect compliance in a randomized trial, while the other deals with inference
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about a gene-environment interaction when full data cannot be observed but
some assumptions can be made.

2 Methodology

Let π(θ, d) denote the joint density of a parameter vector θ and observable
data d, as arises from the product of a proper and smooth prior density π(θ)
and a statistical model density π(d|θ). Assume that θ comprises a ‘scientifically
intuitive’ parameterization of the model, such that investigators would feel com-
fortable specifying a prior distribution for θ, as opposed to specifying a prior in
some other parameterization. Also assume that the primary inferential interest
lies in some scalar aspect of θ, denoted as the estimand ψ = g(θ). When useful,
we write dn to emphasize observable data comprised of n observations which
are independent and identically distributed given θ. Also, we use upper-case
Dn and Θ when it is helpful to stress a random variable interpretation of data
and parameters, e.g., inside expectations.

Our interest focusses on problems lacking identification, with the distribu-
tion of the data depending on θ only through φ = s(θ), such that (Dn|Φ = φ)
constitutes a ‘regular’ parametric model admitting standard

√
n-consistent es-

timation of φ. Then, if the true parameter values are θ = θ0, the large n limit
of (Θ|Dn) is characterized by Φ having a point-mass distribution at φ0 = s(θ0),
combined with the conditional prior distribution for (Θ|Φ = φ0). We restrict
attention to problems where the target ψ is not completely determined by φ, so
that the large-sample limit of the marginal posterior distribution on ψ will not
be a point-mass.

For a finite sample size n, say a family of density functions h(·; ·) is used such
that h(·; dn) is a probabilistic estimate or ‘forecast’ of ψ when data Dn = dn

are observed. The estimation loss incurred can be taken as the entropy loss
− log h(ψ; dn), i.e., the utility of estimation is the log height of the forecast
density at the target value. By averaging the loss across repeated joint realiza-
tions of (Θ, Dn) ∼ π, we obtain the Bayes risk as a summary of estimator h’s
performance:

BR
(n)
π,h = −Eπ{log h(Ψ;Dn)}. (1)

It is well known that the choice of h minimizing the Bayes risk is the posterior
density of the target with respect to prior, i.e., h(ψ; dn) = π(ψ|dn).

Because we are studying problems in which the posterior distribution of
the target converges to a non-degenerate distribution as the sample size grows,
the limiting version of (1) is immediate. Observation of an infinite data set
corresponds to knowledge of φ, so we are now concerned with a family of density
functions of the form h(·;φ), and the corresponding Bayes risk

BR∞π,h = −Eπ{log h(Ψ;Φ)}. (2)

Bear in mind here that ψ and φ are both functions of θ, and the expectation
is with respect to Θ ∼ π. The same standard argument applies to verify that
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(1) is minimized by h(ψ;φ) = π(ψ|φ), which is the large-sample limit of the
posterior density on the target. Henceforth we refer to π(ψ|φ) as the density
characterizing the limiting posterior distribution (LPD). For this choice of h
we will denote the Bayes risk as BR∞π,B (here ‘B’ is for Bayes). Note that
exp(−BR∞π,B) can be interpreted as the typical height of the limiting posterior
density at the target, across a sequence of realizations with different values of
θ generated according to π. This provides a summary of how much learning
about the parameter is taking place despite the lack of identification.

Much of the non-Bayesian literature on partial identification treats the iden-
tification region itself as the target of inference, with the consequent notion
that knowledge of the region is all that could be gleaned upon observation of
an infinite-sized dataset. Consider a situation where every θ gives rise to an
interval of positive but finite length as the identification region. The endpoints
of the interval can necessarily only depend on θ through φ, so we write the
interval as φ∗ = {φ∗L(φ), φ∗R(φ)}. Thus it might be viewed that knowledge of φ∗

is just as good as knowledge of φ, even if the map from φ to φ∗ is not invertible.
We quantify the utility of the limiting Bayesian distribution over the identi-

fication interval, π(ψ|φ), by comparing its Bayes risk to that of a probabilistic
estimate depending only on φ∗, i.e. a family of density functions h(·;φ∗) indexed
by φ∗. One possible h, jibing with the notion of learning only the identification
region, is the uniform density over the identification interval. We denote its
Bayes risk as B∞

