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Abstract. A theory of selti-Bayesian estisation ia developed for a
fairly geoersl growp estisaticn problems. Inm particular, sulci-Bayesian
essentially complete class theorema for nos-randosized rules are proved
and applications to the normal distribution are given. Finally a char-
acterization is given of the Nash estimation procedure,

1. Introductica. A general theory of multi~Bayesian estimation is pre-
seated in this peper. A grouwp, B = {1,....0), of statisticisss is re~
quired to cose a single estimate, 3. of an weknows paraseter, %, vhose
range of possible values is €, The data are assused to be in hand (see
Section & for a discussion of this assusption) and the statisticians
Bust agree on a possibly randomizoed decision rule, §, for choosicg &2
depends on the data and s a probebility distribetion on @ vhich we

take to be a convex, open subaet of RP.
The valwe of any proposed & to 1 ¢ B s deternined by

AMS 1980 Subject Classificaticn:
Key vords and phrases: Melti-Bayesian estimation; Sayes estimaces;
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B ()= J Iu (Blo)e(ef) 1, (00). (1.1)

Fere both integrals ate over U, The integrand in egeuation (1.1), .
ie the ueility of B ¢ 0 te £ B given 0 while ﬂ‘(') {s 2's posterior
distribution for 0, Assume ¥ is dounded adove for every f.

!(6)-(8.(6),....8.(6))r assumos a fusdasental importasce in guiding
8's choice of & and it is called &'s arssosnent profile.

Demote by [ the class of all &'s. A subclass ooc D Is called
cepentially D-oomplete if for every & ¢ D, there exists a 6’ c D, such
that B(E)M(E"). This noticn is formally equivalent to that of eoren-
tial completemess in Wald's theory. Other ssalogoes such as B-cos-
pleteness, B-admissibility, and B-Bayesianity will emerge in the segquel
tat for brevity they will not be explicitly redefined in this new
setting. Tecidentally, B-adeissibility is the same notion as {(stroag)
Pareto cptimality im other comtexts,

Identifying essentially B-complete subclasses of D would seem 1o be
as important here as solving the analogous prodlem in the Wald-setting
has proven to be, Fortwnately the strong formal linsks between the two
prodlens say de exploited to simplify the present prodles and various
essentially B-completeness classes are presented (m Sectiom 2.

Of particular importance are the resulis concerning the essestial
B-completencas of DM' the clasa o!"aeaunde.ind procedures, & = 6°
wvhich are degenerate at points a = §, say, in 0. Randceized rules are
generally considered to be wasatisfactory, bet as the resulcs of
Soctions 2 and 3 wvill show, the chwoice of sech a rule may well be in-
evitable if the preferences or belief's of #'s sembers are sufficiently
divergent., A=d these same rosults will indicate the degree of consensus
vhich B sust achieve to avoid the use of randomized decisioss,

The thecrema om Becomplotecess which we present in Section 2 delimit
4 class of decision rulos from which & jointly acceptadie solution to
the growp eatimation problem might be found. Variows potentially appli-
cable solution concepts are presented and discussed in detail by
Weerahaodi and Zidek (1951,1983) and one of those, that of Sash (1530),



is charactericed in Sectica 3. Nash derived his solutica as a norsative
solution 2o the two persen bargainieg problem. The dosaln of applica
bilicy of his theory is very bdroad. le forsulates the bargaiaing prod-
lem a5 3 gaoe in sormal (rather than extensive) form. The odject of

the game is the joint acceptance of the players om an agreesent whose
value to esch player is determined by Ris/her Von Neumann =~ Morgenstern
utility. The players are assumed to co-operate to the extent of com-
plete and bonest discloaure of their preferences asomg the possible
agrecments. As vell it {s assemod that jeint randomization ssong agree~
ments is feasible. Nash shows that certain weak, qualitative asswmptions
determine an equilibriwm soletion to the gaae and that this solution may
be fownd by maximizing a cettain functional vhich ix defined in Section
3. While erigismally conceived as a solusion to the bargaining probles,
Kash's doplicit definition of bargaining i s0 droad that it would seen
te encompass in principle any group decision problem where joint agree-
peat on a4 course of action is required. [In other words, nothing about
the nature of the bargalning process is assumed other than that strate-
gic manipulation (for example, bluffing) and variable threats are ex-
cluded. Aad so the theory would secs to eacompass the probles addressod

in this pager.

