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Abstract

Setting structural engineering design values for lumber often in-
volves a question of whether a sample is better utilized by testing one
strength property with greater accuracy and precision, or splitting
into two or more smaller samples to test multiple strength properties.
This question can be solved by determining the relationship between
strength properties. If their relationship is available, then not all the
strength properties need to be tested as long as they are strongly re-
lated. In the summer of 2011, we conducted a proof load experiment
in an industrial lab, to determine the dependence between lumber
strength properties and their relationships. This paper first describes
that experiment, and then presents an exploratory analysis of the
data collected from the experiment. Major characteristics of lumber
strength properties are learned through visualization, summary statis-
tics and likelihood criterion.
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1 Introduction

Setting structural engineering design values for forest products often involves
a question of whether a quality monitoring sample is better utilized by test-
ing one strength property with greater accuracy and precision, or splitting
into two or more smaller samples to test multiple strength properties. A
strong dependence between strength properties has important implications
for the answer to this question. For it suggests that if there is a need to
verify the strength properties, not all the strength properties need to be
tested. The more expensive to measure strength property could be predicted
from the other if the relationship between the strength properties is deter-
mined. This particularly means that the relationship between the strength
properties could be exploited to reduce overall sampling costs in lumber long
term monitoring programs. However, most strength properties are obtained
by destructive tests. We are not able to observe the destructive strength
properties on the same specimen.

In the summer of 2011, wood scientists at FPInnovations Lab in Van-
couver, Canada and statisticians at the University of British Columbia con-
ducted an experiment to “break a piece of lumber twice” (hereafter called
the Summer – of – 2011 experiment). This Summer – of – 2011 experiment
was designed to determine the relationship between ultimate tensile strength
(UTS) and modulus of rupture (MOR). Both strength can only be mea-
sured by testing a lumber specimen to failure (destructive testing). Since
the Summer – of – 2011 experiment used a technique called proof loading,
it also allows us to quantify the damage accumulated in the strength caused
by proof loading in the UTS or MOR mode. This paper is structured as
follows. Section 2 introduces the Summer – of – 2011 experiment in great
details. Section 3 explores the characteristics of the data collected from the
Summer – of – 2011 experiment through visualization, summary statistics
and likelihood criterion. The exploratory data analysis suggests distribu-
tion candidates for our next step: model the relationship between MOR and
UTS. In Section 4, we summarize the design implemented in the Summer
– of – 2011 experiment and the characteristics of lumber strength properties
learnt from data.
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2 The experiment

The Summer – of – 2011 experiment was based on the symmetric proof
load design proposed by Amorim and Johnson [1]. The goal is to estimate
the relationship between two destructive strength properties, ultimate tensile
strength (UTS) and modulus of rupture (MOR). The MOR is the maximum
bending stress that a specimen can sustain before failure, expressed in psi.
The UTS is the maximum tensile stress in pounds per square inch (psi) that
a specimen can sustain in a direction parallel to the grain (a texture produced
by wood fibres; visible to eyes) before failure. The UTS and the MOR are
the most important strength properties that represent lumber’s mechanical
properties.

The symmetric proof load design [1] used a technique called proof loading.
Proof loading refers to a process where specimens are subjected to only a
modest load that breaks only the weakest pieces in a population. We used
a scheme that tests a specimen up to a pre - set load and passes those that
do not break at this load. In the symmetric proof load design, specimens
are assigned into one of the two groups. One group is proof loaded in the
MOR mode to a pre - determined proof load level, and the survivors are
tested to failure in the UTS mode. The other group is done in a similar
way, but this time proof loading is in the MOR mode. Our Summer – of
– 2011 experiment conducted the symmetric proof load design experiment
under three different proof load levels. The proof load levels are well spread
out, which enables us to study the proof load effects on the strength of the
proof load survivors. In additional to those proof loaded groups, the Summer
– of – 2011 experiment also includes two shoulder groups where specimens
are tested to failure in either the MOR or the UTS mode without any proof
loading. The data collected from the shoulder groups allow us to determine
the proof load levels for the proof loaded groups by estimating quantiles of
the UTS distribution and the MOR distribution.

In this section, we introduce the Summer – of – 2011 experiment step by
step, but do not provide the details of the analytic inputs required to conduct
the Summer–of–2011 experiment. We refer the reader to Appendices A.1 and
A.2 for the details.

The experimental materials came in three bundles of lumber: two bundles
labelled #1 and #2 were of grade – type SPF 1650f-1.5E, while one labelled
#3 was of type SPF No.2. Each 2 × 4 inch specimen was 12 feet long.
SPF standards for Spruce, Pine and Fir species. The SPF 1650f-1.5E’s had
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a design value of 1650 psi for the fibre stress in bending and an expected
average MOE of 1.5 million psi. The SPF No.2s were No.2 grade lumber
that came from a mixture of Spruce, Pine, and Fir species. Both grades were
produced together from the same mill. The information about the mill is
confidential. We selected SPF because it is Canada’s highest volume species
group. Compared with the two bundles of 1650f-1.5E, the SPF No.2 bundle
came from a population with generally weaker lumber strength properties.
The inclusion of the SPF No.2 bundle added variation to the lumber strength
properties, making the combined sample resemble to some small extent, a
sample from the global population of all lumber of that grade.