π,U (here ‘U’ is for uniform).
A uniform distribution across the identification interval doesn’t take ad-

vantage of knowledge of π. That is, π is used in the evaluation of estimator
performance, but not in the construction of the estimator. A naive way to ac-
cess this information would be to combine the marginal prior on the target with
knowledge of the identification region via truncation:

h(ψ;φ∗) =
π(ψ)I{φ∗L < ψ < φ∗R}∫ φ∗R

φ∗L
π(s)ds

.

We denote the Bayes risk of this limiting estimator as B∞
π,T (here T is for

’truncated’).
While truncation of the marginal prior is intuitive, it does not correspond to

optimal use of the information encoded by φ∗. Considering only h of the form
h(·;φ∗), it is immediate that (2) is minimized by h(ψ;φ∗) = π(ψ|φ∗). We denote
the corresponding Bayes risk as BR∞π,C , where ‘C’ indicates possibly ‘coarsened’
dependence on φ∗ rather than φ. Clearly this quantity describes the large n
limit of performance if one extracts from the data only the information about
the identification region.

Now we are in a position to try to understand the worth of the shape of
the LPD across the identification interval. Say a uniform distribution across
the interval is our point of reference. Then we can write the gain of the LPD
relative to this reference point as

BR∞π,U −BR∞π,B = (BR∞π,U −BR∞π,C) + (BR∞π,C −BR∞π,B), (3)
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where both terms on the right-hand side are nonnegative. The first of these
terms reflects the value of Bayesian updating based only on information about
the identification region, relative to an ad-hoc use of this information. The
second term represents the value of using all the information in the data, not
just the information about the identification region. Put another way, the sec-
ond term reflects information ‘left on the table’ by supposing that the data can
only speak to the location of the identification interval. This term is of partic-
ular interest, since non-Bayesian approaches to partially identified models are
predicated on the idea that knowledge of the identification region is indeed all
that can be obtained in the limit of infinite sample size. Yet another interpre-
tation is that the second term reflects the utility of the fact that multiple θ
values can lead to the same identification region but different limiting posterior
distributions over this region. In the special case that the map from φ to φ∗

is invertible, there is only one limiting distribution corresponding to a given
identification interval, and the second term in (3) is zero.

Of course the analogous decomposition could also be applied starting with
our other ad-hoc estimator, namely the prior truncated to the identification
region. In this case,

BR∞π,T −BR∞π,B = (BR∞π,T −BR∞π,C) + (BR∞π,C −BR∞π,B). (4)

Note that both terms in (4) are left invariant if an invertible function of ψ is
taken as the target parameter instead of ψ itself. Conversely, this is not true
of the first term in (3). In the examples of the next two sections we refer to
the uniform distribution over the identification interval and the prior truncated
to the region as ‘pre-ordained’ limiting estimators, in the sense that the shape
of the density is pre-ordained and the data speak only to the location of the
identification region.

3 Example: Imperfect Compliance in a Ran-
domized Trial

Here we consider a version of the imperfect compliance model with binary vari-
ables considered by various authors, including Chickering and Pearl (1996),
Imbens and Rubin (1997), Pearl (2000, Ch. 8), and Richardson et al. (2011).
Trial subjects are randomly sampled from a population comprised of never-
takers, always-takers, and compliers, in unknown proportions ωNT , ωAT , and
ωCO = 1−ωNT −ωAT respectively. Each subject is randomly assigned to either
control or treatment. As the labels suggest, never-takers will not take treatment
regardless of their assignment, always-takers will take treatment regardless of
their assignment, and compliers will follow their assignment. We exclude the
possibility of defiers in the population, though the general version of the problem
allows for them.

