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Abstract 
The Earth system is facing increased pressures 

from the accelerating world population, rapid 

depletion of non-renewable, finite resources, and 

climate change variability. Many resource 

practitioners, scientists, economists and policy 

decision-makers argue that we must move beyond 

traditional correlation or associative-based methods 

to ones that are causality-based. Causality is a 

stronger condition imposed on whether variables can 

be considered to interact in time and space. Causal 

analysis aims to observe, model and frame policy 

decisions to explore greater complexity in the 

structure and functioning of coupled socio-economic 

and environmental systems. We showcase how such 

analysis identifies a causal interaction between sea-

surface pressure and temperature variability 

associated with El Niño/Southern Oscillation 

(ENSO). Greater predictability and opportunities 

exist to adapt resource-based systems in advance of 

extreme events and economic shocks. Building causal 

methods into system models that integrate economic, 

biophysical and climate variables can increase 

confidence in adaptation decision-making. 

 

1. Introduction  
 

The notion of cause and effect is fundamental to 

devising testable scientific hypotheses, guiding sound 

inference and developing prediction and foresight on 

the impact, response and adaptive behavior (i.e., 

resilience) inherent in complex socio-economic and 

biophysical systems. Causal analysis is concerned 

with identifying causes and effects of observed 

phenomena with the purpose of understanding, 

predicting and eventually intervening on society and 

on individuals. It involves the cognitive goal to relate 

to explanation as well as the action-oriented goal to 

relate to inference and decision-making [1]. 

Assumptions regarding open versus closed 

boundaries, degree of modularity and level of 

complexity in the relationship between interacting 

components can differ widely between casual and 

systems-level approaches. Nonetheless, they are 

highly congruent, compatible and amenable to 

advance econometric and environmental risk models, 

for guiding resource decision analytics, and to devise 

operational solutions of real-world economic, societal 

and environmental opportunities and problems 

involving water, food, energy and climate change 

aspects [2]. Causal and systems analyses both 

fundamentally embrace broader considerations and 

assumptions and explore a wider suite of known and 

unknown observed and/or latent interactions between 

variables. They also both increasingly involve 

probabilistic-based, statistical methods. Linear and 

nonlinear tests have been devised. Existing causal-

based methods include: vector autoregressive (VAR) 

models, parametric and nonparametric decision tree 

analysis, stochastic simulation, the state contingent 

approach and mathematical programming-

optimization techniques, statistical risk production 

functions, and Bayesian belief networks [3]. While 

there have been relatively few major innovations in 

these methods of decision analysis over recent 

decades, the availability of Big Data (e.g., sensor-

based, remote-sensing based, technological, socio-

economic data), computational power and more 

efficient statistical methods is driving rapid 

innovation in the integrated modeling of risk. 

Recently, a detailed review of the importance, need 

and consequence of causal inference in solving 

natural resource problems in a wide range of 

scientific domains suggests that a scientific paradigm 

shift is needed to move from traditional statistical-

based methods inferring correlation/association to 

those that specify a stronger cause-effect or causal 

relationship, so as to: 1) more reliably explain 

interacting processes using multivariate data, 2) to 

devise more integrative, system-level or multi-scale 

sustainability assessment frameworks, and, 3) for 

guiding multi-objective stakeholder decision making 

and more complex policy evaluation of agricultural 

or resource economics [1].  

We define causality in the statistical sense, such 

that a variable x(t) Granger-causes another variable 

y(t) (denoted x(t) → y(t)), if given information of 

both x(t) and y(t), the variable y(t) can be better 

predicted in the mean-square-error sense by using 

only past values of x(t) than by not doing so. The null 

hypothesis here is: x(t) does not Granger-cause y(t). 

In other words, having knowledge of past values of 

x(t) improves the ability of a model or index to 

predict y(t). A weaker condition is of instantaneous 

causality where not only past, but also present values 
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of x(t) improve prediction of y(t). Feedback can 

occur where x(t) causes y(t) and y(t) causes x(t) [5]. 

Granger causality statistical tests are sensitive to data 

availability, random variability, and especially 

whether the variables arise from a deterministic or 

stochastic process [6]. Uncertainty in causal 

relationships can amplify when data is sparse, 

random variability increases, and the mediating 

effects of hidden or latent variables that can drive 

causal relationships (in the bivariate and multivariate 

sense). Granger causality considers the extent to 

which the lag process in one variable explains the 

current values of another variable [7]. 