Work began with a professional grader who examined each specimen vi-
sually and coded each specimen’s maximum strength – reducing characteris-
tic (MSRC). The MSRC is a professional lumber grader’s best guess of the
wood characteristics that will cause failure, and it is determined by visual
inspection of the specimen. Examples of wood characteristics are “knots”,
“grain” and “shake”. After the visual inspection, the investigators measured
each specimen’s vibration modulus of elasticity (MOE) in accordance with
ASTM D6874 [3]. The MOE, quantifying lumber’s stiffness, is measured by
a non–destructive transverse vibration testing. Lumber specimens are simply
supported by the machine’s two end points. One of those end points has a
load cell transducer installed. The test starts with a gentle force pressing
lumber specimens and releasing it immediately. As a result of the force, the
lumber specimen vibrates. The load cell reads the specimen’s weight and
frequency of oscillation into a personal computer that uses the reading to
calculate the vibration MOE. However, the vibration MOE is affected by
the lumber specimen’s moisture content. As a biological material, the sur-
rounding moisture atmosphere affects the lumber specimen: it picks up some
moisture in a humid environment and gives up some moisture to a dry envi-
ronment. When lumber specimens are not well conditioned against moisture
content, it is standard practice to adjust the vibration MOE for its moisture
content. We used a moisture meter to estimate each lumber specimen’s MC.
Given each lumber specimen’s vibration MOE and estimated MC, we cal-
culated its adjusted vibration MOE following a standard procedure, ASTM
D1990 (Appendix A.1).

Eight hundred and seventy specimens from the three bundles were di-
vided into eight experimental groups based on the adjusted vibration MOEs:
R20/40/60/100 and T20/40/60/100. The sorting was done bundle-by-bundle.
For each bundle, the adjusted vibration MOEs were ranked from the largest
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to the smallest, and the rank went from 1 to 290. The specimen with the
ith rank was identified and labelled by ID(i) for i = 1, 2, · · · , 290. The spec-
imens were then arranged by their ranks, ID(1), ID(2), · · · , ID(290). The
specimens from ID(1) to ID(10) were assigned one by one to T100, T100,
T60, T40, T20, R20, R40, R60, R100 and R100 respectively. We repeated
this procedure for the next 10 specimens, and so on until all 290 specimens
were assigned. Thus, we created 29 blocks and 10 units within each block for
each bundle (Table 1). Since the adjusted vibration MOE was highly cor-
related with lumber strength properties such as MOR and UTS, the groups
T100, T60, T40, T20, R100, R60, R40, and R20 could be assumed to be
homogenous in terms of the strength properties.

Table 1: The table shows schematically how the experimental groups used in
the Summer – of – 2011 experiment were formed. Here, ID(i) is the identity
of the lumber specimen with the ith rank in a given bundle.

Piece identifier Rank Group
ID(1) 1 T100
ID(2) 2 T100
ID(3) 3 T60
ID(4) 4 T40
ID(5) 5 T20
ID(6) 6 R20
ID(7) 7 R40
ID(8) 8 R60
ID(9) 9 R100
ID(10) 10 R100
ID(11) 11 R100
ID(12) 12 R100
ID(13) 13 R60

...
...

...

Groups R60/40/20 and T60/40/20 were called the proof loaded groups
(or single proof load design groups), where specimens were tested under dif-
ferent proof load levels in the MOR mode and in the UTS mode, respectively
(details later). Each proof loaded group had 87 specimens. The experiment
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had been designed to fail 60%, 40%, 20% of the specimens due to proof load-
ing them in the MOR mode for the R60, R40, and R20 groups, respectively.
As with the MOR, we expected 60%, 40%, 20% of the specimens would fail
due to proof loading in the UTS mode for the T60, T40, and T20 groups,
respectively. Groups R100 and T100 were called the “shoulder groups”, and
each had 174 specimens. We called them shoulder groups because neither of
the groups was proof loaded and instead the specimens in R100/T100 were
loaded in a bending/tension machine respectively, and tested to failure.

The strength tests started with Groups T100 and R100. The MOR
and UTS tests were conducted in accordance with American Standard Test
Method (ASTM) D4761 [2] using specimens in R100 and T100, respectively.
To measure a lumber specimen’s MOR, we load the specimen on a bend-
ing machine. The bending machine has two outermost support points that
are 73.5 inches apart (the “test span”). The specimen is positioned between
the two outermost support points so that its MSRC is randomly located
within the test span. Once the bending test starts, two loading points that
are equally spread out within the test span move upward at 2.8 inches per
minute, and thus push the specimen upward with equal forces until the spec-
imen fails (Figure 1). To measure a lumber specimen’s UTS, the specimen
is loaded in a tension machine. The last two feet on both ends of the lumber
specimen are then grabbed and pulled by the loading points of the tension
machine in opposite directions parallel to the grain (Figure 2). The two
loading points of the tension machine move at 0.5 inch per minute until the
specimen fails.