Assume that a patient’s binary response is Y0 if treatment is not taken,
and Y1 if treatment is taken, regardless of treatment assignment. Then a
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subject’s outcome is Y = (1 − X)Y0 + XY1, where X indicates reception of
treatment, whereas Z indicates assignment to treatment. For compliance type
C ∈ {NT,AT,CO}, let γC,i by the mean of Yi amongst the sub-population
of that type. We consider inference about the population average causal effect
(ACE), given as

ψ = ωNT (γNT,1 − γNT,0) + ωAT (γAT,1 − γAT,0) + ωCO(γCO,1 − γCO,0),

based on a prior distribution under which ω ∼ Dirichlet(1, 1, 1) and indepen-
dently the components of γ follow Unif(0, 1) distributions.

Observable data reveal the (Y,X|Z) distribution, which depends on the un-
known parameters θ = (ω, γ) only through φ = (ω, γNT,0, γAT,1, γCO,0, γCO,1).
The invertible map from φ to (Y,X|Z) cell probabilities is given via

pr(X = 1|Z = 0) = ωAT

pr(X = 1, Y = 1|Z = 0) = ωAT γAT,1

pr(X = 0, Y = 1|Z = 0) = ωCOγCO,0 + ωNT γNT,0

pr(X = 0|Z = 1) = ωNT

pr(X = 0, Y = 1|Z = 1) = ωNT γNT,0

pr(X = 1, Y = 1|Z = 1) = ωCOγCO,1 + ωAT γAT,1.

It is unsurprising that the parameters absent from φ, namely γNT,1 and γAT,0,
are the intuitively unestimable quantities: the mean outcomes for never-takers
who take treatment and for always-takers who don’t take treatment.

To describe the LPD, let

a(φ) = ωCO(γCO,1 − γCO,0) + ωNT (1/2− γNT,0) + ωAT (γAT,1 − 1/2),
b(φ) = (ωNT + ωAT )/2,
c(φ) = |ωNT − ωAT |/2.

Gustafson (2011) shows that the identification interval for the target parameter
is (φ∗L, φ

∗
R) = {a(φ) − b(φ), a(φ) + b(φ)}, with the LPD having a trapezoidal-

shaped density over this interval. The ‘top’ of the density spans a(φ) ± c(φ),
and commensurately the height of the density is {b(φ) + c(φ)}−1.

In this problem the map from φ to φ∗ is not invertible, and multiple values
of φ can lead to the same identification region but different limiting distribu-
tions across the region. This is illustrated in Figure 1. While the form of the
LPD π(ψ|φ) is mathematically very simple, determination of the coarsened LPD
π(ψ|φ∗) is somewhat more involved - see Appendix A for details.

The various Bayes risks, which are computed simply by averaging across a
large number of Monte Carlo draws of Θ ∼ π, appear in Table 1. Note that
we have ‘simulation-significant’ evidence that BR∞π,π < BR∞π,C , in line with the
theory. The difference between these two Bayes risks corresponds to the LPD
being typically 2.4% higher than the coarsened LPD, in terms of density at the
true value of the target. Thus the data do contain a little information beyond
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Figure 1: Prior (dotted curve) and limiting posterior densities for the ACE. In
all cases ωCO = 0.6 and a(φ) = 0.5, hence the identification region is 0.5± 0.2.
The less (more) concentrated flat-topped density corresponds to the LPD when
ωAT = 0.05 (ωAT = 0.15), while the remaining curve is the coarsened LPD for
this identification region.
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Table 1: Bayes risks in the treatment compliance example, computed as em-
pirical averages across 10,000 Monte Carlo realizations of Θ ∼ π. Simulation
standard errors are given in parentheses.

