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Abstract

We present a flexible, integrated statistical-based modeling approach
to improve the robustness of soil moisture data predictions in a pilot
study in Canada with a small data set with 44 locations and 3 time
points. We apply this approach in exploring the consequence of choice
of leading predictors and model structures. Competing predictors (co-
variates) and spatial covariance are often ignored in empirical analyses,
validation and modeling studies. But an optimal choice of covariates
and consideration of spatial variance may provide a more consistent and
reliable explanation of the high environmental variability and stochastic-
ity of soil moisture observational data. Our modeling integrates active
polarimetric satellite remote-sensing data (RADARSAT-2, C-band) with
ground-based in-situ data for an agricultural monitoring site in Canada,
alongside semi-empirical relationships between the dielectric constant and
remote sensing data which are commonly utilized to predict near-surface
soil moisture. We apply a grouped step-wise algorithm to iteratively select
best-performing predictors of soil moisture. In this way, such models may
better account for observed uncertainty and be tuned to different appli-
cations that vary in scale and scope, while also providing greater insights
into spatial scaling (upscaling and downscaling) of soil moisture variability
from the field to regional scale. We show that the statistical approach can
substantially reduce the uncertainty in field-scale soil moisture for more
reliable multi-scale prediction. We find that the use of ground-based data,
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which are often difficult, time-consuming and costly to collect, hence of-
ten quite sparse in time and space, may not always significantly improve
soil moisture model-based prediction compared to using satellite-based
remote-sensing data. We discuss several methodological extensions and
data requirements to enable further modeling and validation for improved
agricultural decision-support.

Keywords: Agriculture; cross-validation, multi-scale; prediction, RADARSAT-
2; soil moisture; uncertainty

1 Introduction

1.1 Challenges in Modeling Soil Moisture Using Satellite,
Remote-Sensing Data

There are substantial challenges in modeling soil moisture and integrating remote-
sensing and ground-based data reliably, given significant spatial and temporal
measurement variability and model prediction uncertainty. While soil moisture
estimation from Synthetic Aperture Radar (SAR) polarimetry (or scatterome-
ter) data is a topic that has been investigated for over 30 years, with numer-
ous papers having been written and statistical approaches developed, SAR and
models using such data are nonetheless continuing to be re-configured, improved
and extended given the wider availability of SAR data and to address a rapidly
growing demand in its use in a broad set of industrial and environmental applica-
tions [1]. More reliable predictions of soil moisture are needed when optimizing
crop water use and validating satellite remote-sensing/earth observational in-
formation [2, 3]. Agricultural crop irrigation scheduling, disaster response and
water management during droughts or flooding extreme events, soil erosion and
pollution monitoring making use of hydrological models, all require reliable pre-
dictions of daily and field-scale soil moisture. Soil moisture is a key variable
used to calibrate complex agroecosystem models and for forecasting crop yield
at the regional scale, and increasingly hydrological and agroecosystem models
are being used in environmental decision support and policy-making. Yet, de-
spite its broad importance, field-scale soil moisture data are often not available
or closest neighbor values are used when modeling hydrological and biochem-
ical processes or calibrating regional-scale predictions generated by complex
agroecosystem models. This is, in part, due to constraints and limitations in
acquiring and assembling such data over large regions and across sufficient time-
periods; the acquisition process is not only costly, but labour intensive, and has
high variability when upscaled from the field, to landscape, up to the regional-
scale [4, 5, 6]. Instead of relying on direct soil moisture information validated
against remote-sensing data, auxiliary predictions are often substituted based
on indirect, interpolative or extrapolative assumptions that may not be statis-
tical accurate, nor readily verifiable. Coupled with such challenges, there is
also a lack of sufficient understanding that is required to optimally: 1) pre-
dict soil moisture across sites or regions where data are sparse or not available,
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and, 2) generate predictions that are robust under different environmental and
land-management conditions, given high observed variability at the field-scale,
as well as, high stochasticity linked with changing weather patterns and the
timing and severity of rainfall events. Soil moisture is a process that is strongly
time and space dependent. Nonetheless, there are advantageous properties of
soil moisture variability that enable one to use available data, obtained at spe-
cific locations, to predict for unobserved times and spatial locations, namely:
1) a deterministic relationship between the high dielectric constant of water
and variation in horizontal and vertical backscatter in remote sensing (hereafter
denoted by RS) data, 2) reproducible spatial-temporal patterning and trends
that arise, for example, from spatial variation in soil type and characteristics
and/or seasonal patterns of stochastic rainfall events, and, 3) significant de-
pendence between soil, vegetation, climate/atmospheric, topographic and other
environmental variables in time and space.

1.2 Research Objectives

In this paper, we present a flexible, integrated statistical-based modeling ap-
proach to improve the robustness of soil moisture data predictions which is
applicable to both small data sets (such as the one in this study) and larger
data sets. We apply this approach in exploring the consequence of different
choices of leading predictors and model structures. Previous investigations that
have applied statistical models have not included variable (covariate) selection,
spatial correlation aspects, and propagation uncertainty [12, 8, 11, 9, 10, 7].
We demonstrate our approach to multi-site data for an agricultural study area
in Canada with the aim of generating and insights on the: 1) selection of dif-
ferent predictor variables from a set of competing ones linked with available
RS data, expert knowledge and semi-empirical algorithms, and, 2) selection of
different models with differing spatial correlation assumptions. Our flexible and
generalizable statistical approach offers sufficient flexibility that it can be ap-
plied broadly and potentially utilized across a wide range of applications. The
approach we describe also deals with overfitting in with a grouped stepwise
method which also shows the added value in using different data sources. We
utilize a broad set of statistical validation measures (e.g., AIC and BIC), in-
cluding cross-validated RMSE (CVE) and correlation (CVR) for evaluating the
performance of model soil moisture predictions.

The paper is structured as follows: Section 2 includes a summary of the
data collection methods. Section 3 defines our statistical modeling approach
and the procedures we applied for selecting, optimizing and evaluating the per-
formance of different sets of predictors, covariates, model structures, and spatial
dependence. Section 4 presents results on predictor selection and validity, the
relative performance of different statistical model structures and the relative
influence of spatial correlation on model performance. In Section 6 we summa-
rize our findings, their implications and the importance of applying statistical-
based modeling that enables automated selection of predictors, covariates, model
structural and spatial correlation for optimizing soil moisture predictions and
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obtaining robust, cross-validated model performance statistics, integrating SAR
and gound-based data. We also outline our future work and goals.

2 Study Region and Data Sources

The study was conducted in an agricultural area located in the county of
Prescott-Russel in eastern Ontario near Ottawa, Canada, centered at 45◦.37‘

N, 75◦.01‘ W. This agricultural research site was established by Agriculture and
Agri-Food Canada (AAFC) in 2006, in a region of non-irrigated dryland agri-
culture and under private land ownership, approximately 50 km east of Ottawa.
Field size averages 20 ha (relatively small) with a crop mix of corn, soybean,
cereal and pasture-forage. The growing season is May through to September.

Figure 1: The Casselman study region/agricultural area situated in eastern Ontario, outside
of Ottawa, Canada. RADARSAT-2 acquisition swaths are outlined, as well as location of large
water bodies (The Great Lakes). In the zoomed map, soil moisture sampling locations (red
points) are indicated, along with weather stations (green points). These points are super-
imposed over contours of slope (digital elevation model, DEM). This map was generated
using ArcMap 10.1 (ESRI).