The mean growth rate of global crop production 

must reach roughly 2.4% per year, to meet the global 

demand for major agricultural food crops and is 

expected to increase by 110% by 2050 [8]. It is 

widely agreed that by reducing the impacts of climate 

variability, by adjusting crop selection, planting 

dates, sequences and rotations, alongside more 

efficient use and application of fertilizer, chemicals 

and water/irrigation will have a major contribution to 

increasing yields, especially in areas that have low 

yields today [9]. A recent systems analysis of 

agricultural production has combined climate, crop 

and economic models to explore the consequences of 

different global climate scenarios, climate and crop 

models and their assumptions [10]. Based on the 

Intergovernmental Panel on Climate Change 

(IPCC)’s representative concentration pathway with 

end-of-century radiative forcing of 8.5 W/m
2
, and 

with no incremental CO2
 
crop fertilization assumed, 

this study predicts a 17% reduction in global crop 

yields by 2050, relative to a baseline scenario with 

unchanging climate. Endogenous economic responses 

reduce yield to 11%, increase area of major crops by 

11% and reduce consumption by 3%, but these 

variables also have high variability. This major study 

identifies substantial disagreement on the relative 

responses of crops to climate variability and extreme 

events (‘shocks’) and highlights the need to improve 

the representation of agricultural adaptation 

responses to climate change [10]. To address this 

need, a causal analysis of the status (e.g., onset and 

decay timing, lead time and variance) of inter-annual 

climate variability tracked by atmospheric/climate 

teleconnection indices, such as the El Niño/Southern 

Oscillation (ENSO), integrated into seasonal crop 

forecasts, may increase the predictability of seasonal 

crop forecasts by improving their causal assumptions 

and representation, and enable such systems to be 

used with more confidence in framing and guiding  

adapting decisions to ensure agricultural crop 

production systems can better respond to both 

positive and negative anticipated impacts.  

El Niño (EN) is an episode of higher than normal 

sea-surface temperatures over the eastern tropical 

Pacific, and higher than normal pressure over 

Indonesia and northern Australia. This is also closely 

linked to a negative phase of a global atmospheric 

oscillation known as Southern Oscillation (SO), 

whereby weaker than normal near-surface equatorial 

easterly (east-to-west) winds. Hence, the close 

interaction and climate variability that links both EN 

and SO is known as ENSO variability. ENSO 

disrupts the ocean-atmosphere system in the Tropical 

Pacific and has important consequences for weather 

and climate around the globe. Warm episodes of 

ENSO generally increases and decreases precipitation 

across California and the Pacific Northwest, 

respectively. Further north, it leads to a milder than 

normal winter across western Canada, but in the 

eastern United States favors more coastal storms, and 

more hurricanes in the eastern Pacific 

(www.elnino.noaa.gov/).  

Variability in the timing, intensity evolution and 

spatial impacts of ENSO activity exists, and 

alternative causal assumptions can have a large 

influence on the reliability of forecasts based on 

standardized teleconnection indices. This, in turn, can 

change our confidence in climate forecasts and early 

warning systems. A palaeoclimate study of ENSO 

variability through the Holocene epoch indicates 

ENSO oscillates over a period of 2-8 years, with 

warm ENSO episodes becoming less frequent [11]. 

This study involved a wavelet statistical analysis of 

sedimentation core data recording fluctuations in 

alluvial deposits within the Laguna Pallcacocha 

drainage basin, an area strongly influenced by ENSO 

variability within southern Ecuador. However, 

considerable model and measurement-based 

uncertainties suggest significant variance exists, such 

that a decadal trend in warm episodes may exist over 

a slower time range of 4-15 years, with faster 

oscillations occurring every 9-12 months.  

