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ABSTRACT

This report consists of a summary of three lectures given by the author
in May 1983 at the invitation of the Board of Studies for Statistics,
University of London. Thanks go to Dr Agnes Herzberg, Department of
Mathematics, Imperial College and Professor Phil Dawid, Head, Department of
Statistical Science, University College London for their part in making
arrangements for these lectures. The author is also grateful to the
University of London for providing an opportunity to discuss ideas rather
outside the mainstream of statistics. The first of the lectures deals with
the problems of combining opinions. The second is about the problem faced by
a group of statistical decision makers who must compromise their individual
positions to reach a joint decision. The final lecture contains two
applications, the first on group-estimating the multinormal mean, and the

second on optimal second—quessing.



1. MULTIBAYESIANITY: CONSENSUS OF OPINION

1. INTRODUCT1OH

This talk is a summary of mostly recent work on the problem of aggregating
opinions (see also the surveys of Winkler 1968 and Hogarth 1977). Each of a
group of individuals has informacion about the state, 0, of the world, like,
for example, the cause of this patient's pain. How should this information bz
combined?

This talk will not be concerned with the related problem about how this
information should be used in reaching a group-decision {about the cause of the
pain, for example}.

The relevant literature on this problem is extensive and omissions are
inevitable, In any case, this survey will tend to focus primarily on work in

the area of my own current interests.

z, QUANTIFYING DEGREES OF BELIEF

Host of the solutions to the aggregation problem require that each indivi-
dual’s information be quantifiable as a subjective probability distribution.
This distribution assigns a number, P(E), to each possible subset, I, of
the set, ©, of all possible states of the world according to the degree to

which it is believed to contain the "true'” state.

Such a distribution need not always exist {Kraft, Pratc, and Seidenberg
1959}.  Vts meaning has been challenged (Tversky and Kahneman 1374). Its
exisctence is implied by weak conditions (e.f. Fine 1973, de Finexrti 1974 and
Lindley 1982a}, but,elicit it is unclear (Savage 197}). In any case, it is
widely employed in theory and practice. Raiffa (1968) gives a very readable
account of it.

Often P(E) = J p{0)u{dd) for some measure p and point-function,
p >0, on the states 8 of the world. Then p is a convenient stand-in for
B

Usually P(®) = 1 but "... nothing necessitates this choice; it is a,
mere convention. The problem with conventions is that we may lose sight of
their arbitrary origin. The unit normalization and non-negativity conventions
begin to appear as substantive properties...", Fine (1973). Nothing forces
the group's members to choose the same scale for their probabilities. They
may even have different scales when © is not logically complete {for example,

{Heads, Tails} versus {Heads, not Headsl), for although all probabilities are

conditional, it may not be possible to fully describe the conditioning event,

3. TAXONOMY OF SOLUTIONS,

These are either "summarizers' or "accumulators'. The first are
formulas Ffor combinin§ (pooling) the individuals' subjective distributions to
obtain something typifying their views. The second accumulates the informa-
tion of the individuals either through interaction (the Delphi method, etc.}

or a ''super-Bayesian'' for whom the individual opinions serve as data.

b, INTERACTSVE APPROACHES

The individuals interact with or without feedback limitations, and

through dialogue attempt to reach a consensus.

WITHQUT FEEDBACK RESTRICTIONS. This is natural and easy to adopt. It

permits the free exchange of information so the range of views diminishes.

The group may well be "synergistic'. However, on the negative side, the
interaction may induce conformity, agreement without a commensurate exchange
of information, it permits strategic manipulation, bluffing, intimidation

and threats, to be employed. And the group needs a strong director.

WITH FEEDBACK RESTRICTIONS. (The Delphi technique and variants; see Dalkley
1975). Open discussion is not permitted. The feedback may consist of

summaries, such as group means or quantiles, for example, when the task is
point estimation. Or it may consist of the subjective distributions of the
other individuals, The process may be iterated. This approach can be
inexpensive since the individuals need not meet. And social pressure is
reduced. dﬁ the negative side, feedback is unduly restricted, information
cannot be freely exchanged. Recent studies of this method cast doubt on its
value (see Hogarth 1977).

FORMALIZATIGNS.  DeGroot (1974) postulates that Fin = E”ij By oq where
Fik = i's distribution after iteration &k and "ij'11 are fixed weights
with Z"ij = i.  Alternatively, Po=W Pn-l= W P,- If the i-th row of

W converges to (u‘,...,nk) as p*o, "consensus'’ will have been reached;

{uj Pio is the group's distribution. Berger (1961) establishes conditions

for the required convergence Lo take place,

In a more genecal model, wois replaced by w, ..., ﬂf The s

may themselves be arrived at by a dialogue {(Lehrer 1973; Choatterjec and

Svnata 1977}, Other dterative-interaction models have been proposed and
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analysed {Bacharach 1979: Aumann 1976). Press {1978) offers a more statis-
tical model for the process,

Lig SUMMAR| ZATION PROBLEM

Suppose, given subjective probability distributions, P, Q, a summary
of {P,q} is required.