RADARSAT-2 (MacDonald, Dettwiler and Associates Ltd., MDA) data sup-
plied to the Government of Canada (GC)/Agriculture and Agri-Food Canada
(AAFC) was obtained with images acquired over 25× 25 km areas during three
field campaigns on May 5, 16 and 23 (i.e., early in the growing season) in 2008 .
RADARSAT-2 is an Earth observation satellite that was successfully launched
in 2007 for the Canadian Space Agency (CSA). It is equipped with a fully
polarimetric, synthetic aperture radar (SAR), operating at C-Band (5.3 GHz).
Fine-quadpole beam modes (FQ19, FQ11, FQ16) were applied in the May 5, 16,
23 RADARSAT-2 acquisitions, respectively. Hereafter, we refer to each of the
three observation days as Time 1, Time 2 and Time 3, respectively. Field mea-
surement campaigns for soil moisture were carried out on SAR data acquisition
dates.
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A total of 44 sampling sites (within 42 fields) were used (Figure 1). Each
sampling site had a plot area of 120 × 120 m, or roughly 12 × 12 fine quad-
mode SAR pixels (i.e., a nominal spatial resolution of ∼ 8 m). Near-surface
volumetric (i.e., in-situ) soil moisture was measured at depths of 6 cm within
± 3 h of each RADARSAT-2 acquisition, using a Delta-T Soil Moisture Sen-
sor, hand-held impedance probe, with a non-site specific soil calibration factors
used, and an accuracy of ± 0.05 cm3/cm3. For each site, 16 sampling points
were selected that were separated 30 m apart. Replicate measurements (3) were
obtained within a 1 m radius of each of these sampling points in an attempt
to capture moisture variations within the top, middle, and bottom of a soil
ridge [14, 13]. This sampling plan yielded 48 soil moisture measurements per
site. These measurements were pooled to provide representative mean estimates
of the observed soil moisture variation at each of the 44 sites. Surface roughness
measurements were taken at each site using a 1 m needle profiler, consisting of
a tripod mounted with a digital camera. These measurements were aligned to
the look direction of the radar, and selected to be representative of the entire
site area (i.e., field). Ground-based photos were processed using a MATLAB
application to extract root-mean-square height (hRMS) and correlation length
(CL). Crop residue cover, tillage, soil type, and slope were also measured. Fur-
ther information on the SAR data acquisition and processing and ground-based
sampling are provided in [14]. Table 1 provides a summary of the data set and
the measurement variables, alongside their mathematical notation for reference
purposes.

Estimates of volumetric soil moisture percentage (m%), incidence angle (θ),
backscatter coefficients (σvv, σhh) (in dB, decibel units), and surface roughness
parameters (hRMS and CL) at the Casselman site are provided in Table 2. Here,
we adopt the notation convention for SAR backscatter coefficients in dB units
having subscripts σvv, σhh whereby linear values are denoted with superscripts.
This is based on the relationship prescribed by, σdB = 10 · log10σo, where σo is a
linear value having a superscript index, and σdB is the corresponding log value
having a subscript index. 95% quantile ranges (i.e., 2.5% and 97.5% quantiles)
for each of the continuous variables for each of the time points are included.
Incident angle was smallest at Time 2. Mean soil moisture and its variability
across the sites was substantially less at Time 2 coinciding with the second
repeat SAR acquisition.
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Table 1: Summary of the relevant SAR and ground-based measurement variables
and their mathematical notation for the Casselman agricultural monitoring site.

Variable Description Units

Response variable:
m volumetric soil moisture (cm3/cm3) in percentage (%)
Satellite variables:

σhh co-polarized horizontal backscatter coefficient (linear) (cm−2)
σvv co-polarized vertical backscatter coefficient (linear) (cm−2)
σhh 10 log10(σhh) (dB)
σvv 10 log10(σvv) (dB)
dvh 10 log10{σvv/σhh} = σvv − σhh (dB)
dvh2 10 log10{(σvv)1.27/σhh} = (1.27)σvv − σhh (dB)
θ Incidence angle (o)
Ground variables:
CL surface correlation length (cm)
hRMS root mean square of surface distances to the mean (cm)
ST percentage of dominant soil type (sand or clay) (%)

Table 2: In-situ measurement of volumetric soil moisture (cm3/cm3) percentage
(m%), incidence angle (θ), backscatter coefficents (σvv, σhh) (dB) (mean values are
quoted to 4 significant figures to show deviation), and surface roughness parameters
(hRMS and CL) for the Casselman study region. Estimated 95% quantile ranges are
also provided for each variables, for each day of observation.

Date m(%) θ(o) σvv(dB) σhh(dB) hRMS (cm) CL(cm)

May 5th 22± 9.4 39±0.39 -12.65±3.3 -12.98±3.2 2.3±1.7 16±12
May 16th 16± 6.8 31±0.36 -13.46±2.5 -13.48±2.5 1.6±0.74 15±10
May 23rd 24± 7.1 36±0.34 -9.559±2.2 -9.833±2.7 1.7±0.71 14±9.3

3 Statistical Modelling Methodology

3.1 A Broad Spectrum of Models with Different Assump-
tions and Predictive Accuracy

There are a wide variety of existing models that can be used to predict soil
moisture and integrate satellite, RS imagery data - from simpler deterministic
and semi-empirical models to probabilistic optimization methods (e.g., feed-
forward neural networks (ANNs), Bayesian, Nelder-Mead gradient-based ap-
proaches) [15, 16]. Theoretical radiation-transfer models, such as the small
perturbation model (SPM), the physical optics model (PO) and the geometrical
optics model (GO) predict the radar backscatter in response to changes in sur-
face roughness and surfac soil moisture [17]. Because the soil dielectric constant
is highly correlated with moisture content (i.e., the dielectric constant of dry soil
is about 2–3 and the dielectric constant of water is about 80) one can apply indi-
rect, mathematical inversion/matrix methods to predict soil moisture. However,
many of these methods perform poorly when used to predict soil moisture for
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natural surfaces (i.e., that depart from bare soil) using radar backscatter data
due to their restrictive assumptions [17]. To circumvent these problems, semi-
empirical models were developed to predict soil moisture and surface roughness
from radar imagery [17, 18]. These models use co-polarized back-scatter coeffi-
cients, in the horizontal transmit-receive (HH) and/or vertical transmit-receive
polarization (VV) to predict soil moisture as they are less sensitive to system
noise and cross-interference than the weaker cross-polarized coefficients (i.e.,
HV and VH). Semi-empirical models assume that the backscatter coefficient is
dependent on the soil dielectric constant, and a variable relationship between
the dielectric constant and soil moisture. Agricultural sites and their water, soil,
weather characteristics are typically very dynamic and heterogeneous. Nonethe-
less, soil moisture retrieval often employs semi-empirical models - in Canada,
they have been also previously applied, their assumptions inter-compared, and
combined to extend their range of validity [14]. Selecting empirical models in
different applications depends both on available data and model-based assump-
tions and statistical uncertainty. The accuracy of empirical and other models
for moisture retrieval changes with sample size/available data as well as site
characteristics and conditions - such that they can be limited in their wide ap-
plication. Models may also ignore the influence of many other relevant sources
of variation in agricultural fields, such as the tillage direction, variation in the
spatial correlation length of soil moisture variability across different fields, and
the influence of landscape topography on the degree and range of spatial de-
pendence in soil moisture variability on a seasonal basis. Model propagation
of uncertainty is often not considered. Surface roughness and incident angle
are often tuned or adjusted for, but semi-empirical equations, such as [17] limit
the inclusion of additional variables that may lead to more accurate and robust
prediction.

Bryant et al. (2007) have previously demonstrated how roughness effects on
radar backscatter are very complex depending on the configuration of the sen-
sor, and the relationship between root-mean-square-height (hRMS) and surface
correlation length (CL) (i.e., the maximum extent of spatial correlation in sur-
face roughness function in SAR horizontal look-direction), and that the degree
of error in soil-moisture measurements can vary tremendously (e.g. 1% to 82%),
depending on whether CL is derived from hRMS or whether it is measured in
the field [19]. Generally, in experimental studies, there is no relationship be-
tween these two independent parameters, however, recent studies have offered
empirical, semi-empirical and theoretical approaches for deriving CL directly
from a measurement of hRMS and to parameterize radar scattering models
like the Integral Equation Model (IEM) for surface roughness requiring only
the measurement of hRMS [19, 20, 21]. Rahman et al., (2008) demonstrate
regional-scale mapping of surface roughness and soil moisture (using a multi-
angle approach and the Integral Equation Model (IEM) retrieval algorithm for
sparsely vegetated landscapes), eliminating the need for field measurements [22].
A recent review of state-of-the-art with respect to measuring, analysis and mod-
eling spatio-temporal dynamics of soil moisture at the field scale, Vereeeken
et al., (2014) finds that ground-based and high-resolution satellite RS data of
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soil moisture is well suited for near real-time management of agricultural fields
and operational, agricultural decision-making, but that more modeling research
needs to be placed to understand more complex model-based data collection
and adaptive sampling strategies, alongside better understanding scaling (up-
scaling/downscaling) of soil moisture, ways to better quantify soil moisture pat-
terns, fluxes and extreme values using statistical models and approaches, while
also integrating and optimizing predictors and model performance metrics [23].