Nash's soletion is easily the sost distingeished of varioss group
decinion concepts and it, unlike many others, does not require that the
utliities of the Dayesisns be compared. There is, Lo fact, 20 satis-
factory general metbhod for making such comparisons and this featwre of
the sulti~Bayeaian statistical decision probles distinguisbes it from
some of its formal analogues such as that of Wald, of espirical-Bayes
hyperparaseter estismation (e.f., Morris, 1583), of rodust-Bayesianity
(Berger, 1582) and of multi-criterion decision analysis {e.f. Ty, 1573),

2, Essential B-completeness, W will first present counterparts of some
familiar results in the Waldegetting. Toeir proofs, which are zisple
adaptaticas of those of the standard resules, are caitted. For details
see, for example, Blackwell and Cirachick (1554), Ferguson (1967), eor
Berger (1980). Most of this section will cossist of results on the
topic of fts title which do not even forsally resesble known resulls.




Consider & = (3(8)18eD), & coavex wubset of R which is bownded
abose. Assume, following Yergewsca (1967) thar S is also closed from
adowe, i.e., DA & (yer_:(y) « TO tazp 5 2)) vhere T desotes the
closure of 3,

Lot B = (7 » (3,007 0: 9, 2 0, Iny = 1} desote the class of all
P-priors om l and T, the ubchu for vhtch * >0, A B-Bages rule with
respect to 1 is any 6 vhich maximizes ! 8(6) Such &'s exist for any
rck (hr;woo. 1967), let B be the clul of all such reles and &,

cho subczlass corresponding to l s for vhich * > 0. The closure of
(0(8)18c 5, } is contained in mc).aa) m.emu and Girshick, 19564,

9.127). Let 8+ - (51!(6)0 alosere of (!(8’):6 (3 l‘ll

Let A be the class of all B-admissible rules and Ayy those soaran-
domized rules vhich are B-admissible with respect to 0”‘

Since S is dounded above and closed [rom above, A in a minizal B~
cosplete class (Ferguson, 1967) and B c A © B ¢ § (Blackwell and
Girshick, 1954),

if J‘ is concave for every ¢ then it is easy to show with the help
of Carathéodory's Theores (c.f., Rockafeller, 1970) that Dy &8 essen-
tfally B-complete (See Fergusca 1967, Theores 1, ».78). lwcv-r.
the assumptiom of coocavity (s too restrictive and alternetives will
be prosented.

Ia our analysis all sup's and inf's vill be over | 0O waless othervise

indiceted. With an abuse of notation we will let 8(0) - B( ).
The follewing condition ia fundssental:
ﬁlo«. There exists a bovaded X © @ such that

(3:3’ g(a)-np!rg. mk ) € X

We now show that this assumptiom is valid wader inteltively

natural comditions. The 5,'s will be called poeitively affine indopen-
demt if there do mot exist comstants o, > 0 and b, such that

Jie B, 43«0,



Lesas 2.1. If the Bi'cmw. povitively affine independent
Sunctions for which there cmiote for exery € 7 0, @ dounded aet X < 0
ouch that B(B) S énf B + ¢ for esary & ¢ X_ vhere c {2 the veotor vhose
elemante are cll ¢, then the Assmpiion holds.

Proof. letg = !r!. Thea & - inflowp g ~infy_:2¢X) > 0. For if sot
there would exist (!“’) sech that mp g (i) ~fnf Pefi) * 0 m f -,
Since Il is compact these exiats a :(')( T asd euvbrequence (!U)) aueh
thae ¥63) « ¥(*), since the 5 '0 are bomded, ap g ~inf g_ is con-
tinuous in ¥ so Ggle) = d, some constant, over 9, Bat chis comtradices
the hypothesis that the l"c are positively affine independent. 5o §
>0,

Choose € Gasd X = K. Then for O/ 7, hin‘@) $ ¢+ Iv infle b,
S -Ltopln B, < mpln B, for all ¥ so the conclusion followa.||

The proof of the following lesma s straightlorvard asd hence cmit~
'.‘.
Lemma 2.2 If (8:8, 2 M), =1, ...,= are for scme N, bewnded vith o
noverpty intersection, K, then the asmeption holds, [

A priscipal rescle is the following:

Theores 2.3. If the Asownption is valid and the & s arv twice
differentiable, Ovw is cspentially Poomplete if and only if for every
ok, the Neasion matriz of !r! te negative somiedefimite at ewery point
of &8 (865 < A and v U B(E) = 0) where ¥, the gradient operator, i
applied co-ondinate-viee to gomerate row veotors.