−BR∞π,π 0.6127 (0.0063)
BR∞π,C −BR∞π,π 0.0235 (0.0023)
BR∞π,T −BR∞π,C 0.1409 (0.0052)
BR∞π,U −BR∞π,C 0.0880 (0.0036)

that which reveals the identification region. The gaps in Bayes risk between
the pre-ordained estimators and the coarsened LPD is quite substantial, which
speaks to the utility of the shape of the limiting posterior distribution. For
instance, the ratio of the coarsened LPD at the target to the truncated prior
density at the target has a typical value of exp(0.14) ≈ 1.15.

4 Example: Inferring Gene-Environment Inter-
action

Consider binary disease status Y , binary environmental exposure X, and bi-
nary genotype G. As a variant of a problem studied by Gustafson (2010) and
Gustafson and Burstyn (2011), the task is to infer the (Y |X,G) relationship
when only (Y,G) data are available, but certain assumptions can be made. The
first of these is the Mendelian randomization assumption of independence be-
tween X and G in the source population. Second, the disease risk amongst the
unexposed is assumed to not vary by genotype, i.e., any impact of genotype is
only via modification of the exposure effect, a so-called gene-environment inter-
action. Third, while (Y,X,G) data are not available, information about the X
prevalence in the population is presumed to be available. So the problem can
be viewed as inferring a property of the joint (Y,G,X) distribution from infor-
mation about the (Y,G) and X marginals. Specifically, let the inferential target
be Pr(Y = 1|X = 1, G = 1) − Pr(Y = 1|X = 0, G = 1), the risk difference
associated with exposure amongst those with genotype G = 1.

To parameterize this problem, let µ0 = Pr(Y = 1|X = 0) = Pr(Y = 1|X =
0, G = g), for g = 0, 1, and let µ1g = Pr(Y = 1|X = 1, G = g), for g = 0, 1. We
exemplify with a prior distribution under which (µ0, µ10, µ11) are independent
and identically distributed as Beta(k, k), using bk() to denote the corresponding
density function. Also, let r = Pr(X = 1) be known.

To make clear the partial identification at play, consider a reparameterization
from θ = (µ0, µ10, µ11) to (φ0, φ1, ψ), where

φg = Pr(Y = 1|G = g)
= (1− r)µ0 + rµ1g,
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for g = 0, 1, while

ψ = µ11 − µ0

is the target of inferential interest. Upon computing the Jacobian of this linear
reparameterization, the prior density in the new parameterization is

π(φ0, φ1, ψ) = r−1bk(φ1 − rψ)bk(φ1 + (1− r)ψ) ×
bk(r−1(φ0 − (1− r)φ1 + r(1− r)ψ)). (5)

Clearly (Y |G) data are completely informative about φ = (φ0, φ1), while ψ is
absent from the likelihood. Thus the LPD on the target is the conditional for
(Ψ|Φ0,Φ1) implied by (5), with conditioning on the true value of φ. At least up
to a normalizing constant, we can ‘read off’ the conditional prior density simply
by viewing (5) as a function of ψ, with φ fixed. The support of this conditional
density, or equivalently the identification interval for the target, has endpoints:

φ∗L = −min
{
(1− r)−1φ1, r

−1(1− φ1), r−1((1− r)−1φ0 − φ1)
}
, (6)

φ∗R = min
{
r−1φ1, (1− r)−1(1− φ1), (1− r)−1 + r−1(φ1 − (1− r)−1φ0)

}
.(7)

In the special case that the hyperparameter k = 1 is used, it is immediate
that for every φ, π(ψ|φ) is a uniform density on (φ∗L, φ

∗
R), so different parameter

values that give rise to the same identification region also give rise to the same
LPD. Hence, for every φ∗, π(ψ|φ∗) is also a uniform density on the identification
region, and BR∞π,C = BR∞π,B .

For k 6= 1, the situation is more nuanced. In Appendix B we prove that for
every value of φ∗ there is either (i) two distinct point solutions to h(φ) = φ∗,
which we denote as φA, φB , or, (ii), a ‘line segment’ of solutions of the form {φ :
φA

0L < φ0 < φA
0R, φ1 = φA

1 } plus one further point solution φB . Consequently,
in case (i),

π(ψ|φ∗) = (1− w)π(ψ|φ = φA) + wπ(ψ|φ = φB),

where w = π(φB)/{π(φA) + π(φB)}. In case (ii),

π(ψ|φ∗) ∝
∫ φA

0R

φA
0L

π(ψ|φ = (s, φA
1 ))π(s, φA

1 )ds. (8)

Note that as one of infinitely many solutions, the further point solution φB does
not contribute to (8).