3.2 An Integrative, Flexible Approach

Our statistical modeling approach integrates the RS, ground-based variables
and a consideration of the varying influence of hidden or unmeasured variables
that mediate spatial dependence in soil moisture prediction. We refer to soil
moisture as the response variable of interest at a location s, and denote it as
m(s). We combine the RS variables in a row vector, denoted, Xr(s), and defined
as,

Xr(s) = (log(σvv(s)), log(σhh(s)), θ, log(σvv(s))θ, log(σhh(s))θ), (1)

The variables, σvv(s) and σhh(s), denote vertical and horizontal co-polarized
backscatter coefficients, respectively, and θ is incidence angle. Based on physical
SAR detection and configuration, the SAR backscatter coefficient can be related
to the sine of incidence angle, θ with a proportionality constant that accounts
for various physical properties such as brightness, surface roughness and the
correlation profile shape. Instead, we specify θ, not sin(θ) in our regression
modeling. This does not introduce any physical inconsistencies, arising from the
equations not being periodic with respect to θ, because θ only ranges between
0 to π/2. Within this range sin(θ) is a strictly increasing function of θ and maps
the interval [0, π/2] to the interval [0,1]. Replacing θ by sin(θ) was initially tested
as part of our exploratory analysis, but results were very similar and thus θ was
selected as the predictor for incidence angle.

We define a row vector, Xg(s) for the ground-based measurement variables,
given by,

Xg(s) = (hRMS(s), CL(s), ST (s)), (2)

where hRMS (root-mean-square height) and CL (horizontal correlation length)
are measures of surface roughness and ST is the soil type (sand or clay) at the
point s. The value of hRMS is the root-mean-square difference of the surface
heights compared to its mean in a small area around the point s and CL is
the horizontal length of ridges present on the ground [24]. Correlation length
therefore provides information on how the surface height, at one point on a
surface, is related to the surface height at a different point defining a surface-
height correlation function.

The statistical modeling equation, integrating both RS data (i.e., Xr(s) from
Equation 1 above), and Xg from Equation 2 is then given by,
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m(s) = β0 +Xr(s)βr +Xg(s)βg +W (s), (3)

where β0 is a constant, and βr and βg are column vectors of regression coeffi-
cients for Xr(s) and Xg(s), respectively, and W (s) is the error term reflecting
a spatial process over the area of the study. We assume W (s) is normally
distributed with mean zero. We further define, W (s) ∼ N(0, σ2) as a spatial
correlation function denoted by C(s, s′), which can be assumed isotropic and
exponential: C(s, s′) = exp(−||s − s′||) where ||s − s′|| is the distance between
s, s′ on the ground (in meters).

Available data can be used to estimate the regression coefficients to generate
spatial predictions for sites at which we have no observations. However, even
such a model may not be sufficient in terms of accurately capturing the key
relationships, because the relation between soil moisture and the backscatter
coefficients may also require the inclusion of additional interaction terms such
as,

σvv(s)hRMS(s), σhh(s)hRMS(s).

The amount of available data (i.e., sampling size) typically constrains whether
specific or all possible interactions can be added as additional regression terms.
Here, the reliance on semi-empirical formulae for prediction is simpler and in-
volves inputting RS variables and the ground-based variables to generate esti-
mates of the dielectric constant (denoted as ε(s)) to track the relative influence
of Xr(s) on m(s) and to tune and adjust it for any interactions with Xg(s).
This assumes that ε(s) is positively correlated with m(s) [17]. Employing the
simplier empirical approach, framing as a statistical regression-based model,
gives,

m(s) = β0 + ε(s)βε +Xg(s)βg +W (s). (4)

There are many other candidate models that could be considered. The Dubois
model was used because this is a simpler, semi-empirical model that has been
widely applied (bare soil), well-researched and has well-defined validity bounds.
Here, uncertainty due to sensitivity and the contribution of variance from inter-
actions between surface roughness (hRMS), correlation length change (CL) and
soil type (ST ) are all included in this equation and can be tuned and adjusted
under a prescribed set of assumptions for added flexibility. For example (see
[25]) if we consider the log ratio dvh := log(σvv/σhh), the influence of the soil
roughness on the dielectric constant may be minimized, given by,

X1(s) = (dvh(s), θ(s), dvh(s)θ(s)) (5)

No interactions are required between X1(s) and Xg(s), yielding the modified
model,

m(s) = β0 +X1(s)β1 +Xg(s)βg +W (s). (6)

In the next section, using Dubios Equations, we derive a predictor for soil mois-
ture based on σvv, σhh by eliminating hRMS :

dvh2 := 10 log{(σvv)1.27/σhh}. (7)
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dvh2 is a derived variable representing a construct (i.e., mathematically defined
ratio) of physically-based and physically-interpretable horizontal and vertical
co-polarized backscattering and their relative signal contribution. One can in-
tegrate such a term into this generalizable statistical modeling approach, and
consider models incorporating the following set of covariates,

X2(s) = (dvh2(s), θ(s), dvh2(s)θ(s)). (8)

This results in the following multi-scale statistical model,

m(s) = β0 +X2(s)β2 +Xg(s)βg +W (s). (9)

3.3 Predictors and Covariates

The effect of hRMS on the relationship between the backscatter coefficients
and the dielectric constant of soil moisture is well known [17, 25, 26, 14]. The
Dubois model is an example of an empirical model commonly applied when
processing and interpreting SAR imagery [17]. This empirical backscattering
model was derived from L, C and X band scatterometer data, applicable for
incidence angles varying from 30◦ to 60◦. In the Duboi model, the HH and VV
backscatter coefficients are given by,

σhh = 10−2.75
cos1.5(θ)

sin5(θ)
100.028εr tan(θ)(khRMS sin(θ))1.4λ0.7 (10)

σvv = 10−2.35
cos3(θ)

sin3(θ)
100.046εr tan(θ)(khRMS sin(θ))1.1λ0.7 (11)

where σvv and σhh denote VV and HH backscatter coefficients respectively; k
is the free space wave number given by k = 2π/λ where λ is the free space
wavelength (cm).

We can omit hRMS from the relationships with εr by referencing Equations
10 and 11. Raising the second equation to the power of 1.27 = 1.4/1.1 and
dividing the two equations, khRMS sin(θ) is canceled to obtain:

εr =
1

tan(θ)(0.0305)
log10(102.4

(σvv)1.27

σhh
cos(θ)−2.3 sin(θ)−1.2λ−0.19), (12)

which is a correction to the equation given in [14] (page 4, Equation 13).
Given that the dielectric constant and soil moisture are positively correlated,
Merzouki et al., (2011) provide the following relationship, where they evaluated
and inter-compared the Dubois and Oh empirical scattering models [14],

m = 0.12(
√
εr − 1.6). (13)

Referring to Equation 12, dvh2 = 10 log10((σvv)1.27/σhh) should also be
positively correlated with soil moisture. Sanoa et al., (1998) advise instead
to use the co-polarized ratio, σvv/σhh, so as to minimize the interaction with
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surface roughness [25]. Values of the dielectric constant (ε) that are obtained
by solving for εr in Equations 10 to 12 yield estimates termed εr(hh),εr(vv), and
εr(hh,vv) (i.e., corresponding values of the dielectric constant for co-polarized
and cross-polarized alignments).

Figure 2: Flow diagram of the variable (i.e., predictor) selection procedure. The last row
of the diagram comprising of a total of five possible radar predictor groups to be used in the
grouped step-wise algorithm.

Figure 2 depicts the steps of our predictor selection procedure, the last row
comprising of a total of five possible predictor groups. Dubois et al., (1995)
highlight the importance of validity regions for various semi-empirical formulas
and that observational parameters must lie within these regions to ensure fea-
sible/optimal values [17] . For example, for the standard Dubois formula, the
conditions are that k ·hRMS ≤ 2.5, θ ≥ 30o,m ≤ 35% (recall k = 2π/λ). For the
Casselman data-set, λ = 5.6 cm, and θ varied between 35−39o. Negative values
of ε have no meaning. Yet, there is still no general mathematical or theoretical
guarantee that εr is positive when inverting using these formulas, even when
the validity constraints or the so-called “Dubois conditions” are satisfied.