The Oceanic Nino Index (ONI) also known as the 

monthly Niño3.4 OISST index is the current 

international standard for identifying El Niño (warm) 

and La Niña (cool) events in the tropical Pacific.  It 

is the running 3-month mean SST anomaly for the 

Niño 3.4 region (i.e., 5
o
N-5

o
S, 120

o
-170

o
W).  Events 

are defined as five consecutive overlapping three-

month periods at or above the +0.5
o
 C anomaly for 

warm (El Niño) events and at or below the -0.5
 o

 C 

anomaly for cold (La Niña) events.  This event 

threshold is further broken down into weak (0.5 to 

0.9), moderate (1.0 to 1.4) and strong (≥ 1.5) ONI 

events.  The years 2009-10 marked a moderate warm, 

and 2010-12, a strong cool episode. The current 

status and prediction of ENSO activity indicates 
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neutral conditions are persisting, but that sea surface 

temperatures (SST) are above-average across the 

equatorial Pacific Ocean, tropical rainfall is enhanced 

over Indonesia and the western tropical Pacific, and 

the net chance of El Niño is 70% during the Northern 

Hemisphere summer, predicted to rise to 80% during 

the fall and winter (US Climate Prediction Centre or 

CPC June 2014 Report, www.cpc.ncep.noaa.gov/).  

Causality analysis was recently applied to 

investigate the interaction between globally-averaged 

land surface temperature observations (GT) and total 

radiative forcing (RC) as a proxy for observed 

atmospheric carbon dioxide [12]. This study revealed 

that RC granger causes GT, with jump in correlation 

significance in the early 1970’s, and that more than 

one variable may granger cause GT, besides RC, 

such as ENSO. The data did not meet the stationarity 

and no heteroscedasticity assumptions for applying a 

Granger F-test. Also, a significant Granger-causal 

influence of SST on the North Atlantic Oscillation 

(NAO) teleconnection signal at lags longer than ten 

days with slower-than-exponential decay was 

detected in another recent climate causal analysis 

[13]. This suggests higher predictability of ENSO 

activity and confidence in decision analytics 

involving ENSO could be achieved by applying 

causal modeling instantaneous and lead-lag 

interaction of multiple climate teleconnections [14].  

In this paper, we present a causal analysis of sea-

level pressure and temperature variables and 

agricultural crop forecasting and adaption decision 

making.  We demonstrate the application of causal 

analysis in linking sea-surface pressure and 

temperature variability associated with El Nino 

Southern Oscillation (ENSO). We show how 

variability between these two variables is linked at 

extended time-lags, and thus infer that greater 

predictability and opportunities exist for adapting 

agricultural and resource-based systems in advance 

of extreme events and shocks, strengthened by ENSO 

activity. Building causal analysis into agricultural and 

forestry-sector system models, which integrate 

economic, biophysical and climate variables, may 

thus increase their predictive power and usefulness as 

tools for guiding adaption decisions with added 

confidence.  We highlight current challenges and 

major benefits in applying causal analysis to address 

complex environmental problems in the agricultural 

and resource sector. 

 

 

 

 

 

2. Materials and Methods 

 
2.1. Data sources 
 

Historical (1950-2013) (i.e., 63 years) monthly 

standardized Niño 3 sea-surface temperature (SST) 

(Niño3 SST) for the eastern Pacific (CPC) and 

standardized sea-surface pressure (SLP) for south-

eastern Australia (Australian Bureau of Meteorology) 

were assimilated. The monthly mean (Mean.Niño3), 

anomoly (Std.Niño3), difference (i.e., monthly 

change in SST, diffNiño) and three-month running 

mean (Std.N22mo) were each separately considered 

as the dependent variable, y(t). For the independent 

or explanatory variable, x(t), the anomoly in pressure 

(Std.SEAP), and its three-month (threemoSEAP) and 

five-month (fivemoSEAP) running mean values were 

computed. 

 

2.2. Causal model 

 
A general equation for a spatio-temporal (ST) 

process, X(s,t), where s denotes space and t, time, can 

be expressed as,  
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This representation is termed a vector autoregressive 

model (VAR) and factors observed ST variability 

into three main effects – one attributed to 

autoregressive (AR(p)) or autocorrelation over 

months, another involving a shifting baseline or 

moving average (MA(q)) variability, and residual 

stochastic variability (i.e., εt term). This general 

equation is termed an ARMA(p,q) type VAR model. 