In the k = 2 case, Figure 2 compares the four limiting estimators to both the
true value of the target and the marginal prior density of the target, for some
selected values of θ. Note that the LPD and the coarsened LPD are virtually
indistinguishable in each case, and they are quite different from the truncated
limiting estimate and the uniform limiting estimate.

As in the previous example, the various Bayes risks are computed by aver-
aging across a large number of draws of Θ ∼ π, with results reported in Table
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Figure 2: Limiting estimates compared to the target value for four draws of
Θ ∼ π. In all cases the LPD and the coarsened LPD are nearly indistinguishable
by eye. The estimator based on truncation is distinguished by its mode at zero.
The uniform density over the identification interval is also shown. For reference,
the marginal prior density is shown (dotted curve).
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Table 2: Bayes risks in the gene-environment example, computed as empirical
averages across 10,000 Monte Carlo realizations of Θ ∼ π. Simulation standard
errors are given in parentheses.

-BR∞π,π 0.2680 (0.0055)
BR∞π,C −BR∞π,π 0.00293 (0.00068)
BR∞π,T −BR∞π,C 0.1540 (0.0046)
BR∞π,U −BR∞π,C 0.1892 (0.0046)

2. We indeed have ‘simulation significance’ to attest to BR∞π,π < BR∞π,C , in
line with the theory. However, the difference between the two Bayes risks is so
small as to be negligible in any practical sense. That is, an infinite-sized dataset
is seen to contain only a tiny amount of information superseding that used to
determine the identification region.

On the other hand, the Bayes risk of the coarsened LPD is substantially
lower than that of the two ad-hoc estimators, pointing to a substantial utility
in the shape of the Bayesian posterior over the identification interval. In blunt
terms, if we choose to average with respect to π when evaluating the performance
of the estimator, then we gain a lot by using π as a prior distribution in the
construction of a Bayesian estimator.

5 Robustness

Of course the argument for the optimality of any Bayesian procedure relies on
the use of the same distribution over the parameter space as both nature’s prior
distribution used to average the expected risk across the parameter space and
the investigator’s prior distribution used to determine the posterior distribution
upon receipt of data. Thus it is of interest to see to what extent the performance
of the Bayesian procedure degrades as nature’s prior and the investigator’s prior
deviate from one another.

We retain π(θ) as notation for the investigator’s prior, but consider what
happens when nature’s prior is π∗(θ|λ) for some choice of λ. We assume the
class of possible choices for nature’s prior is centered around the investigator’s
prior, i.e., π∗(θ|0) = π(θ). Specifically we look at the comparison between
the LPD and the uniform distribution over the identification region, as the
investigator’s prior stays fixed but nature’s prior moves away from it. Let

t(λ) = E∗λ {log π(Ψ|Φ) + log (Φ∗R − Φ∗L)} , (9)

where the expectation is with respect to π∗(θ|λ). Clearly then t(0) = BR∞π,U −
BR∞π,π ≥ 0, and the magnitude of λ required to make t(λ) < 0 reflects the
‘stability’ of the usefulness of the shape of the LPD, compared to a uniform
distribution over the identification interval.
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When λ has more than one component, it may become complicated to eval-
uate (9) in many different directions away from λ = 0. Thus we propose com-
puting the gradient

t′(0) = Eπ [s(Θ) {log π(Ψ|Φ) + log (Φ∗R − Φ∗L)}] , (10)

where s(θ) = ∂ log π∗(θ|λ)/∂λ|λ=0. Then evaluating (9) for values of λ propor-
tional to this gradient corresponds to looking along the direction in which (9)
changes most rapidly with λ, locally at zero.