3.4 Model Structure

A suite of statistical models were constructed by combining different covari-
ates and sources of information (RS data, ground data, spatial correlation) to
obtain best-fitting soil moisture predictions at observed and unobserved loca-
tions. There are various ways the data can be built in a statistical model. Due
to limitations on the data, one may not be able to predict using all possible
predictors and interaction terms; nonetheless, such a situation might lead to
over-fitting, whereby, a statistical model performs very well for a training data
set, but poorly for an independent set of validation data. In fact in this pilot
study we are severly limited by the data size and therefore we consider ap-
proaches which can deal with this situation but are also applicable for larger
data sets. Under-fitting can also occur when a significant influence on soil mois-
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ture is ignored. We consider two classes of models, namely 1) models with
only remotely-sensed covariates, and 2) models with both remotely-sensed and
ground-based covariates. We compare results from applying these two class of
models to investigate the predictive power and reliability of the remotely-sensed
variables alone in predicting the soil moisture, and to investigate the relative
improvement, benefit or gain in measuring ground-based variables.

We consider RS covariates, σvv, σhh, θ and the interaction terms θ×σvv, θ×
σhh, which we denote as σvvθ, σhhθ. We also consider two other possible covari-
ate forms, defined by,

dvh = σvv − σhh, (14)

which is based on the recommendation of Sanoa et al.(1998) [25] and,

dvh2 = 1.27σvv − σhh (15)

which we have derived in reference to Equation 12. Note that in this Equation,
the dielectric constant is only a function of dvh2 and the incidence angle,

ε(σvv, σhh, θ, hRMS) = f(dvh2, θ), (16)

Now, referring to Equation 13, soil moisture is a function (i.e., h(ε) =
√
ε−1.6)

of the dielectric constant only, whereby soil moisture can be expressed as a
function of σvv, σhh, θ and hRMS , or, alternatively as a function g of dvh2 and
θ,

m(σvv, σhh, θ, hRMS) = g(dvh2, θ). (17)

Hereafter, we refer to the variables dvh and dvh2 as “intermediate” variables.
We consider models using the dielectric constants, εr(hh), εr(vv), εr(hh,vv), ob-
tained in Equations 10 to 12. For covariate selection, we first use the data
at Times 1-3 separately and then consider all the time points combined. We
modelled at each of the three acquisition times individually to determine the
best models under variation in the ground-based sampling data and SAR con-
figuration e.g., incident angle), and to obtain independent estimates of model
performance or prediction power across this observation time window. In this
way, we compute cross-validation model error to isolate the best-fitting or “op-
timal” models. For the response, we can consider either the raw values of the
soil moisture m, as a proportion, or its logit (Z(m) = log(m/(1 − m)). We
note that there is very little difference in results obtained from analyses of m
versus Z(m) and results presented here are based on m. This procedure that
was applied (refer to flow diagram shown in Figure 3) to inter-compare the
predictive power of competing statistical models and to select the best-fitting
model consisted of several decision steps. At the highest layer, we selected the
best model (in terms of prediction error as explained below) for each of the
five model families; in the second layer we choose the best model for each of
the families in conjunction with ground data; in the third layer, we choose the
best of all the models over the families of models; and finally in the last layer
we add spatial correlation. Spatial models without any predictors were also
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considered (last decision layer). Note that the overall best model may not in-
corporate some elements, across all layers considered, for example the spatial
models may not improve over a non-spatial model, despite involving the same
set of predictors of soil moisture. This can be considered as a particular ex-
ample of over-fitting as spatial models involve more parameters as compared
to the corresponding non-spatial models. For each model, we have listed the
associated unique family or set of covariates (refer to Table 3). The “Raw”
family includes raw remotely-sensed covariates. The “Intermediate” dvh (sug-
gested by [25]) and dvh2 families utilize transformations on the raw covariates,
recall dvh2 is created by manipulating the Dubois Formulas as described above.
Dubois Single-polarized (Dub. Single) and Multi-polarized (Dub. Multi) fami-
lies utilize the Dubois Formulas and incorporate the Dubois-derived dielectric
constants as covariates. Figure 2 summarized the procedure we performed to
obtain the five different families or sets of predictors.

Figure 3: Flow diagram of the statistical model-selection procedure. The best model is first
chosen based on its minimal prediction error, then the best model that includes ground-based
data is chosen. In the third selection step, the best model across all five families of possible
combinations of predictors is identified. In the final selection step, the influence of spatial
correlation is considered and the best performing model is identified.
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Table 3: Table shows the covariates corresponding to every model family.

Model Family Covariates

Raw σvv, σhh, θ, σvvθ, σhhθ
Intermediate (dvh) dvh, θ, dvhθ
Intermediate (dvh2) dvh2, θ, dvh2θ
Dub. Single εhh, εvv
Dub. Multi εhh,vv

3.5 Model for Spatial Dependence

For fitting the spatial models we used maximum likelihood and Bayesian hier-
archical methods [27, 28]. For the maximum likelihood method (fitted using
the geoR package) the estimates of the spatial decay parameter (range parame-
ter) were very unstable. This confirms the spatial decay parameters are weakly
identifiable, as previously reported by Finely et al. (2008) [29]. The Bayesian
approach (implemented in R) for the spatial version of our statistical model
that we employed circumvented this problem by prescribing informative priors
or distributions on the range parameter.

3.6 Model Performance Statistics

The cross-validation root-mean-square error (CVE) and cross-validated correla-
tion (CVR) were selected to compare the performance of the different statistical
model structures, comprising different predictors, covariates, and spatial corre-
lation assumptions, and were computed as follows. CVR2 is termed the predic-
tive squared correlation coefficient or leave-one-out cross-validated R2 and also
denoted as Q2.

For each site (n = 44) denoted as si, i = 1, · · · , n, performed a leave-one-
out, internal cross-validation (LOOCV) procedure that involved excluding the
data/mean values for a given site, si, out and predicting the value at si, on an
interative basis so that each of the sites have been excluded once. We denote
the predicted values as m̃(si), and compute cross-validation statistics (CVE and
CVR) according to,

CV E =

√√√√ n∑
i=1

(m(si)− m̃(si))2/n, CV R = corr{

m(s1)
...

m(sn)

 ,

m̃(s1)
...

m̃(sn)

}, (18)

where corr denotes correlation.
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4 Results

4.1 Predictor Selection and Validity of Model Predictions

We have presented a set of competing statistical models having different covari-
ates (i.e., the predictor variables). The simplest choice for a group of predictors
is to use all the available raw RS variables and (their interactions with each
other). However, as the size of our data set is small (i.e., containing 44 total
sampling points for three days) this choice may not necessarily be optimal due
to potential over-fitting. In general, variable interactions may be non-linear
and variable distributions, in different SAR soil moisture modeling applications
could be directionally biased and/or highly skewed, possibly requiring different
parameter and error distribution assumptions if tranformations applied do not
approximate a normal or Gaussian statistical distribution (see Vereeken et al.,
(2014) for a detailed review of statistical features and dynamics of soil moisture
patterns [23]). Figure 4 (top panels) show the frequency of the data points
when the Dubois Conditions are satisfied (denoted by 1) versus when they are
not satisfied (0), showing the Dubois validity conditions are not satisfied for a
large proportion of measured values in the case of Time 1, but for the other
Times 2 and 3, the conditions are satisified far more frequently. The bottom
panels in Figure 4 depict the boxplot summaries of values of εr obtained from
Dubois formulas: εr(hh), εr(vv), εr(hh,vv). We find that even for the data points
for which the Dubois Conditions hold, εhh and εvv are negative for many of the
data points. Contrary to this, for εr(hh,vv) all the values are positive, regardless
of whether the Dubois Conditions are satisfied or not.

The relationship between the estimated dielectric constants, εr(hh), εr(vv),
and εr(hh,vv), in comparison to estimated soil moisture is shown in Figure 5
(refer to top panels) for Time 1 (light grey), Time 2 (grey) and Time 3 (black).
For each time, the corresponding simple regression line (relating m and ε) is
provided in the corresponding color. The dotted line shows the vertical line
ε = 0. It is clear that at Time 1 and Time 3 there is clear association between
any of the estimated dielectric constants and the soil moisture. However at
Time 2, when soil moisture estimates are consistently smaller, the relationship
is weak and in the wrong direction (i.e., decreasing not increasing). Figure 5
further reveals that various associations of soil moisture with εr(hh), εr(vv) are
stronger than εr(hh,vv). In the bottom panels, we have repeated the analysis
with only the data points for which the Dubois Conditions are satisfied, and
still the relationship is decreasing (negative), with no significant change and
improvement to an increasing (positive) relationship.
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Figure 4: Box-plot summaries of the distribution of εr when the data satisfy the
Dubois Conditions (denoted by 1) or not (denoted by 0). In the bottom panels,
we observe that even when the Dubois conditions hold, a changing proportion
of data yield negative values of the dielectric constant.