We re-express the general representation, given 

by Equation 1, by setting k=p=q (i.e., that assumes 

equal autocorrelation and moving-average lags), as a 

bivariate VAR(k) model that couples SST with SLP, 

given by, 
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    (2) 

Here the signal term, S(t) denotes either SST or an 

SST-derived variable at time (i.e., month) t, P(t) is 

the SLP or SLP-derived variable for month t, and the 

lag order of the model is k, where k ≥ 1. The noise or 

residual terms, εt and ηt are assumed to be distributed 

with mean zero and stationary covariance. Lag order 
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k is the delay between events in time that have a 

dependency, while lead-time is the overlap between 

events that have a dependency. Lead-lag effects in 

coupled ST processes can occur, which combine both 

lag and lead effects. In the current model, both S(t) 

and P(t) are assumed to have the same lag order k, 

i.e. VAR model with symmetric lag length. However, 

one could also specify an asymmetric lag order [15]. 

Lead-lag relationships in resource pricing and 

commodity economic markets refer to the tendency 

of prices to be determined in one market, and after 

some interval of time, such information then passed 

on during a lag period to a corresponding market. 

When space, in addition to time, is also involved, 

lead-lag relationships can be mediated by a complex 

array of feedbacks, and interaction of signal 

variability coupled to noise or stochastic fluctuations 

involving multiple interacting processes operating 

within a system.  

 

2.3 Model application, significant testing 

 
We tested the assumption of stationarity of order 

two (i.e., a process having a constant mean and 

variance), including auto-covariance that does not 

depend on time) on all combinations of the selected 

x(t) and y(t) variables. The Augmented Dickey-Fuller 

(ADF) test for stationarity applying the adf.test() 

function available in the tseries R library package 

[16, 17]. The VARS modelling package (Version 1.5-

2) that computes test statistics for Granger- and 

instantaneous causality for a VAR(k) bivariate model 

was then used to implement our model (i.e., Equation 

2) using the R Statistical Language, Version 3.1.0 

[18,19]. Standard F test statistics for linear, Granger 

and instantaneous causality were computed for the 

simplest possible VAR model having lag order k=1. 

For this significance test, the higher the F statistic 

and lower the p-value, the stronger the Granger-

causality. Next, we tested Granger causality for 

higher-order or extended-lag VAR models. An ADF 

test for stationarity was applied to each of the 

individual (i.e., univariate) time-series with different 

lag order k. The best-fit VAR model and its lag was 

then determined as the model having the strongest 

stationarity (most negative value of the ADF test 

statistic). Sample size was 765, so critical value of 

the Dickey-Fuller t-distribution of 3.98 (1%, with 

trend) and -3.44 (1%, without trend) were specified. 

The VAR.select() procedure, available in the VARS 

R Package, was run to determine the best-fitting 

bivariate VAR model that minimized AIC (Akaike's 

Information Criterion). Bootstrap simulations 

(n=100) were performed in determining the p values.  

 

3. Results and Discussion  
 

Standard F test statistics for linear, Granger and 

instantaneous causality were first computed for the 

simplest possible VAR model having lag order k=1 

(Tables 1 and 2). In the causality significance testing, 

the higher the F statistic and lower the p-value, the 

stronger the Granger-causality. Causality was 

detected at the 95% confidence level between the 

three-monthly averaged SEAP and monthly-

difference in SST, and the five-month averaged 

SEAP and monthly-difference in SST, respectively 

(i.e., two causal linkages) (Table 1). In the case of the 

instantaneous causality that incorporates present 

values of the variables (Table 2), seven significant 

causal linkages were detected, with the highest 

significance (at 99% confidence level) between three-

and five-monthly averaged SEAP indices and the 

monthly difference in SST, and five-monthly 

averaged SEAP and the monthly mean and difference 

of SST.  

Results of the ADF test for stationarity on the 

individual (i.e., univariate) time-series with different 

lag order k are summarized in Table 3. All the 

univariate SST and SLP derived-variable time-series 

were deemed stationary, because the value of the chi-

square test-statistic was more negative than the 

tabulated critical values. Also, associated p values 

were less than 0.01, whereby the null hypothesis of a 

so-called ‘unit root’ (that indicates non-stationarity) 

is rejected at the 95% confidence level. Results for 

Granger causality of higher-order or extended-lag 

VAR models between SST and SLP were obtained. 