The resulted data provided estimated quantiles of the UTS distribution
and the MOR distribution, which allowed us to determine the proof load
levels for the proof loaded groups R60/40/20 and T60/40/20 (Appendix A.2).
Our goal was not to estimate the proof load levels precisely, but rather to
obtain well separated proof load levels in order to investigate the proof load
effects. Table 2 summarizes the estimated proof load levels in pounds, the
estimated and the observed number of failed specimens due to proof loading,
and the observed percentage of failed specimens due to proof loading for
each experimental group R60/40/20 and T60/40/20. The proof load levels
are spread well to give us the contrasts needed to study the proof load effects.

The specimens in R60/40/20 were proof loaded in the MOR mode. To
proof load them, they were loaded on the bending machine, and the bend-
ing machine’s loading points moved at 2.8 inches per minute until the load
reached 1770/1525/1237 pounds, respectively. If a specimen in R60/40/20
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Figure 1: The bending machine conducts the destructive test for measur-
ing MOR. The specimen is positioned between the two outermost support
points. The two load points are spread equally within the test span to push
the specimen upward with equal forces until failure.

Figure 2: The tension machine conducts the destructive test for measuring
UTS. Once the machine is loaded with a specimen, it pulls the specimen in
opposite directions at the loading points located at the two ends, until the
specimen fails.
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Table 2: The estimated proof load level (PLL) in pounds, the estimated and
observed numbers of specimens failed due to the proof load and the observed
percentage of failed specimens due to the proof load.

# of Broken
Groups PLL (in lb) Est. Obs. Obs. % of Broken

R60 1770 52 54 62
R40 1525 35 40 46
R20 1237 17 20 23
T60 25490 52 52 60
T40 20670 35 38 44
T20 15360 17 14 16

survived the proof loading procedure in the MOR mode, it was loaded to
failure on the tension machine, and the tension machine’s loading points
move at the rate of 0.5 inches per minute. As a result, for each specimen in
Groups R60/40/20, we observed the MOR if it failed due to proof loading
it in the MOR mode or UTS otherwise.

Similarly, each specimen in the T60/40/20 groups was proof loaded in the
UTS mode, and the tension machine’s loading points moved at 0.5 inches
per minute until the load reached 25490/20670/15360 pounds, respectively.
If the specimen did not fail at the end of the proof loading procedure in the
UTS mode, the surviving specimens of T60/40/20 were loaded to failure in
the bending machine, and the bending machine’s loading points move 2.8
inches per minute. We observed UTS if the specimen failed due to proof
loading in the UTS mode or MOR otherwise.

3 Exploratory analysis

We explore the major characteristics of MOE, UTS and MOR and their
dependencies using the data collected from the shoulder groups T100 and
R100. Group T100 has MOE and UTS measurements observed on the same
specimen while Group R100 has MOE and MOR measurements observed on
the same specimen. Section 3.1 presents the major characteristics of MOE,
UTS and MOR (e.g. as seen in the empirical distribution functions that
describe their characteristics well). Section 3.2 explores the dependencies
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between MOE and UTS, and between MOE and MOR. Since UTS and
MOR are not observed simultaneously on the same lumber specimen, our
preliminary analysis is not sophisticated enough to explore the dependence
between UTS and MOR directly. A companion paper [4] now in preparation
presents approaches to assessing the dependence between two such random
variables that cannot be observed simultaneously using the data collected
from the proof loaded groups R60/40/20 and T60/40/20.

3.1 The MOE, UTS and MOR data

Table 3 lists the measured variables along with their units of measurement:
MOE (kpsi), UTS (kpsi) and MOR (mpsi). Later in this section, we fit log
– normal distributions to our samples for these three continuous variables.
That means first rescaling their measurements to get unitless quantities, since
the logarithm cannot be applied directly to measured quantities [7, 8]. More
precisely MOE (mpsi) was divided by c (mpsi) where in accordance with
a common practice we have selected c = 1. Other choices could have been
made, for example to avoid numerical problems, but this choice proved satis-
factory in our analysis. Thus the unitless version of an MOE measurement
m1 (mpsi) is

m1 mpsi

1 mpsi
= {m1}.

The UTS and MOR measurements were transformed in a similar way by di-
viding them by their units of measurement, namely kpsi. Hereafter, MOE,
UTS, and MOR will refer to their unitless versions although to avoid no-
tational clutter we drop the curly brackets {}. Note that the choice of c
would not affect the appropriateness of the following analysis. Indeed, the
following analysis would not change under a change in these units provided
that unitless values are used consistently.