16



Figure 5: The relationship between εr obtained from Dubois formulas and the
near-surface soil moisture (m(%)). The left and middle panels correspond to
the single polarization methods and the right panels correspond to the multi-
polarization method. Associated regression lines are indicated: Time 1 (light
grey); Time 2 (grey); Time 3 (black). The bottom panels correspond to the
points for which the Dubois Conditions are satisfied.

Despite the limitations of using data from only one monitoring site and
sampling data available only for three sampling days, a large change in the
proportion of sampling data that satisfies validity conditions is evident. This
highlights that caution must be taken when applying the Dubois or even other
empirical-based formulae with fixed interval validity conditions. Instead of using
or extending fixed validity assumptions and constraints imposed by empirical
models, our statistical modeling approach offers the key important advantage
that it is not constrained to any specific validity region, and avoids the need to
independently discriminate and verify at what locations and at what times such
conditions are met.

4.2 Performance of Different Statistical Model Structures

Model validation/performance measures (i.e., cross-validation root-mean-square-
error, CVE, and cross-validated correlation, CVR) for different statistical model
structures (i.e., families) are summarized in Table 4. Different model families
are separated, by a dashed line, according to the two groups we considered,
whereby 1) models that only include remotely-sensed covariates (remote only)
and 2) models that include both remotely-sensed and ground-based variables
(+ ground). For each model family all the models with all the possible combi-
nations of corresponding covariates are fitted and the best model is identified
as having the smallest mean squared cross-validation error. At both Times 1
and 3, models involving dvh2 are among the best models and adding ground
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covariates has turned out to be useful with CL appearing in the best models
at both times. At Time 2 there are no satisfactory models and the best models
only include the incidence angle θ (which clearly cannot have any prediction
power on its own).

Table 5 summarizes our results for the same covariate selection procedure,
but now applied to the data pooled together across all the three times. In this
case, we force the categorical time covariate (Time 1, 2 or 3) to be a covariate
in the model. This is because soil moisture varies across time and this prevents
artificially selecting covariates that are confounded with time such as θ (the in-
cidence angle differs dramatically by time). In this case, models including dvh2
are again among best models. However, adding the ground covariates did not
improve the prediction of the soil moisture. The leave-one-out cross-validation
(LOOCV) results are shown in comparison to observed data in Figure 8. For
each model and data point, we take the data point out, fit the model and then
predict the point which was taken out. In each panel, the LOOCV prediction
is plotted against the observed value. The cross-validation correlation includes
more than just the correlation between model predictions/fitted values and the
full set of observations in evaluating prediction power or model performance,
and a relatively high correlation indicates reasonable model performance in re-
lation to observed inter-site variability. The results indicate that the fit at Time
2 is far from satisfactory for multi-site prediction. The top right panel shows
that the predicted values at Time 2 fail to capture the increase of soil moisture
on the x-axis. Also, in the bottom right plot, we note that the clustering of data
along a line segment which sits below the rest of the data can be attributed to
the inclusion of data from Time 2. The standard deviations (SD’s) in observed
soil moisture across all sites for Time 1, 2 and 3 are 5.9, 3.3, 4.7, respectively.
Comparing these estimates with the best model CVE’s (i.e., 4.2, 3.2, 2.8, re-
spectively), indicates that a significant portion of the observed variation in soil
moisture is explained by the models at Times 1 and 3, but this is not the case
at Time 2.

Figure 6 shows scatterplots of the backscatter coefficients (σhh, σvv) and
the derived variables (dvh, dvh2) with in-situ soil moisture (%), along with
the regression line using the data from all three times. These results show a
positive association between soil moisture and the predictors. Computed cor-
relation (%) between each of these variables with both soil moisture (%) and
surface roughness (i.e., root-mean-square height, hRMS), for Times 1-3 and all
the Times pooled are summarized in Table 6. Uncertainty in the correlation
values are based on standard statistical bootstrapping method based on the
10th, 50th (median) and 90th quantiles and 1000 bootstrap samples. These re-
sults indicate that dvh and dvh2 both have a positive and significant association
(i.e., with respect to percent bootstrap confidence interval) with soil moisture
at Times 1 and 3 and all three Times pooled, while σvv and σhh have higher
uncertainty and their confidence intervals include zero. At Time 2 we do not
observe significantly positive correlation between soil moisture and any of the
predictors. When pooling our data across all three Times, the largest correlation
is obtained between soil moisture and dvh2. Scatterplots of the backscatter co-
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efficients (σhh,σvv) and the derived variables (dvh, dvh2) with hRMS are shown
in Figure 7, with correlation values summarized in Table 6. The variable hRMS

is positively correlated with the two predictors, σhh and σvv at Times 1 and 3,
with the 80% confidence interval indicating that such association is significant.
For the derived variable, dvh2, a non-significant correlation is evident at Times
1 and 3, while for both dvh, and dvh2 at Time 2 there is significant negative
correlation. A non-significant correlation of a variable with hRMS is desirable
for the form of models which use dvh2 as a predictor, but do not explicly in-
clude hRMS . According to this criterion, dvh2 is the most desirable predictor
for models that do not include hRMS as a variable at Times 1 and 3.
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Table 4: Model selection for soil moisture estimation on the ground at Time 1
(May 5th), Time 2 (May 16th) and Time 3 (May 23rd). CVE in the table stands
for the mean square cross-validation error and CVR stands for cross-validated
correlation. At each time point and model family, the best model(s), in terms of
CVE, is (are) denoted in bold. The best model(s) for each time point is denoted
by a star.

Model Family (Time 1) Best model CVE(%) CVR

(Remote only) Raw σvv, σhhθ 4.4 0.31
Interm. (dvh) dvh,θ 4.4 0.33
Interm. (dvh2) dvh2,dvh2θ 4.4 0.29
Dub. Single εhh, εvv 4.6 0.19
Dub. Multi εhh,vv 4.5 0.27

(+ ground) Only ground ST,CL 4.5 0.29
Raw + ground σvv , σhhθ, CL 4.3 0.38
Interm. (dvh) + ground dvh, ST,CL 4.3 0.40
Interm. (dvh2) + ground θ,dvh2,dvh2θ,CL 4.2? 0.43
Dub. Single + ground εhh, εvv , CL 4.4 0.34
Dub. Multi + ground εhh,vv , CL 4.3 0.39

Model Family (Time 2) Best model CVE CVR

(Remote only) Raw θ 3.2? -0.02
Interm. (dvh) θ 3.2? -0.02
Interm. (dvh2) θ 3.2? -0.02
Dub. Single εhh 3.3 -0.73
Dub. Multi εhh,vv 3.3 -0.49

(+ ground) Only ground None 3.3 -1.00
Raw + ground θ 3.2 -0.02
Interm. (dvh) + ground θ 3.2? -0.02
Interm. (dvh2) + ground θ 3.2? -0.02
Dub. Single + ground εhh, ST 3.3 -0.08
Dub. Multi + ground εhh,vv 3.3 -0.49

Model Family (Time 3) Best model CVE CVR

(Remote only) Raw θ 3.4 0.24
Interm. (dvh) dvh, θ 3.3 0.27
Interm. (dvh2) dvh2, θ 3.3 0.27
Dub. Single εhh, εvv 3.0 0.47
Dub. Multi εhh,vv 3.5 0.03

(+ ground) Only ground hRMS , ST 3.3 0.31
Raw + ground σvv, σvvθ, σhhθ,ST,CL 2.8? 0.58
Interm. (dvh) + ground θ, ST,CL 2.9 0.56
Interm. (dvh2) + ground dvh2,dvh2θ,ST,CL 2.8? 0.59
Dub. Single + ground εhh, εvv,ST 2.8? 0.56
Dub. Multi + ground εhh,vv , hRMS , ST 3.0 0.49
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Table 5: Model selection integrated data across all three observational days.