The best-fit VAR model and its lag were determined 

as corresponding to the VAR model having the 

strongest stationarity (most negative value of the 

ADF test statistic). For the SST variables, lag ranged 

from 1-6 (or 2-12 months maximum possible lead-

time), and for SLP variables, lag ranged from 1-4 (or 

1-20 months). Given such extended lags in each of 

the individual time-series, further causality testing for 

bivariate combinations of SST and SLP variables 

was conducted at extended or higher-order lags. 

A total of nine causality links between SST and 

SLP variables were found (Table 4). Significant 

causality was found between sdtSEAP and sdtNiño, 

diffNiño at the 99% confidence level, and between 

sdtSEAP and threemoNiño at the 95% confidence 

level, corresponding to a lag range between 6-17 (or 

maximum possible lead time of 6-22 months). Three 

month-averaged SEAP was found to significantly 

Granger cause sdtNiño, diffNiño and threemoNiño at 

extended lags ranging between orders of 16-20, or 

maximum possible lead times of 20-25 months. 

Similarly, five-month averaged SEAP Granger 
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caused the same three SST variables between orders 

of 17-20, or maximum possible lead-times of 23-27 

months. 

 

4. Conclusions 

 
Our analysis results indicate that there is 

significant Granger causality extending up to 

maximum possible lead times of 7-22 months 

between SST and SLP. The findings reported here 

from a causal analysis of ENSO variability have been 

further incorporated into a new operational prediction 

index of ENSO activity that embeds extended lead-

time of 15-18 months, called the El Niño Prediction 

Index (EPI). This index is measured 12-15 months 

before El Niño peaks, and occurs within this 

maximum lead time range of 7-22 months within 

which significant Granger causality between SST and 

SLP persists. This EPI index is also based on new 

evidence that strong El Niños are preceded by a 

standing wave in planetary Rossby waves within the 

Southern Hemisphere that are coupled to the 

Southern Oscillation [20].   

Further testing of the reliability of the Granger 

causality test results here could be undertaken as part 

of future work by employing a de-noising algorithm 

that has been developed to mitigate measurement 

noise contamination in Granger causality testing, 

called the KEM (Kalman smoother combined with 

use of the Expectation-Maximization (EM) 

algorithm)[21]. The EM algorithm is used in 

conjunction with a Kalman smoother, because a 

Kalman filter cannot be directly applied to de-noise 

experimental or observed data since it assumes 

knowledge of the model describing the state-space 

dynamics - and such knowledge is typically not 

known or available. A multivariate Granger causality 

test, such as the one developed by Bai et al., (2011), 

could be used to further explore and test the causal 

linkage detected between SST and SLP [7]. This 

would require identifying latent or intermediate 

variables that may influence causality between SST 

and SLP along with additional observational time-

series data. Given that the accuracy of VAR models 

and their use in causality and forecasting can vary 

substantially for alternative lag lengths and 

depending on whether symmetric or asymmetric lag 

lengths are assumed [22], further testing could also 

be undertaken for asymmetric VAR models. 
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Table 1. Granger causality results for VAR(k) 
model of lag order 1.  

 

Causal variable 

 

Granger causality (F, p values) 

 

 

 

sdtSEAP 

does not Granger-cause MeanNiño 

(0.3105, 0.5775) 

does not Granger-cause sdtNiño 

(3.4672, 0.06279) 

does not Granger-cause diffNiño 

(3.7701,0.05236) 

does not Granger-cause threemoNiño 

(0.1411,0.7073) 

 

 

 

threemoSEAP 

does not Granger-cause MeanNiño 

(0.3642,0.5463) 

does not Granger-cause sdtNiño 

(3.4672, 0.06279) 

does Granger-cause diffNiño 

(7.8298,0.005204)** 

does not Granger-cause threemoNiño 

(0.1104, 0.7397) 

 

 

fivemoSEAP 

does not Granger-cause MeanNiño 

(0.5104, 0.4751) 

does not Granger-cause sdtNiño 

(3.4672, 0.06279) 

does Granger-cause diffNiño 

(10.1226,0.001494)** 

does not Granger-cause threemoNiño 

(0.3152,0.5746) 

**Significant at 99% confidence (0.01) level (p < 0.01) 

*Significant at 95% confidence (0.05) level (p < 0.05) 
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Table 2. Instantaneous causality results for 
VAR(k) model of lag order k=1 between SST 

and SLP derived variables. 