Table 3: Units for the continuous random responses MOE, UTS, and MOR.

Name Group Unit of measurement
MOE R100 & T100 million psi (mpsi)
UTS T100 thousand psi (kpsi)
MOR R100 thousand psi (kpsi)
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To visualize MOE, UTS and MOR, Figures 3 and 4 plot their histograms
and boxplots, respectively. These plots suggest the population distributions
of MOE, UTS and MOR are unimodal. We do not see strong evidence of
asymmetries in the distributions for MOR and MOE but the UTS distri-
bution seems positively skewed as would be consistent with a log – normal
distribution.

Figure 3: Histograms of MOR, UTS, and MOE. The units of measurement
for MOR and UTS are thousands of psi and that of MOE is in millions of
psi.
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Figure 4: Boxplots of MOR, UTS, and MOE. The lower and upper box
boundaries are the 25th and the 75th percentiles (Q1 and Q3), respectively.
Two vertical lines extend from the lower and upper box boundaries to the
lower and upper whiskers, respectively. The lower whisker is 1.5× (Q3−Q1)
from Q1. The upper whisker is 1.5× (Q3−Q1) from Q3. Observations not
included between the whiskers are plotted with dots. The MOR and UTS
are measured in thousands of psi, MOE is millions of psi.
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Empirical quantiles are useful for investigating skewness. To confirm what
we observe in Figures 3 and 4, we calculate the empirical quantiles of MOR,
UTS, and MOE. The empirical distribution of a sequence of independent
and identically distributed random variables {X1, X2, · · · , Xn} is defined as

F̂X(x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I(·) is the (0 or 1) indicator function. The inverse function of this
discrete empirical distribution is defined as the empirical quantile function

Q̂X(t) = F̂−1
X (x) = inf{x : F̂X(x) ≥ t}.

The empirical quantiles of UTS, MOR, and MOE are summarized in Table
4, which suggests that the MOE and the MOR distributions are indeed
approximately symmetric and the UTS distribution is slightly skewed to the
right.

Table 4: Summary statistics for MOE/UTS/MOR: the 0th (min), 25th,
50th, 75th and 100th (max) empirical percentiles, the sample mean, and the
sample standard deviation (SD). The sample size is N.

Empirical quantiles
Name Group N Min 25% Mean 50% 75% Max SD

MOE R100&T100 348 0.75 1.40 1.58 1.59 1.74 2.36 0.27

UTS T100 174 0.95 3.25 4.50 4.28 5.45 9.88 1.88

MOR R100 174 1.97 5.28 6.62 6.61 7.62 11.75 1.71

To quantify the skewness observed in the empirical quantiles (Table 4)
and Figures 3 and 4, we use the sample skewness measurement defined as√

n(n− 1)

n− 2

∑n
i=1(xi − x̄)3/n

(
∑n

i=1(xi − x̄)2/n)3/2
,

for a sample of observations {x1, x2, · · · , xn} from a random variable X. Ta-
ble 5 gives the sample skewnesses of MOE,UTS and MOR. The MOR
and UTS distributions are positively skewed while that of MOE is nega-
tively skewed. To see if the skewnesses are significantly different from 0, we
carry out the D’Agostino test of skewness [5] for each distribution. The null
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hypothesis is that the skewness is zero, and the alternative, that the skew-
ness is non – zero. The p – values are 0.23, 0.34, and 0.00 for the MOE
distribution, the MOR distribution, and the UTS distribution, respectively.
At the 5% significance level, the skewness of the UTS distribution is signif-
icantly different from zero while no significant skewness is found for MOE
and MOR.

Table 5: Sample skewnesses for MOE/UTS/MOR. The sample size is N.
Name Group N Skewness
MOE R100&T100 348 -0.16
UTS T100 174 0.73
MOR R100 174 0.17

The Weibull distribution is commonly used to model lumber strength
distributions [6]. It is a theoretical limit distribution for the minimum of
a sequence of increasing length, of identically and independently distributed
random variables, if the limiting distribution is non – degenerate. This fact is
commonly used to justify the use of the Weibull distribution for modelling the
failure time/strength where strength is determined by a “weakest link”. This
makes the Weibull a plausible choice for the UTS’s probability distribution,
since it is measured by applying an increasing uniform tensile stress along
the longitudinal axis of the specimen lying within the test span and so it will
ultimately be the strength of its weakest segment.

On the other hand, the Weibull is not the obvious choice for the MOR –
there is no reason why a specimen should fail at the weakest segment since
stress is not uniformly distributed over the specimen within the test span.
In fact the MOR is commonly modelled by the log – normal or normal
distribution [6].