Model Family Best Model CVE(%) CVR

(Remote only) Raw σvv , σhh, σvvθ, σhhθ 3.8 0.64
Interm. (dvh) θ,dvh,dvhθ 3.7? 0.65
Interm. (dvh2) θ,dvh2,dvh2θ 3.7? 0.65
Dub. Single εvv 3.9 0.60
Dub. Multi εhh,vv 4.6 0.32

(+ ground) Only ground None 5.0 0.08
Raw + ground σvv, σhhθ,CL 3.7? 0.64
Interm. (dvh) + ground θ,dvh,dvhθ,CL 3.7? 0.65
Interm. (dvh2) + ground θ,dvh2,dvh2θ,hRMS,CL 3.7? 0.65
Dub. Single + ground εvv , hRMS , CL 3.9 0.61
Dub. Multi + ground εhh,vv , CL 4.6 0.35

Table 6: Correlation (%) between in-situ soil moisture (m) (%) and surface roughness
(hRMS) (cm) with the four leading model predictors (σvv, σhh, dvh, dvh2), respectively.
Uncertainty in these correlation estimates was estimated from standard statistical
bootstrapping based on 1000 bootstrap samples. The 10th, 50th (median) and 90th
quantiles are indicated, respectively, with the median values highlighted in bold.

(m, predictors) Time 1 Time 2 Time 3 Pooled (Times 1-3)
σvv -9, 16, 40 -39, -18, 4 2, 24, 42 37, 47, 56
σhh -19, -1, 21 -37, -18, 4 -6, 12, 32 30, 40, 49
dvh 30, 43, 55 -11, -3, 6 4, 13, 23 34, 40, 45
dvh2 26, 41, 52 -19, -13, 2 14, 24, 34 51, 55, 60

(hRMS , predictors) Time 1 Time 2 Time 3 Pooled (Times 1-3)
σvv 9, 34, 55 -24, -5, 16 1, 24, 46 -11, 1, 12
σhh 24, 47, 64 -13, 6, 26 1, 22, 41 -6, 6, 17
dvh -45, -30, -9 -56, -44, -30 -27, -5, 19 -24, -15, -5
dvh2 -26, -3, 31 -48, -33, -14 -21, 3, 25 -18, -8, 2
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Figure 6: Scatterplots of in-situ soil moisture (m) (%) versus horizontal and ver-
tical backscatter coefficients, σhh, σvv (dB) (upper panels) and derived variables
dvh, dvh2 (dB) (lower panels). Best-fit regression lines are indicated.
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Figure 7: Scatterplots of surface roughness (hRMS) (cm) versus horizontal and
vertical backscatter coefficients, σhh, σvv (dB) (upper panels) and derived vari-
ables dvh, dvh2 (dB) (lower panels). Best-fit regression lines are indicated.
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Figure 8: Cross-validation predictions of the best-performing statistical model
predictions of soil moisture (%) compared to in-situ observed soil moisture (%)
for Times 1,2, 3, and all times pooled. The y = x line is also shown, whereby
better fits have values that lie closer to this line.

4.3 Influence of Spatial Correlation

The spatial correlation of soil moisture can potentially help us improve the pre-
dictions of soil moisture across space and is considered in this context in [11],
[10] and [14]. We summarize statistical model predictions obtained from includ-
ing spatial correlation in the various statistical models developed here. The top
panels of Figure 9 depict the semivariogram (created by geoR package, [33]) for
the raw soil moisture data, while the bottom panels depict the semivariogram
for the residuals after fitting the best models at each time point. In the presence
of strong spatial correlation, semivariance increases with the separation distance
between the location of pairwise observation measurements. For both the raw
data and the remaining noise confirm this increasing trend, but the signal for
the spatial correlation is weak. A summary of results obtained from fitting the
spatial models to data, both with and without predictors is provided in Table
7. The corresponding non-spatial fits are also included for comparison pur-
poses. We considered isotropic spatial covariance functions of the exponential
and Matérn form as discussed in [34].
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Figure 9: Variograms of soil moisture (m) and residuals (resid.) for the best-
fitting models for times 1, 2, and 3.

Table 7: Model validation statistics, comparing the relative performance of the best-
fitting spatial versus non-spatial statistical models.

Time/Model CVE(%) CVR

Time 1 spatial, no cov. 4.9 -0.09
Time 1 spatial, with cov. 4.8 0.26
Time 1 best non-spatial 4.2 0.43
Time 2 spatial, no cov. 2.9 0.25
Time 2 spatial, with cov. 3.0 0.25
Time 2 best non-spatial 3.2 -0.02
Time 3 spatial, no cov. 3.8 -0.11
Time 3 spatial, with cov. 3.2 0.45
Time 3 best non-spatial 2.8 0.59

Given that we have a small sample size and the weakness of the spatial
influence detected in the current data-set, non-isotopic spatial functions were
not considered. This does not, however, rule out the possibility that the spa-
tial influence might be stronger given more data for the Casselman site, or for
data on other agricultural monitoring sites. So, spatial influences can be promi-
nent, even if weak in our current data set, and modeling needs to be flexible
in detecting this changing influence across different sampling sites. Only small
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deviations were detected between specifying an exponential versus a Matérn co-
variance function (results not shown here), and therefore we only include results
for the exponential covariance function that did reveal significant influences in
model prediction. Our numerical results also reveal that the spatial models only
improved the CVE in the case of Time 2, the same time when predictors also
did not show any prediction power in non-spatial models.

5 Discussion

Our findings demonstate how semi-empirical models and their assumptions may
not be satisfied in a in a large proportion of data, and furthermore, even when
the conditions are satisfied, the dielectric constant using single-polarization
method, often can lead to negative i.e. nonsensical soil moisture predictions.
Such negative values did not result when employing the multi-polarization method
however. Single-polarization values, even when negative, generated predicted
patterns of soil moisture having strong correlation with observations (Figure 5).
Statistical models do not suffer from these validity constraints and performance
statistics that they generate provide a more sound assessment of their reliabil-
ity to be applied to other regions and application contexts, than deterministic
models. Prediction error (root mean square error, RMSE) from previous work
that has applied the Dubois multi-polarization method is estimated at 6.2% [14].
With our statistical modeling approach, the best-performing model offers a sig-
nificant improvement (i.e., a significant reduction of prediction error) within the
range of 3-4%.

We evaluated and compared a selected set of statistical models that do not in-
clude any ground-based covariates that are typically measured (soil type, hRMS ,
CL). The first three rows of Table 3, correspond to three model families which
do not depend on ground variables. In particular models including dvh and
dvh2 are constructed so that the effect of hRMS (a ground variable) is included
through other variables and direct values for this observation are not needed.
We investigated whether the ground covariates can improve the predictions of
these models by adding ground variables to each family. The predictions were
improved for models in Time 1 and Time 3, but did not improve for Time 2.
Also the best models in terms of prediction for the data combined across the
three times included models with no ground predictors.

Data in this modeling study was available at three time points (Time1–
Time 3) during the early weeks of the crop growing season in 2008; May 5th
(Time 1), May 16th (Time 2) and May 23rd (Time 3). For Time 1 and Time
3, models involving dvh2 = 10 log10((σvv)1.27/σhh) (Dubois), were among the
best models; including ground covariates such as CL improved the prediction
accuracy. However for Time 2, the prediction was not satisfactory in any of
the non-spatial models. Two differences between Time 2 and Times 1,3 are the
smaller incidence angle and smaller soil moisture values and spatial variability.
Rainfall, evapotranspiration would be expected to induce larger differences, so
that we infer that the reason why spatial dependence was detected at Time 2
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was likely due to sufficiently dry conditions that made it more difficult to dis-
criminate soil moisture variability using SAR. As presented by Merzouki et al.,
(2011) in conjunction with processing and analysis of the same SAR acquisition
and Casselman ground-based data, a significant accumulation of precipitation
preceded the first acquisition, followed by relatively little precipitation between
this acquisition and the second acquisition of May 16th. In addition, warm day
time temperature aided in the drying of the top soil prior to May 16th [14]. A
relatively high error in the field measurement of correlation length (CL) was
likely the result of its sensitivity to profile length [35]. As outlined by Amine
et al., (2011), relatively short lengths (1 m) were used. A much longer profile
length (i.e., >10 m) might have reduced the high nugget variance, but contrast-
ing results are reported in the literature. Also, in obtaining the current data set,
shorter length was used, in part, due to practical considerations and constraints
of time, labour and cost [14].