 

Causal variable 

 

Instantaneous causality  

(χ
2
, p values) 

 

 

 

sdtSEAP 

no instantaneous causality with 

MeanNiño (0.969, 0.3249) 

no instantaneous causality with 

sdtNiño (2.3009, 0.1293) 

no instantaneous causality with 

diffNiño (0.6604,0.4164) 

with instantaneous causality with 

threemoNiño (6.3673,0.01162)* 

 

 

 

threemoSEAP 

with instantaneous causality with 

MeanNiño (5.7757,0.01625)* 

no instantaneous causality with 

sdtNiño (2.3009, 0.1293) 

with instantaneous causality with 

diffNiño (6.3782,0.01155)* 

with instantaneous causality with 

threemoNiño (15.9412,6.534e-05)** 

 

 

fivemoSEAP 

with instantaneous causality with 

MeanNiño (8.24,0.004098)** 

no instantaneous causality with 

sdtNiño (2.3009, 0.1293) 

with instantaneous causality with 

diffNiño (11.777,0.0005997)** 

with instantaneous causality with 

threemoNiño (35.4376,2.634e-09)** 

**Significant at 99% confidence (0.01) level (P < 0.01) 

*Significant at 95% confidence (0.05) level (P < 0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Results of the Augmented Dickey-
Fuller unit-root (ADF) test with null 

hypothesis - non-stationarity and alternative 
hypothesis - stationarity. 

Causal 

variable 

Value of 

the ADF 

test-statistic 

Best-fit lag 

order k 

Best-fit 

lead-time 

(months) 

 

MeanSST 

 

-15.7365 

 

2 

 

2 

 

sdtNiño 

 

-8.2934 

 

6 

 

6 

 

diffNiño 

 

-17.95 

 

1 

 

2 

 

threemoNiño 

 

-9.6574 

 

4 

 

12 

 

sdtSEAP 

 

-15.8297 

 

1 

 

1 

 

threemoSEAP 

 

-12.7321 

 

2 

 

6 

 

fivemoSEAP 

 

-10.5346 

 

4 

 

20 
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Table 4. Granger causality results for a 
VAR(k) model with extended lag order k. The 
lag order was determined based on the best-

fitting bivariate model that minimized AIC 
(Akaike's Information Criterion). Lead-time is 
the maximum possible lag length over which 

significant causality persists (months). 
Causal 

variable  

Granger causality  

(F, p value)  

Lag- 

order  

Lead-

time 

(months) 

 

 

 

 

 

 

 

sdtSEAP 

 

does not Granger-

cause MeanNiño 

(1.4446,0.107) 

 

does Granger-cause 

sdtNiño (3.3416, 

0.001543)** 

 

does Granger-cause 

diffNiño 

(6.3789,1.207e-06)** 

 

does Granger-cause 

threemoNiño 

(1.7787,0.02579)* 

 

17 

 

 

 

7 

 

 

 

6 

 

 

 

17 

 

 

17 

 

 

 

7 

 

 

 

6 

 

 

 

22 

 

 

 

 

 

 

 

 

 

threemoSEAP 

 

 

 

 

 

 

 

does not Granger-

cause MeanNiño 

(1.5267,0.06782) 

 

does Granger-cause 

sdtNiño 

(2.8246,0.0001537)** 

 

does Granger-cause 

diffNiño 

(3.5516,2.437e-06)** 

 

does Granger-cause 

threemoNiño 

(2.1138,0.002835)** 

 

19 

 

 

 

16 

 

 

 

  16 

 

 

 

20 

 

24 

 

 

 

20 

 

 

 

22 

 

 

 

25 

 

 

 

 

 

 

 

fivemoSEAP 

 

 

 

 

 

 

 

 

 

does not Granger-

cause MeanNiño 

(1.6036,0.05598) 

 

does Granger-cause 

sdtNiño 

(2.9179,3.928e-05)** 

 

does Granger-cause 

diffNiño 

(3.2965,6.24e-06)** 

 

does Granger-cause 

threemoNiño 

(2.5235,0.0002289)** 

 

17 

 

 

 

18 

 

 

 

17 

 

 

 

20 

 

22 

 

 

 

23 

 

 

 

24 

 

 

 

27 

**Significant at 99% confidence (0.01) level (p < 0.01) 

*Significant at 95% confidence (0.05) level (p < 0.05) 