Returning to the compliance example of Section 3, we consider nature’s prior
distribution to be ω ∼ Dirichlet(1+λ1, 1+λ2, 1+λ3), whereas the investigator’s
prior is simply Dirichlet(1, 1, 1), as before. Both priors use a uniform distribu-
tion on γ. Numerical evaluation of (10) indicates that t′(0) ∝ (0, 1, 1)′. Thus
we focus attention on the case that nature’s prior is Dirichlet(1, 1 + λ, 1 + λ),
for a scalar value of λ. For selected values of λ, t(λ) is given in Figure 3.
We see that the advantage of the Bayesian procedure is maintained even when
the discrepancy between nature’s prior and the investigator’s prior is given by
λ = −0.9. This suggests considerable robustness, since in practical terms the
Dirichlet(1, 0.1, 0.1) distribution is fairly extreme and far from Dirichlet(1, 1, 1).
In particular, this distribution puts considerable weight on extremely small val-
ues of ωNT and ωAT .

6 Discussion

Theoretically, the answer to the question posed in the title of this paper is
clear: the shape of the posterior density in partially identified models is useful.
More specifically, if we choose to measure performance in terms of average log
density at the target value, where this average is with respect to a distribution
π over parameter values, then the posterior distribution of the target arising
from π as a prior distribution is optimal. Since the posterior on the target has
a non-degenerate large-sample limit, this optimality carries over directly to the
limiting case. In both examples considered, the limiting posterior distribution
exhibited a substantial advantage over ad-hoc distributions, such as a uniform
distribution over the identification interval or the prior for the target truncated
to this interval. In particular, a tendency for the posterior density to be 10%
to 15% higher at the target than the ad-hoc densities was seen. This speaks to
jointly inferring the identification interval and the relative plausibility of values
within the interval as being worthwhile.

Additionally, the gain of the posterior density compared to an ad-hoc density
was seen to partition intuitively, into a component based on optimal use of
information about the identification region and a component based on extra
information beyond knowledge of the identification region. In both examples,
and particularly in the second example, the latter component is small compared
to the former. In a practical sense then, the ‘extra’ information is not crucial.
In a theoretical and conceptual sense, however, it gives pause for thought. The
common intuition, particularly in a non-Bayesian sense, is that the identification
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Figure 3: Robustness of the LPD when nature’s prior is ω ∼ Dirichlet(1, 1 +
λ, 1 + λ) and the investigator’s prior is ω ∼ Dirichlet(1, 1, 1). The difference in
Bayes risk, t(λ) = BR∞π∗,U − BR∞π∗,π, is given as a function of λ. The vertical
bars are 95% simulation confidence intervals based on the 5,000 Monte Carlo
realizations from nature’s prior.
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region for the target is the object of inference, and that knowledge of the region
is all that can be obtained in the limit of increasing sample size. The results in
this paper give a perspective from which this is not correct.

Appendix A

To determine the coarsened LPD in the compliance model, note that we can
write ψ = µ+ ε, where µ = a(φ), while

ε = wNT (γNT,1 − 1/2) + wAT (1/2− γAT,0).

Thus the coarsened LPD will be distributed as the conditional prior density
π(ψ|µ, ωCO), and it suffices to determine the conditional density of π(ε|µ,wCO),
which in turn can be determined from π(µ, ε|wCO). Defining λ = wNT /(1 −
wCO), it is easy to verify that

π(µ, ε|wCO) =
∫
π(µ|λ,wCO)π(ε|λ,wCO))π(λ)dλ.

This holds since, with λ and wCO fixed, µ and ε depend on disjoint subvectors
of γ, whose elements are a priori independent of one another.