Overfitting of statistical predictions can occur when a statistical model is
fit to training data but provides poor prediction using an independent data
set [36]. The solution to this problem is not to include all possible covariates
into the model and to detect as much variability and signal information in a
given data set. This requires variable and model selection statistical techniques.
Existing methods to handle and control overfitting can be organized into three
categories [36]: 1) iterative selection methods (such as step-wise regression),
2) regularization methods such as Least Absolute Shrinkage and Selection Op-
erator (Lasso), or, 3) statistical averaging methods (such as Bayesian model
averaging) [37]. In this paper, we utilized the first of these approaches, devising
a grouped, stepwise method that conducts an iterative search of the predictor
space corresponding to a group of selected leading predictors. This extends
regular stepwise methods to the mutivariate case [39, 40, 38].

A widely used measure in validating soil moisture estimation algorithms
in the literature is the Root Mean Squared Error (RMSE) [14, 7]. Despite
its popularity, this measure does not deal with over-fitting problems and can
lead to eronous conclusions. Instead, alternative validation measures have been
developed, namely: Akaike Information Criterion (AIC) [41], the Bayesian In-
formation Criterion (BIC) [42] and Deviance Information Criterion (DIC) [43].
These are termed likelihood-based measures and assess overfitting, but cross-
validated RMSE (CVE) and correlation (CVR) provide a measure of accuracy
of predictions of a model. CVR showed more deviation and was more responsive
than CVE. Possible multi-collinearity effects may need to be considered in our
modeling existing between sampling points that are sufficiently close together
in areas that show reduced soil moisture variability. Depending on the sites se-
lection and their spacing arrangement, spatial correlation may be informative,
because very close sites may have a stronger tendency to exhibit similar soil
moisture variability. In contrast, sampling a very large area more sparsely may
only capture some variations, but not all, within a full sampling extent. Higher
deviations in the performance of different models would be expected for other
sampling regions under different soil, climate, crop, and landscape variation.
A small deviation in CVE and CVR can lead to large spatial uncertainty and
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error when propagated spatially and temporally (i.e., interpolation and extrap-
olation). Nonetheless, to capture observed daily, weekly, monthly variability in
soil moisture more comprehensively, requires data across a larger time interval
and number of acquisition dates. This would enable temporal components of
soil moisture variability to be added to the statistical models and involved in the
multivariate regressions. Soil moisture variability at the our study site may, at
certain times, be very spatially homogeneous, such that a more heterogeneous
region (e.g., in terms of surface roughness, soil variation etc.) would be best for
training and validating a statistical modeling approach. Li and Rodell (2013)
has recently highlighted how soil moisture is often sampled over a short time
period and this results in the observed soil moisture often exhibiting smaller
dynamic ranges that prevents unravelling soil moisture spatial variability as a
function of mean soil moisture [44]. They also provide evidence of power-law
scaling in soil moisture variability driven by climate variables such as rainfall.
They log-transform soil moisture values, and this might further help to improve
the detection of soil moisture variability within our statistical modeling, espe-
cially at times when soil moisture variability is reduced. Our analysis identifies
that one of these differences may be the reason for the poor prediction power.

At Time 2 spatial correlation improved prediction accuracy (i.e., reduced
model prediction error), while at Time 1 and Time 3 with weak spatial cor-
relation, including spatial correlation did not improve prediction accuracy. At
Time 2 for which the covariates did not show any prediction power, while the
spatial model offered minor improvement and captured a greater portion of the
observed variability in soil moisture. As the CVR statistic is sensitive to the
sample size of our training set and its spatial distribution, higher predictive
power (i.e., higher CVR) could be achieved with training data that has a higher
variability in soil moisture than our training data set. The standard deviations
(SD’s) in observed soil moisture across all sites for Times 1, 2 and 3 are 5.9, 3.3,
4.7%, respectively. Such low spatial variability of soil moisture makes training
statistical models, assessing and interpreting their predictive performance more
challenging. Comparing such observed variability with the best-model CVE es-
timates (i.e., 4.2, 3.2, 2.8% for Times 1, 2 and 3, respectively), indicates that
the best models at Time 1 and 3 explain a portion of the observed spatial vari-
ability of the soil moisture, despite low observed variation in the training data
set. The poor predictive performance at Time 2 may be due, in part, to the very
low observed SD (i.e., 3.2%), as well as, the small incidence angle. Data across
all three times can be integrated to increase model predictive power. In gen-
eral, our results show that when integrating ground-based soil moisture data as
auxiliary data with SAR remote-sensing data for model prediction (i.e., not just
estimation) to achieve high predictive power from statistical models, requires a
sufficiently large set of training data and spatially heterogeneous regional vari-
ability.
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6 Conclusions

6.1 Selection of Predictor Set and Statistical Model Struc-
ture

We have demonstrated the application of a statistical-modeling approach for in-
tegrating RADARSAT-2 active polarimetry data with multi-site ground-based
data for agricultural monitoring regions. The novelty of this approach is that it
enables the integration of empirical knowledge, captured in alternative (and pos-
sibly competing) empirical, semi-empirical and theoretical soil moisture retrieval
models. It also provides a broader, integrated approach for statistically selecting
predictors and models and generating more robust predictions of regional-scale
soil moisture variability. The availability of more data will enable further vali-
dation testing of this statistical-based approach and improve the robustness of
its predictions. Current results provide useful insights regarding site selection,
the selection of alternative predictor variables, alternative models and spatial
correlation. While we have generated some useful insights based on the lim-
ited set of data currently available for the Casselman site, we intend to expand
the set of predictors and covariates and apply our method on a larger set of
remote-sensing and ground-based data. Higher error in correlation length from
the use of shorter profile length measurements is also a limitation of the data
used to train our model. Under and over-estimation (i.e., bias) of soil mois-
ture and the estimation and prediction of low/high extremes is similar to other
modeling studies, and there is a need to further refine our statistical model to re-
duce such bias. Several other AAFC sampling sites in Manitoba, Saskatchewan
and Alberta will, in the future, provide additional data across different soil,
crop, climate, and landscape conditions. We have, in this paper, discussed
how our statistical modeling approach differs in several important ways from
the assumptions and limited flexibility (i.e., regions of validity) that constrains
empirical models applied to single-polarization and multi-polarization imagery.
The multi-polarization method has the advantage that the surface roughness
parameter (hRMS) is not required to represent the functional relation between
the dielectric constant and the backscatter coefficients. This is particularly help-
ful because of the high measurement error and variability associated with the
dielectric constant.

A more complex semi-empirical model could improve upon the performance
of models validated in this study, particularly the models that utilized the
Dubois equations. However the simpler, Dubois model was selected as it has a
mathematical closed-form solution that enables eliminating the surface rough-
ness parameter (hRMS) so that a closed-form equation could be derived for the
reflectivity, and distinguishing two “model families” - one that includes hRMS

as a predictor and another that does not. Selecting the Dubois model also en-
abled highlighting numerical issues with using empirical-based equations having
validity constraints when coupling them within a generalized (i.e. broader and
integrated) statistical-based approach. A lower sensitivity and early satura-
tion of the IEM model to soil moisture under wet conditions (i.e., extreme soil
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moisture) indicates that there are significant challenges faced by both simpler
and more complex retrieval models in estimating and predicting soil moisture
under wet conditions and at the regional-scale of variability [46]. Our work
utilized predictors that depend on/are linked with the Dubois equations, but
also included predictors linked with a “Raw model” and “Sanoa model” branch
that do not dependent on the Dubois equations. Each of these model families
included many models that were compared with or without ground data and
spatial correlation.

We find that ground-based data are useful for improving soil moisture pre-
diction, but not in all situations. It is important to quantify carefully when they
are useful as repeated, especially because ground-based data are often difficult,
time-consuming and costly to obtain. A major limitation in training and vali-
dating statistical models is their high demand for data, but given sufficent data,
it provides a way to both interpolate within and extrapolate outside of sampled
areas guided by soil, climate and landscape covariates. To reiterate, the analysis
by timepoints separately, as well as all times combined, is essential for isolat-
ing limitations and understanding covariate responses and processes. Further
investigation will specifically be performed under conditions similar to Time
2, to better understand processes taking place under such conditions. Wireless
sensor network-based monitoring technology may provide an efficient way to ob-
tain internal (i.e., training) and external validation data, and semi-continuous
soil moisture sampling and automated data processing and to help increase the
predictive power of our statistical modeling approach at the regional-scale [47].