Proof. The neceossity is obvicus., To prove sefficiency note that if
8 cE, it casnot be dominatod by s randomized rule. And since £ has a
compact closure, the poists Ia the ¢closure of (g(s)za € B} are profiles

of elesents of Dy ||

"Exseatially™ camsot be dropped from the atatesent of the last
Theorem. It is casy to vitualize &'« for vhich the Bessies satrix of
Theorem 2.3 {3 even cegative-definite at points, [a), where !rg,:d’ .
attain their local maxims but wvhere the elesenta of the closure of



ll_!(c)} correspond to elements of both an and D -0y

The set & in Ibcom 2.3 can be explicitly determised when

B (8) =0 B (a)), £ =1, ..uym (2.1)
wvhere the D's are strictly concave and the U"s are strictly imcreasing.
Then & = (01" o0(8) = 0, =el ).
Exesple 2.1, Weerahandi and Zidek (1333) show that when a certain
class of normal peateriors asd conjugate utilicy functions obtain,
ltts) - exp |-§q(6 - O‘J'I. £ = 1, «uusft, in the case vhere p = | and
the preforence~beliof dispersion matrix is & comstant, @ > 0. Ia this
case it is easily shown that the Bessian of Iv 5., i.e., In d‘s (9)/&9'
is a positive sultiple of Iv (9, ) -q" vhete 9. = W 8 G)Itl B¢
) and § » Iv .. Thes Dy, to usenually Mmlete in u-u ox-ple
if any caly if for every = > 0, xv‘(o‘ -8)f < id' But the left hand
side of this imlity ic odviously maxisized over ¢ by the achievable
choice o, B 5 where the subscripts "sax" and "pin" denote indices
at which 0‘ attains a maximus and minisus respectively. Thus D" is

essentially B-complete £f and only it

|
(0 - o_“)' < iq" . (2.2)

This result generalizes for p = | the result of Weerhahandi and Tidek
(198)) vhich was for the case n = 2,

Theores 2.3 can be difficult co apply in specific cases since this
entails the examination, ia principle, of the Nesslan matrix of t’l'i
over a broad domain, for sach ¥ in a large class fl‘). The next theorem
would be easier to apply in the sebclase of such cases which lie within
its domain of applicability. There and im the sequel 3°7/3xdy will
denote the second mixed derivative of [ with respect to x sad y.

Theorem 2.4, Asswee that 4 5(3%p mac).a (n = 1) x (n= 1) matriz,
te well dofined at all pointe of eln nt l defined in the Theorem 2.3.
Then - o esammtially B-complote if and only $f A s nepative semi-
definite at all auch pointa,

Proof, Suppose A is positive definite at say 0°F & Thes for 8's
cloae to 30.



2 -52e L, - om0 0089 >0 (2.3

where the sulfix, o, indicates evaluation at 8 = 8°, Noce that -0/
”’!otolt-l.....n-loich-f Auwe S0 for amy pair,
0' 0'. of O'l vhich are sufficiently cloae to O' there =uat exit an a,
0<ac< 1, for viloh uli + (1 - u)l" > D‘ . l.....n where again
suffices indicate evaluation at the corresponding 0's. Otherwise
a()"-ai') s+ {1 - am‘ 8") 20 for all @, 0 <o <1 and this con-
tredicts equation (2.3) and establishea the necessity of the negative
soai=definicentss conditlion.

Now suppose this condition bolds for all & € £ and that Dy, i sot
essantially B-complete. Then there would exist ? ¢ Dpy ood bechDa Dm
such that & 4 Ominates 6‘ By Caratheodory's Theores {(c.f.,
Rockafeller, 1970), 5,(8) = B, &8, for all ¢ and some =, 2 <= 5
+1, mnaJ-a(t). \huynm&cl aol"a(}’ .....Dj) 3
J=Ll...,® (aod 0) are all B~Bayex with respect te t.ln same ¥ C i.
Since m 3 | there exist points 4t which ¥'5 attains a local sisisus.
Siace § {3 comtimous, In every neighbourhood of at least cne such
poluc.-a' say, there exist other points for wich !r!' < !f!. But thia
is easily shown to comtradict the assusption of negative semi-definite~

meaa. So Dll is essentially l-eeqhto.“

Before presenzing the next example some cosgutational forsulas are
presented for a relevant special case, that of equation {2.1) vhere the
U's and 5's are comtinuously tvice differentiable. The coenditions
equivalent to essential l-cupleumu vhich are established ia
M-.!)M!ismln! 0(06‘8] There is & convenient
parasetrization of this set UMcb vtll npovw be described,