The Weibull, log – normal and normal distributions vary from heavier to
lighter tails. The density functions for these distributions are respectively:
for the normal distribution,

fnormal(x;µ1, σ1) =
1

σ1
√

2π
exp

{
−(x− µ1)

2

2σ2
1

}
, (1)

where µ1 ∈ (−∞,∞) and σ1 > 0; for the log – normal distribution,

flogN(x;µ2, σ2) =
1

xσ2
√

2π
exp

{
−(log x− µ2)

2

2σ2
2

}
for x > 0, (2)
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where µ2 ∈ (−∞,∞) and σ2 > 0; and for the 2 – parameter Weibull distri-
bution,

fw(x; β, η) =
β

η

(x
η

)β−1

exp{−
(x
η

)β
} for x ≥ 0, (3)

where β > 0 and η > 0.
To find a distribution for the MOE, Figure 5 plots the empirical quantiles

of MOE against the theoretical quantiles of the Weibull, the log – normal
and the normal distributions. Similarly, Figures 6 and 7 give the quantile –
to – quantile plots for UTS and MOR, respectively. If the theoretical quan-
tiles were heavier than (respectively similar to, lighter than) the empirical
quantiles, we would expect to see a concave downward (respectively linear,
concave upward) curve.

Figure 5 thus points to a normal distribution or 2 – parameter Weibull
distribution with a shape parameter of about 4 for modelling MOE. The
log – normal distribution is too heavy tailed. Nevertheless in the sequel, we
do fit the log – normal distribution for completeness. Figure 6 suggests the
tails of the log – normal distribution are too heavy for the UTS but the
2-parameter Weibull distribution with a shape parameter of about 2 seems
appropriate. Figure 7 suggests that a normal distribution or the 2-parameter
Weibull distribution with shape parameter of about 4 seems an appropriate
choice for modelling MOR.

Figures 5 to 7 suggest that each of the distributions, Weibull, log – normal
and normal distributions could be appropriate in certain circumstances. So
for completeness, we fit MOR (UTS and MOE) with the log – normal
distribution together with the normal and the Weibull distributions.

We fit these three candidate distributions to the samples of
MOE/UTS/MOR. Table 6 give the maximum likelihood estimates with
standard errors for each parameter in each candidate distribution. Visualiz-
ing the results helps assess the adequacy of these three candidates as data
descriptors so we plot their fitted cumulative distribution functions (CDFs)
against their corresponding empirical CDFs. If the fitted CDF were close to
the empirical CDF, the candidate distribution would be considered appro-
priate.
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Figure 5: Sample quantiles of MOE against various theoretical quantiles.
The normal theoretical quantiles are from a normal distribution with param-
eters µ1 = 0 and σ1 = 1. The log – normal theoretical quantiles are from a
log – normal distribution with parameters µ2 = 0 and σ2 = 1.
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Table 6: Fitting the normal distribution, the 2-parameter Weibull distribu-
tion and the log – normal distribution to MOE/UTS/MOR. This table lists
the maximum likelihood estimate of the parameter and its standard error.

Weibull normal log – normal
β η µ1 σ1 µ2 σ2

MOE (R100 and T100)
EST 6.56 1.69 1.58 0.27 0.44 0.18

SE 0.26 0.01 0.01 0.01 0.01 0.01

UTS (T100)
EST 2.79 5.05 4.50 1.71 1.43 0.40

SE 0.16 0.15 0.13 0.09 0.03 0.02

MOR (R100)
EST 3.85 7.32 6.62 1.87 1.85 0.31

SE 0.22 0.15 0.14 0.10 0.02 0.02

15



Figure 6: Sample quantiles of UTS against various theoretical quantiles. The
normal theoretical quantiles are from a normal distribution with parameters
µ1 = 0 and σ1 = 1. The log – normal theoretical quantiles are from a log –
normal distribution with parameters µ2 = 0 and σ2 = 1.
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Figure 7: Sample quantiles of MOR against various theoretical quantiles.
The normal theoretical quantiles are from a normal distribution with param-
eters µ1 = 0 and σ1 = 1. The log – normal theoretical quantiles are from a
log – normal distribution with parameters µ2 = 0 and σ2 = 1.
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Figure 8 shows the CDFs of the MOE for the fitted normal, Weibull and
log – normal cumulative distribution. The normal seems closest overall to
the empirical CDF and hence seems best overall among the three candidates
for MOE. However from the perspective of reliability, the left tail region is
of paramount importance and that is shown in the right panel of Figure 8.
Here again the estimated normal CDF seems best for MOE among the three
candidates.