Thus the task is reduced to evaluating the conditional prior densities π(µ|λ,wCO) =
π(µ|ω) and π(ε|λ,wCO) = π(ε|ω). Toward this, let gs() denote the trapezoidal
density function of s(U1 − 1/2) + (1 − s)(U2 − 1/2), when U1, U2 are indepen-
dent and identically distributed as Unif(0, 1). Then the (µ|ω) conditional has a
stochastic representation as

µ = 2ωCOZ1 + (1− ωCO)Z2,

where Z1 and Z2 are independent with Z1 ∼ g0.5, and Z2 ∼ gs with s =
wNT /(1 − wCO). Thus the (µ|ω) conditional density can be computed exactly
via convolution of g0.5 and gs, where the integration is straightforward since
these are piecewise linear densities. The evaluation of π(ε|ω) is simpler since
convolution is not involved. Particularly, π(ε|ω) = (1−ωCO)−1gs(ε/(1−ωCO)),
where again s = wNT /(1− wCO).

Appendix B

Let h be the map from φ to φ∗. For a given c∗ in the image of h, we need to
characterize solutions to h(φ) = c∗. Note that the domain of h is the subset
of the unit square U given by S = {φ ∈ U : |φ0 − φ1| < r}. The form of (6)
and (7) is such that S can be partitioned as S = A ∪ B ∪ C as depicted in the
left panel of Figure 4, with φ∗L being continuous and piecewise-linear on these
subsets. Similarly, S = D ∪ E ∪ F as in the right panel, with φ∗U being linear
on these partition sets. The two dotted reference lines on both panels are the
φ∗L = 0 and φ∗U = 0 level sets, with φ∗L > 0 above the upper reference line and
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φ∗U < 0 below the lower reference line. Let S1 ⊂ S be the region between the
reference lines, for which the identification interval crosses zero. Note that the
gradient of φ∗L points straight up on B and straight down on A. Thus a level set
for a negative value of φ∗L has an ‘open parallelogram’ shape, as exemplified in
the left panel of Figure 4. We can then speak unambiguously of the ‘bottom,’
‘spine,’ and ‘top’ of such a level set. In contrast, a level set for a positive value
of φ∗L corresponds to a line parallel to and above the upper reference line. A
‘mirror-image’ situation applies to φ∗U , as depicted in the right panel of the
figure.

Let φ̃ be one solution to h(φ) = c∗. (If it is helpful, one can think of φ̃ as
the ‘true’ value of φ.) Then we have three possible cases.

Case 1. Say that φ̃ ∈ S − S1, i.e., the identification region is to one side
of zero. Without loss of generality, say φ̃ lies above the upper reference line.
Then φ∗L remains constant along the line through φ̃ which is parallel to the
upper reference line. Along this line, φ∗U takes the value one at the boundary
between D and E, decreasing linearly from here in both directions. Moreover, it
is simply verified that φ∗U has a common value at both intersections of this line
with the boundary of S. Therefore, there must be exactly two point solutions
to h(φ) = c∗ in total.

Case 2. Say that φ̃ ∈ S1 ∩ BC ∩ EC . By inspection, it must be that either
φ̃ ∈ A∩F ∩S1 or φ̃ ∈ D∩C∩S1. Without loss of generality, assume the former.
Then the base of the level set for φ∗L intersects the spine of the level set for φ∗U
at φ̃. Given this, exactly one further solution is generated, as either the spine
extends up far enough to hit the top of the level set for φ∗L, or, failing this, the
top of the level set for φ∗U hits the spine for φ∗L.

Case 3. Say that φ̃ ∈ S1 ∩ (B ∪ E). Without loss of generality, say that φ̃
is in B rather than E. Then, intersecting the tops of the level sets for both φ∗L
and φ∗U gives a horizontal line segment of solutions of the form φ0 ∈ (1− r, φ̃1),
φ1 = φ̃1. We can also see from the shape of the level sets that there will be
an additional point solution somewhere to the ‘southwest’ of B, where the the
higher of the two bases of the two level sets crosses the spine of the other.

As claimed then, for a given c∗ in the image of h, either there are two
point solutions to h(φ) = c∗, or one horizontal line segment of solutions plus an
additional point solution.
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