Observe that 8 ¢ F, it and only if
* b(B) -0 (2.8)
for some ¥ > 0. Let A = v/y_ and
0 = ¥(06) = AT B(). (2.5)



The Jacobian 7 = GP‘Iau ) ssscciasted vith these equations is easily
showa to be & = &‘bl’(o) where, in gemeral, g"(x) will denote the matrix
of 7's second derivatives vith respect to the co-ordinates of =, Since
J is megative definite, its detormimant is nomzero for every point

(4,8) vhere ). > 0 for all £, A =1 and § ¢ 0. The implicit functien
theores enables us to conclude that equatiom (2.4) has a solution,

® = 0()) which has contisuously differentiable co-erdinate functions.

Thus £, = (ou):x *»0, A_ =1}

The derivatives, 33/31‘, £t =1, «...n = | are readily coaputed.
Obgerve that from equazion (2.%) !.(}“‘h. (ke ‘i"” © ’.(5.0) .
h[”’.Q.B)lDl‘ + vor_u.o)(max‘n.
t=l, seen=01,m% 1, ...,p vhere ¢ is the vecter all of vhose
olesenta arc O excopt the (2h which (s 1, asd 6 = 8(A). Bet 3P (A.O)I
M = Ab. /I and TyF (1,0) = 3V B,(0)/30 where P, “A7b 5o,

a0/a, - -(b':m)“b‘ ((®) (2.6)
where b - Vb )r

To obzain the matrix A of Theorem 2.4 in 2 more explicit form
observe that »“Iillk - z(aanm'uu‘mk). So

2 e 2
B O.I”‘”b IX(3 ’nlﬂlﬂl)(”llaﬂ‘)(n‘laﬂhl (2.7)
2
+ :(unm‘)ta x.m‘aah).
. - ' 7 v,y !
But w_m. -V 89 30[3). v n(b n) b".) (b.). Also

]
a‘ - ;!‘(u‘/alj)ﬂj. o), ool ordd « JJ) po &) = r.a. i.e.,
dl‘ - uuaj. ¢ =1, ...,n-1 vhere J"-(Jij). Consequently
- J°8
n‘m. " ggalt
To obtaim the required secoed derivatives vwill require a repeated
application of these methods., Note that if m = 2 the necessary and

sufficieat conditicn for tbc essential D-completeness of Dyo Ev sisply
that d'D/a' 2 0 for every 0 -8(5) vhese 3 - (1.,1).

Exemple 2.2. Mere m = 2 and following Weerahandi asd Zloer (m».
3B « 0,b (5)), vhere U (x) = explz) and b.(8) = -(8 - 8,) q(tt-o‘)



vhere Q >0 is a couuat patrix, € = l.z. Lquaticn (2.5) bocoews
0. (B-mfwme-m @ %0 that § = 8(A) = (@th@)™ [@atathi ).
Yor this 3,0,(8) « -Afza "2, (0 eh1)-* ant b5 = =18, '0 M0 #),) Ry
vhere D = dlu(bn.....D’) il m diagonal smatrix of ¢ Ng""mof'"
b = 0Qi/*(8y+83), snd 0 is the orthogonal matrix vhich diageoalizes Q.
Usisg the computaticoal strategy owtlined abowe it is casily ahowm
that Yy /Al = <3 B0, " and
A3 /a8« 5 (087 4) - -u.u D@4 )TN Thes a
mecessary and sufficient coud(tlo- for umthl Pecompleteness is

ny
hzo'x.umm“a"w‘m)" s%
or, In the noncanonical setting,

ng
2o (FA) (0 = 0070000 (0 = 2) 5 (2.9)

vhere Q(A1) = GiR(A)QAO )G )9y and B(A1) = (Quodade)='. 12 the
special case vhere Qv = @ equaticn (2.8) reduces to the result
obtained by Weershandi and Zidek (198)).

3. Nash Estimation Keles, Nash (1950) proposed weak, intuitively
appealing conditions which an equilidriue soletion to as % = 2 persom
decision probles should satisfy, We then proved that such a solutican
sust saximize a certain sisple functional. His result is canily
utoodo‘ Lo the case n 2 2 vhere the correspoading fumctional is

‘[‘(0 (J)-c‘l“‘.c‘ 20, to‘ = | and here <, Tepresents the worth, in
utility, of €"s current assets. The special case m = 2, ay = ay = 1/2
gles Nash's functional. The required smaximization £a carried out over
vhat might de called the Nash-feasible rules, (5:B(&)> o).  See
Weorshandi and Zidek (1981, 198)) for more details.