Figure 8: MOE. Left panel: the empirical cumulative distribution function
(CDF) along with the fitted normal CDF with µ̂1 = 1.58 and σ̂1 = 0.27, the
fitted Weibull CDF with β̂ = 6.56 as well as η̂ = 1.69 and the fitted log –
normal CDF with µ̂2 = 0.44 and σ̂2 = 0.18. In the right panel we zoom in
on the left tail region of the plots shown in the left panel. Observe that in
both cases the fitted normal CDF seems best
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We repeat the previous exercise for the MOE but this time for the UTS
with the results shown in Figure 9. The log – normal distribution seems best
in this case, judging by the left hand panel of Figure 9. But the right panel
suggests that Weibull provides the best fit to the very smallest quantiles
of the UTS distribution but around the all important 5th quantile used in
setting lumber design values the fitted log – normal and Weibull distributions
are very close.
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Figure 9: UTS. Left panel: the empirical cumulative distribution function
(CDF), the fitted normal CDF with µ̂1 = 4.50 and σ̂1 = 1.71, the fitted
Weibull CDF with β̂ = 2.79 and η̂ = 5.05, and the fitted log – normal
CDF with µ̂2 = 1.43 and σ̂2 = 0.40. In the right panel we again zoom in
on the smallest quantiles and find that the Weibull fit is slightly better for
the smallest percentiles but the log – normal distribution seems best at and
above the 5th percentile.
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Finally we turn to the MOR in Figure 10. Here the normal and Weibull
distributions both seem appropriate and better than the log – normal even
when considering the all important left tail of the distribution.

Figure 10: MOR. Left panel: the empirical cumulative distribution function
(CDF) along with the fitted normal CDF with µ̂1 = 6.62 and σ̂1 = 1.87, the
fitted Weibull CDF with β̂ = 3.85 and η̂ = 7.32 and the fitted log – normal
CDF with µ̂2 = 1.85 and σ̂2 = 0.31. In the right panel we zoom in on the
left tail region of the left panel and observe that the normal and Weibull are
similar and both superior to the log – normal distribution.
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To validate what we observe in Figures 8 – 10, we calculate the Akaike
information criterion (AIC) for each fitted distribution. The AIC measures
the distribution’s suitability for describing future data characteristics after
penalizing for the number of parameters. It is defined as

AIC = 2× kp − 2`,

where kp is the number of parameters in the distribution, and ` is the log
– likelihood function evaluated at the maximum likelihood estimate. For all
three candidate distributions, kp = 2. We want to select a distribution with
a small AIC value. Table 7 lists the AIC for the fitted normal, the fitted
Weibull, and the fitted log – normal distributions of MOE/UTS/MOR.
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Table 7: AIC values for the fitted normal, 2-parameter Weibull, and log – nor-
mal distributions for the MOE/UTS/MOR data. The criterion suggests the
normal/log – normal/normal distributions for modelling MOE/UTS/MOR,
respectively. However, in the latter two cases, the Weibull distribution is a
close contender.

AIC
normal Weibull log – normal

MOE 67.45 76.07 98.31
UTS 684.04 678.14 677.25
MOR 715.79 717.66 733.29

The AIC suggests using a normal distribution for modelling the MOE
distribution, a Weibull or a log – normal distribution for modelling the UTS
distribution and a normal or a Weibull distribution for modelling MOR. As
noted above, the Weibull distribution may be more appropriate for modelling
UTS based on theoretical arguments involving the weakest link.

3.2 Dependence between strength properties

In this subsection we turn to the all important topic of strength property rela-
tionships. The primary goals of the experiment went beyond merely learning
the characteristics of the lumber strength properties for MOE/UTS/MOR,
but also included the investigation of the dependencies among MOE, UTS
and MOR. It was the latter goals that led to the complexity of our ex-
perimental design. Our preliminary analysis is not sophisticated enough to
explore the dependence between UTS and MOR directly because UTS and
MOR cannot be observed on the same specimen – that is left to a com-
panion paper now in preparation. However, we do have paired observations
of (MOE,UTS) from the shoulder group T100 and paired observations of
(MOE,MOR) from the shoulder group R100. As noted above, MOE is
known to be associated with UTS and MOR. To explore the potential as-
sociation of MOE with either UTS or MOR, Figure 11 plots MOE against
MOR (left panel) and MOE against UTS (right panel). Both MOR and
UTS appear to be highly positively correlated with MOE.

Pearson’s correlation coefficient is used to evaluate linear association be-
tween two random variables, ranging between -1 and 1. A positive value
means that the variables are positively correlated, which means they tend
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Figure 11: Plots of MOE against MOR (left panel) and MOE against UTS
(right panel). Both plots suggest a high positive correlation, although a non
– linear relationship seems apparent in the right panel.
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to be large and small together. A very high positive value (close to 1)
implies a strong positive linear association between the two random vari-
ables. Similarly, a negative Pearson correlation coefficient means that the
two variables have a negative linear relationship. A very negative Pearson
correlation coefficient that is close to -1 implies a strong negative linear de-
pendence. If the Pearson’s correlation coefficient were 0, then there would
be no linear dependence between the variables. The sample Pearson’s corre-
lation coefficient between two random variables X and Y with observations
{(xi, yi) for i = 1, 2, · · · , n} is∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

,

where x̄ =
∑n

i=1 xi/n and ȳ =
∑n

i=1 yi/n. The sample Pearson’s correlation
coefficients of (MOE,UTS) and (MOE,MOR) are 0.63 and 0.72, respec-
tively. The pairs are strongly associated, linearly, confirming what we observe
in Figure 11. The strong associations between MOE and the strength prop-
erties MOR and UTS provide justifies our use of the MOE to assign the
specimens to the different experimental groups and hence to assume the ex-
perimental groups are homogenous in the strength properties described in
Section 2.