6.2 Future Work and Longer-Term Goals

Our statistical modeling research and associated findings involving satellite RS
data reported here is timely, as in the very near future, NASA’s Soil Mois-
ture Active Passive (SMAP) mission, set to launch in November 20141, will
advance soil moisture studies with its greater spatial and temporal resolution.
SMAP will have on-board a synthetic aperture radar (active) instrument op-
erating with multiple polarizations, not in C-band like RADARSAT-2, but in
the L-band range (1.20-1.41 GHz). Integrated active and passive sensors will
provide coincident measurements of the surface emission and backscatter, and
enabling sensing ground-based conditions to a soil depth of 5 cm and moder-
ate crop/vegetation cover to generate maps of soil moisture and its freeze-thaw
state. In this way, it combines microwave radiometer readings, which are ac-
curate but coarse, with measurements taken by its onboard radar, which are
less precise but have higher spatial resolution than the radiometer data. This
approach will provide a footprint of 9 kilometers, and it will produce worldwide
soil moisture maps every three days. The key benefits of SMAP will provide
almost 500 times the number of soil moisture measurements per day compared

1NASA’s Aquarius Returns Global Maps of Soil Moisture: www.nasa.gov/content/

goddard/nasas-aquarius-returns-global-maps-of-soilmoisture/index.html?utm_

content=bufferc80d1\&utm_medium=social\&utm_source=twitter.com&utm_campaign=

buffer#.U77qO_ldUV9
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to the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mis-
sion, or the coarser resolution of Aquarius (Launched June 10, 2011, aboard the
Argentinian spacecraft Aquarius/Satelite de Aplicaciones Cientificas (SAC)-D).
Statistical modeling and validation of such large amounts of soil moisture RS
data will require a statistical modeling approach that includes flexible predictor
and covariate predictor selection and flexible spatial correlation assumptions.
Such an methodology will also be needed to reliably integrate such multi-scale
(coarse and fine data) accounting for changing variance and correlation in soil
moisture at each scale. A statistical modeling approach, as we have outlined and
applied in this paper, may provide a more generalizable methodology for up-
scaling data across different regions, under different environmental conditions,
land management and application-based, operational contexts. Such a consis-
tent methodology can then be further tuned to be more consistent and enable
one to generate validated soil moisture predictions in an rapid, automated way.
In turn, model predictive output can then be made more reliable before being
used in regional-scale agricultural crop forecasts for agricultural stakeholders,
for example, or even by markets in adjusting their prices according to worldwide
production or after extreme events affecting crops, or similarly by international
relief agencies to plan early warning disaster response and food emergency re-
sponses.
Acknowledgements:

The authors would like to thank Dr. Heather McNairn and Dr. Amine Mer-
zouki from Agriculture and Agri-Food Canada (AAFC-Ottawa, Ontario) for
providing the processed RADARSAT-2 SAR and ground-based data from the
AAFC Casselman agricultural monitoring site for use in this modeling study.
We also thank them for their feedback in helping to initially frame and facili-
tate our modeling work. Funding was provided by the Growing Forward Pro-
gram of Agriculture and Agri-Food Canada (AAFC) and the National Science
and Engineering Council of Canada (NSERC)’s Visiting Fellows in Government
Laboratories Program. We thank Dr. A. Potgieter (University of Queensland,
Toowoomba) for feedback and help in improving our manuscript.

31



References

[1] Gao, G. Statistical modeling of SAR Images: A Survey Sensors, 2010,
10, 775-795.

[2] Ouchi, K. 2013. Recent trend and advance of synthetic aperture radar
with selected topics. Remote Sens., 2013, 5, 716-807.

[3] Romano, N. Soil moisture at local scale: Measurements and simulations.
J. Hydrol., 2014, 516, 6-20.

[4] Pratola, C.; Barrett, B.; Gruber, A.; Kiely, G.; Dwyer, E. Evaluation of
a global soil moisture product from finer spatial resolution SAR data and
ground measurements at Irish Sites. Remote Sens., 62014, 8, 190-821.

[5] Shi, J.; Wang, J.; Hsu, A. Y.; O’Neill, P. E.; Engman E. T. Estimation of
bare surface soil moisture and surface roughness parameter using L-band
SAR image data. IEEE Trans. Geosci. Remote Sens., 1997, 35(5),1254-
1266.

[6] Stein, A.; Bastiaanssen, W.G.M.; De Bruin, S.; Cracknell, A.P.; Curran,
P.J.; Fabbri, A.G.; Gorte B.G.H.; Van Groenigen, J.W.; Van Der Meer,
F.D.; Saldana, A. Integrating spatial statistics and remote sensing. Int. J.
Remote Sens., 1998, 19(9), 1793-1814.

[7] Lakhankar, T.; Ghedira, H.; Temimi, M.; Sengupta, M.; Khanbilvardi, R.;
Blake, R. Non-parametric methods for soil moisture retrieval from satellite
remote sensing data. Remote Sens., 2009, 1, 3-21.

[8] Geng, H.; Hugh, Q.; Gwyn, J.; Brisco, B.; Boisvert, J.; Brown, R. Map-
ping of soil moisture from C-Band radar images. Can. J. Remote Sens.,
1996, 22, 117-126.
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[31] Schüürmann, G.; Ebert, R.U.; Chen, J.; Wang, B.; Kühne, R. External
validation and prediction employing the predictive squared correlation
coefficient test set activity mean vs training set activity mean. J. Chem.
Inf. Model. 2008, 48(11), 2140-2150.

[32] Golbraikh, A.; Tropsha, A.; Beware of q2! J. Molec. Graph. and Model.,
2002, 20, 269-276.

[33] Ribeiro, P. J.; Diggle, P. J. geoR: Analysis of geostatistical data. R Statis-
tical Modeling Package, Version 1.7.4, 2013.

[34] Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging ;
Springer, New York, NY, USA, 1999.

[35] Verhoest, N.E.C.; Lievens, H.; Wagner, W.; Alvarez-Mozos, J.; Moran,
S.M.; Mattia, F. On the soil roughness parameterization problem in soil
moisture retrieval of bare surfaces from synthetic aperture radar. Sensors,
2008, 8, 4213-4248.

[36] Hastie, T.; Tibshirani, R; Friedman, J. The Elements of Statistical Learn-
ing; Springer: New York, NY, USA, 2009.

[37] Raftery, A.E.; Madigan, D.; Hoeting, J.A. Bayesian model averaging for
linear regression models. J. Amer. Stat. Assoc., 1997, 92(437), 179-191.

34



[38] Hosseini, A.; Fallahnezhad, M. S.; Zare-Mehrjardi, Y.; Hosseini, R. Sea-
sonal autoregressive models for estimating the probability of frost in Raf-
sanjan. J. of Nut. Relat. Sci., 2012, 3(2), 45-52.

[39] Hosseini, R.; Le, N.; Zidek, J. Selecting a binary Markov model for a
precipitation process. Environ. Ecol. Stat., 2011, 18(4), 795-820.

[40] Hosseini, R.; Le, N.; Zidek, J. Time-varying markov models for binary
temperature series in agrorisk management. J. of Agric. Biol. Ecol. Stat.,
2012, 17(2), 283-305.

[41] Akaike, H. A new look at the statistical model identification. IEEE Trans.
Autom. Contr., 1974, AC-19, 716–723.

[42] Schwartz, G. Estimating the dimension of a model. Ann. Stat., 1974, 6,
461-464.

[43] Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P; van der Linde, A; Bayesian
measures of model complexity and fit (with discussion), J. Roy. Stat. Soc.,
Ser. B, 2002, 64, 583-639.

[44] Li, B.; Rodell, M. Spatial variability and its scale dependency of observed
and modeled soil moisture over different climate regions. Hydrol. Earth.
Syst. Sci., 2013, 17, 1177-1188.

[45] van der Heijden, G. W. A. M.; Clevers, J. G. P. W.; Schut, A.G.T. Com-
bining close-range and remote sensing for local assessment of biophysical
characteristics of arable land. Int. J. Remote Sens., 2007, 28:24, 207,
5485-5502.

[46] He, B.; Xing, M.; Bai, X. A Synergistic Methodology for Soil Moisture
Estimation in an Alpine Prairie Using Radar and Optical Satellite Data.
Remote Sens., 2014, 6, 10966-10985.

[47] Phillips, A.J., Newlands, N.K., Liang, S.H., Ellert, B.H. Integrated sensing
of soil moisture at the field-scale: sampling, modeling and sharing for im-
proved agricultural decision-support. Comput. Electron. Agr., 2014, 107,
73-88.

35