Assuse 0 > O vithout loas of geserality. By Carathéodory's

Theoren (¢, l.. mnbllot. 1970), n(l') - !1458(” for sose &'s,
820,28 =1 ant 8(i) - 5EGY), where @ is & Nash soletios and

l an+l. This mmcuuttou seed 20t be unique,



Since 6" saximizos the gessralized Nash preduct ond o > 0, sV must
be 3-Bayes with respect to a peprior & c .

For convenlesce the following sotation is adopteds A c O and !X -
AL, (o) = 2'gdt s amhas e e 1, L e (), L A
A= (Aid,c 81 H, will denote the tangent plane to the surface
(8" :AcA} vhich ia located ae B, L.e., W, = {2:(8,d%)e(2d)]. 1t La
quite possible that "h. nh vhes Ay ¢ J;. Define the egulvalence
relation ™™ by A3 - Az if and only if W U “h' Then A: « Az if and
ooty it 4™ « 4 M for al1 & ams (M Al o UMY, vaser tase
equivalence relation A decomposes lnro disjoine equivalence classes
which will be indemed by £, That is £ = A/, let Ci:A"+ ! desote the
canonical mapping so that LIRE N antails c(ll) - C(lz) = & say.

Pinally define Lo = L, & o d* and et = (P4 i O - €.

1f 6" in a Nash aclutiom, 816'] -‘-t,n" ?1, mins+sl by
Carathéodory's Thoorem (Rockateller, 1970). This estadlishes that
?J'. §=1, ...,m are covplazar and the planc is questica sust bde
eangent to 55,4 = 1, . ;. Thus 3 2 04,5 ¢ Loand iy, is this
tangent plane for every 4. [n sussary, B‘f&"’ sust lie a{ a plane which
is slsultanecusly tangent to S and a level surface of the femction
gix) =& t;t. Also it suat be & weighted average of agreemest
wtility vectors corresponding to A « t14E) for seme Ce 3. In general
ve will take the minisal set of such utiility vectors and 10 assume
they are linecarly independent.

To complete our analysis we will deternine conditions under wvhich
6” corresponds to § € I {n the sanner just prescribed. The tasgent
plase to § passing through g° is casily showa to be W (g::(ndsf)s‘.
= 7). Thus 6" corresponds to £ £f and only L(f cthere exiscs
[“‘:M("('J,. 2 « 1, & > 0 for vhich 8° = E(n‘!“:h("((” and

"0 - L{ (3.1
But condition (3.1) is equivalent to a,/80 = b, a1, .., n
vhich I8 equivalent to(ai’df)/m ‘cg) =], T =1, ..., & and hence to

A . ” Ay € -



A
Let Aw (Au) . ‘A ‘. “eny A%’ (A'. “ney ‘r) vhere & « ‘C ‘OL
Then equations (3.2) say be vritten as

A A
T A tn. i, «ss, D

J (3.3)

or alternatively

Aw il . (3.4)
Thus 6'. correspands to L if and ooly H there exists w tml
¥ > 0 for which equations (3.3) and (3.8) hold.

Bquation (3.3) shows that I, sust be (n the cose of M, ..., A=
if, for example, m = | this ¢oodltlon shows that 6 - 6 if and only
it 8. asdne ) - o B GELAE). Egsation (3.4) implies that
I ARA 1, which t-pu« i unless the quntizy on the right
hand side of 01-.![0& (3.4) natianfies I (l l) = | and has noa-
negative coordisates, 6‘ cannot have (”(() a8 (ts support, Converse=

ly, if these conditicns are satiafied 6’" does correspond to §.

In general this characterization say be difficule to apply becavse
the equivalest classes, c',(l). are too numerous to be explicicly
deternined. Por asall valoes of n, bowever, this characterization ias
applicable. %o illustrate this in tde following example.

Exasple 3. Coasider the specialization of Exasple 2.; cbtaized by
taking p = A= 2,0, = I, O = L/2, 8] = (0,0) snd € = {1,1.5).
The set 5 is illustrated in Figure 3.1,

Figure J.1 Here

It is clear from Figure 3.1 that there is just a single £ for vhich
(-l(l) contains more than ose point, naseoly that for vhich c.l(t) -
hl.lzl. Whether or mot l" has support detusmiced by this claan
depends on "y o 8-

Ve first determine a, and ay by graphical analysis, (For the
details see de Wasl et al, 1982]. The rosslt is 1, =(0.2835,0.0200) .