Although we cannot easily visualize or quantify the dependence between
UTS and MOR directly, the companion paper Cai and Zidek [4] presents a
new theory that allows us to infer the stochastic dependence between these
types of random variables.

4 Concluding remarks

The study of lumber’s strength properties is important because it determines
the reliability of a lumber structure under loads likely to be encountered in
practice. Those loads in practice could come from such things as winds
and seismic activity. We have introduced (Section 2) the Summer – of –
2011 experiment. The experiment was mainly designed and conducted to
investigate relationship between MOR and UTS. We assigned 870 lumber
specimens to 8 experimental groups based on the adjusted MOEs. Three
major components formed the experimental groups: two shoulder groups
without any proof loading, three groups proof loading in the UTS mode,
and three groups proof loading in the MOR mode. Section 3 illustrates the
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major characteristics of MOE, UTS, and MOR. The exploratory data anal-
ysis suggests a normal distribution for modelling MOE, a Weibull or a log
– normal distribution for modelling UTS, and a normal or a Weibull distri-
bution for modelling MOR. The sample Pearson’s correlation coefficients of
(MOE,UTS) and (MOE,MOR) indicate that MOE is strongly positively
correlated with both UTS and MOR.

A Appendices

A.1 Adjusted MOE

Section 2 provided a detailed description of the Summer – of – 2011 Ex-
periment. This appendix explains how the modulus of elasticity (MOE) is
adjusted for its moisture content (MC) and how we check whether the exper-
imental groups are homogenous in terms of the lumber’s strength properties.

The MOE of each specimen is adjusted for its MC following a standard
procedure, ASTM D1990. The adjustment for MC is conducted bundle by
bundle. Let MCij be MC of the jth specimen of the ith bundle, MCi· be the
average MC of the ith bundle, and MOEij be the MOE of the jth specimen
of the ith bundle. The adjusted MOE of the jth specimen of the ith bundle
is calculated as

Adjusted MOEij = MOEij
1.857− 0.0237×MCi·
1.857− 0.0237×MCij

.

Table 8 summarizes the sample mean and the sample standard deviation of
the adjusted MOE’s within each group for each bundle. The sample mean
and the sample standard deviation of the adjusted MOE’s across groups
within each bundle are similar. For each group (T100/R100, T60/40/20,
R60/40/20), we also combine all specimens from three bundles, and obtain
the sample mean and the sample standard deviation of the adjusted MOE’s
of each group. The sample mean and the sample standard deviation of the ad-
justed MOE’s across groups based on the combined bundles are also similar.
Since the adjusted MOE is known to be highly correlated with other lum-
ber strength properties such as MOR and UTS, the groups R100/60/40/20
and T100/60/40/20 are safely assumed to be homogenous in terms of the
lumber’s strength.
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Table 8: The sample mean and the sample standard deviation of the adjusted
MOE’s in million pounds per square inch (psi) for each experimental group
within each bundle and across three bundles. Bundles 1 and 2 are of grade
– type SPF(Spruce, Pine, Fir) 1650f-1.5E. Bundle 3 is of type SPF No.2.

Bundle T20 T40 T60 T100 R20 R40 R60 R100

1
Mean 1.66 1.66 1.66 1.66 1.66 1.67 1.67 1.67
SD 0.23 0.24 0.24 0.24 0.23 0.23 0.24 0.24

2
Mean 1.64 1.64 1.65 1.64 1.64 1.64 1.64 1.64
SD 0.23 0.23 0.21 0.24 0.23 0.23 0.23 0.24

3
Mean 1.43 1.43 1.43 1.43 1.44 1.44 1.44 1.45
SD 0.26 0.26 0.26 0.27 0.27 0.27 0.28 0.28

1-3
Mean 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59
SD 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

A.2 Estimating the proof load levels

The Summer – of – 2011 experiment was designed such that the proof load-
ing procedure of R60/40/20 was expected to break 60%, 40%, 20% of the
specimens, respectively. As with bending, we expected 60%, 40%, 20% of
the specimens would break during proof loading procedures of T60/40/20,
respectively. To achieve this, we estimated the 60%, 40%, 20% quantiles of
the distributions of the modulus of rupture (MOR) and the ultimate tensile
strength (UTS). The goal was not to estimate the proof load levels precisely,
but rather obtain well separated proof load levels for us to estimate the proof
load effects. Here, we only illustrate the quantile estimation procedure with
the groups proof loading in the MOR mode because the quantile estimation
procedure for the groups proof loading in the UTS mode is similar.

The Weibull distribution is commonly used to model the lumber strength
properties such as MOR and UTS. The density of the 2-parameter Weibull
distribution is

fW (x; β, η) =
β

η

(x
η

)β−1

exp{−
(x
η

)β
} for x ≥ 0

where β > 0 and η > 0. The quantile function of the 2-parameter Weibull
distribution is

Q(p) = η (−ln(1− p))1/β , 0 ≤ p < 1. (4)
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The Weibull distribution is fitted to the MOR data collected from Group
R100 using the maximum likelihood method. The maximum likelihood es-
timates of β and η and their standard errors are reported in Table 9. The
maximum likelihood estimates are plugged into Equation 4 to obtain esti-
mated quantiles Q̂(p) of the MOR distribution.

Table 9: Maximum likelihood estimates of the Weibull parameters by fitting
the R100 data with a Weibull distribution.

Parameter Est SE
Shape β 3.85 0.05
Scale η 7.32 0.02

The proof load levels of R60/40/20 are Q̂(0.6), Q̂(0.4) and Q̂(0.2), respec-
tively. For a given p, the standard error (SE) of Q̂(p) is obtained by the Delta
method. The approximate 95% confidence interval of Q(p) is (Q̂(p) ± SE).
Table 10 lists the estimated quantiles and their standard errors together with
the approximate 95% confidence intervals.

Table 10: Estimated quantiles of the MOR distribution with their standard
errors (SD), and the approximate 95% confidence intervals (CI).

Quantile Est SE 95% CI of quantile

Q(0.2) 4.96 0.03 (4.62, 5.30)
Q(0.4) 6.15 0.03 (5.84, 6.46)
Q(0.6) 7.15 0.02 (6.85, 7.45)

We convert the estimated quantiles to the estimated numbers of speci-
mens failed by the proof loading procedure, and convert the 95% confidence
intervals of the quantile to the 95% confidence intervals of the number of
failed specimens (Table 11). The proof loading procedure starts with R60,
R40 and then R20. For R60, the proof loading procedure with the proof
load level being the estimated quantile Q̂(0.6) is expected to fail around 53
specimens (0.6 × 87 = 52.2). If the number of observed failed specimens at
the end of the R60 proof loading procedure falls outside the 95% confidence
interval of the number of failed pieces (47, 58), we treat it as a trigger alert
and consider to revise our estimated proof load levels for R40 and R20.
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Table 11: Estimated number of failed specimens of R60/40/20 with approx-
imate 95% confidence intervals.

# of Failed
Group Est. CI
R20 18 (14, 22)
R40 35 (30, 41)
R60 53 (47, 58)

We are aware that the approximate 95% confidence interval of the quantile
based on the Delta method may be wide, and decide to carry an additional
approach to estimate the quantile and its corresponding 95% confidence inter-
val. Previous FPInnovations MOR sample sets from the same mills suggest
that the Weibull shape parameter β is about 4. We assume that MOR fol-
lows a Weibull distribution with scale parameter η and shape parameter of
4. The quantile function of a Weibull distribution with scale parameter η
and shape parameter of 4 is

η(−ln(1− p))1/4.

Then MOR4 follows an exponential distribution with scale parameter λ
where λ = (1/η)4. The approximate 95% confidence interval of 1/λ is(

2× 174

λ̂χ2(0.975, 2× 174)
,

2× 174

λ̂χ2(0.025, 2× 174)

)
,

where 174 is the number of specimens of R100 and λ̂ is the maximum like-
lihood estimate of λ. Since η is a function of λ, the 95% confidence interval
of η is approximated by(

2× 174

(1/η̂)4χ2(0.975, 2× 174)
,

2× 174

(1/η̂)4χ2(0.025, 2× 174)

)
,

where η̂ = λ̂−1/4. Thus the estimated quantile of MOR is

η̂(−ln(1− p))1/4,

and the approximate 95% confidence interval of the quantile is(
2× 174× (−ln(1− p))1/4

(1/η̂)4χ2(0.975, 2× 174)
,
2× 174× (−ln(1− p))1/4

(1/η̂)4χ2(0.025, 2× 174)

)
.
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Table 12 lists the estimated quantiles of the MOR distribution and the
corresponding 95% confidence intervals. Table 13 presents the results of
Table 12 in terms of the number of specimens failed by the proof loading
procedure. The approximate 95% confidence intervals in Table 13 are nar-
rower compared with the 95% confidence intervals in Table 11, which serves
as a more conservative standard for monitoring the proof loading procedure.

Table 12: Estimated quantiles of the MOR distribution with 95% confidence
intervals under the assumption that the shape parameter is 4.

Quantile Est 95% CI of quantile
Q(0.2) 5.05 (4.87, 5.25)
Q(0.4) 6.21 (5.99, 6.46)
Q(0.6) 7.19 (6.94, 7.47)

Table 13: Estimated number of broken specimens of R60/40/20 with 95%
confidence intervals.

# of Broken
Group Est. 95% CI of number of broken pieces

R20 18 (16, 20)
R40 35 (32, 40)
R60 53 (48, 58)
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