As well, for this class d; = o.m.‘fz «1 and e® = 1.06. Thua
0.6484/a, 0.03602/a, |
Anti)n
i 0.3519/a, 0.9%41/a,

so that on applying equation (3.4) we obtain

L “.'E’ » (l-m' - O.WO.‘. I.M - O.Sm’)r

It follows that w; & 0 and u, 20 while uy + &y « ! provided thar
0.05569 = a, S 0.6431. Othervise 6‘ will be a nonrasdomized rule,

wvhich is dogenerate at :

o= (a2 +3,0,) (2,08, +a,0,0,)

- (op + a5/ (a )0, + ag iD) .
Here we observe a situation in which 6" say be scarandomized even
vhen OAR is not B-complete.

&, Discussion. Esseatial B-complete class theorems and a character-
fzation of the Xash solution are glven in Sections 2 and J, respectively
vhen the data are [n hand. The other case vhich is sot treated here
vhere the data are forthcombing would dnvolve an entirely different
asalysis. The appropriate asseassent profile would be obtalsed by
averaged f in equation (1.1) cver the prospective data sets. The set
S of feasidle profiles would no longer be the comvex hull of the pro-
files of moarandomiczed rules, but as average (ever the data) of such
hulls, Carathéodory theorem would no losger apply aod Theoress
2.3 and 2.4 would e (ovalid. 1Ina fact, it seems unlikely that such
precise statements wuld be achlevable judging by the corresponding
developsents in the Wald setting. There would e an obvious counter-
part of sufficiency, Begufficiency, and the class of é's Dased on a
Bepufficient statistic wuld be essentianlly B-complete.

Theorems 2.3 and 2.4 reveal that there will be a basia for a con-
sensusl choice (i.e., monrandcmized docision) if and only if a falvly
strong conditiom is wmatisfied. In the application treated in Exasple
2.1 vhere a joint estimate of a (real<valued) normal mesn is Teguired



these theoress yield the coondition that the magnitude of the range of
the # posterior meazs must not exceed [ 9:1 © The quantity, Q".

s ¥ + I, (see Weerahandi and Zidek, 198)) vhere v‘.” and L7,
respectively, ac th preference and posterior precisica paraseters,
n‘(SIO) - oxp l-,(H )tﬁ ] and !‘ has a densicy function which Is pro-
portiomal to exp [-!(8-%)’/&], €=, cooo B. As the sample size in-
croases the range in question decreases (in a stochastic sense) so a
consensus would very likely exist if the sample size were sufficieatly '
large. How large depends critically on the strengths of preference,
1.0, the slze of .4" Strong prefereaces (ssall U‘-) can only be over-
come with large ssmples. The size of t‘ is not ultimately of much
relevance since it would be nearly O for large sample sizes. Siace the
spread of the prior moana determime the range the roquired sanple size
would increase with n, the susber of statisticisss, involved.

The discussion leading to lsequalicy (2.8) Ls readily shown te
imply that DM! is essentislly Becomplete in Example 2.2 {¢ ;o,-o,)rql
(0,-0:) 3 2 vien Q' < Q' and Sence (by symmetry) if (0"8’) Q,(Orbt)t ?
vhen Q' < ;. This may be isterpreted as saying, exsentially, that if
either one of the statisticians has mech stronger prefleresces than the
other, there is a basis for conseasual cholce §f the remalning stat-
istician perceives the first to agree closely wish Mw; proximicy is
sosswred 2erte by the appropriate Mahalanchis=like distasce.

There are forsmal similarities detwees sulti-Bayesise and sulti-
attribute decision analyses. Ne have chosen not to develop and use
those lioks, prefercing (estead to pursue the comsections with state
istical decision theory. Thia choice is natural becsusse of the stat-

istical contexnt of the probless treated by our theory.

The difforentiability assumptions imponed in Sectica J are scmevhat
unappealing from a philosophical point of view ar 4 referee has pointed
out. Weaker gualitative sssumptions would have been desirable. We do
not know any such sssusmptions, however, and in sny case this is not a
satter of great practical substance sinte the isevitable approximations
eatalled In the elicication of utilicies and 50 on,commonly lead to



cholces which are made [rom parasetric classes of convenient, ssooth
models.
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