LINEAR OPIMEON POOL. Stone (1961) proposed R=aP+(1-w) 2, 0 <a <1 on
grounds relating to a solution of Savage (1954) to the group decision probiem.
Obviously R is itself a prebability distribution. Howeve:. it has some
unexpected properties, By definition R{A|B)} = R{ARB}/R(A). It might be
expected that R(A|B)=aP(A|B} +{1-cid(A|B) as well. However, this is true
in only exceptional circumstances since, by an elementary argument, this
implies that 0=al1-a)[3(A) -P(al][P(B]A) -Q(B]AY]. It is easy to find 2

P and Q whichmake a = 0 or a =1 the only acceptable alternatives. So

without limiting R's domain, it follows that R is a dictatorship.

Incidentally, requiring that P(A) ¢ Q(A) and P(B|A) # Q(B]A) implies
that the underlying probability space, {0,3), be tertiary {Wagner 1982), i.e.
54 {¢, b, D, @} for any D.

This conditionality inconsistency is well-known (Raiffa 1968; Dalkey
1972, 1975). A related concern is R's failure to preserve independence
(Wagner 1982; Genest 1983a).

But the linear pool does have appealing properties. It is simple and
natural . It yields a probability distribution. HcConway (1981) shows that
if @ is tertiary, then R = aP + (*=a)} provided R is a probability
distribution and R{A} = £{2(A), 2(A}) for some [ and all events & (or,

equivalently, R has the Marginalization Property and the Zero Preservation

Property (ZPP)}. Genest (1983a) drops ZPP and generalizes McConway:

R= a,P + o, d+{1-a, - 02)5 for some probability distribution $ and

1
(possibly negative) weights o, with Iai|5,1 and [u| + a2| £ 1. S0 now
R may vary inversely with P {or §) and it may even ignore both P and 2.
Genest does give a weak condition under which ai 2 0. Additional support

for the linear pool is found in Bacharach (1975),

Usually densities are used to specify distributions. The linear poo
has an obvious counterpart, r = ap + !l-ulg, which may formally be derived
by differentiation. The required axiomatic support for its use is given by
Genest (1983b).

For simplicity, only ns= individuals have been considered abuve. All

i,

of the results quoted in this lecture have counterparts for ngenecral 1.,

OBJECTIONS TQ THE LINEAR POOL. A normative basis for selecting the pooting
weights does not exist, although various proposals have been made {Roberts
1965; Raiffa 196B; Winkler 196B). The density-version of the pool is

typically multi-modal so no clearcut choice for a jointly-preferred 5 s

indicated. The recipe is not Externally Bayesian, i.e. Prior-to-Posterior-

Coherent in the terminologies of Madansky 1978 and Weerahandi and 2idek {1978),
respectively, This means that pooling the priors and invoking Bayes rule
when the data is received gives a different answer than pooling the posteriors
if the weights are fixed. Whether or not this is objectionable is contro-
versial (McConway 1981). Finally the linear pool is not scale-invariant,
i.e., it does depend critically on the assumption that 2(6} = 3{®). So, for

example, vague prior opinions cannot be accommodated.

Hogarth (1977) points out the relative insensitivity of the linear pool
to the choice of pooling weights., This could be considered either advanta-
geous or disadvantageous.

LOGARITHMIC DPINION POOL. This, roo, can be applied to distributions or

densities. In the latter case r = C(p“p)(q“q), ap, aq > . Bacharach
(1973) attributes it to someone named Hammond. For Dalkey {1975) it is a
natural "“summarizer'': (i) it derives from the super-Bayesian approach
(Morris 1977; French 1981; Lindley 1382c), (ii) has a natural conjugate-
likelihood interpretation (Winkler 1968), (iii) is typically uni-modai {in
density form) and less dispersed than the corresponding linear pool (Winkler
1968), {iv) it is the only Externally Bayesian method of the type

f{pl@}, qi8)) + [ £(p1e), q(8)lulae) (Genest 1983b) and (v) it is scale
invariant.

OBJECTIONS TO THE LOGARITHMIC OPINION POOL, Like the linear pool, it lacks

a normative basis for weight selection; the super-Bayesian approach helps
here. 1t is mathematically more complicated than the linear pool, even if
it does overcome some of the other objections to the latter. Zero's are
vetoes; the difFiculties faced are like those which arise in conventional

Bayesian theory when the likelihood and prior have different support sets.

BROADER HORIZONS. 0 will be an arbitrary carrier set, for example,

@ = {8§:8 Y=set of available decision rules or
Ve fmwpm’ = [Hipg,th, «myem}, Interest will focus on :=functions

{"propensity functions' except that name has already been appropriated)



bl8)>C, 80, for which b(8)/blX) is deemed to be the relative degree of
support for @ over A. Examples: {i) b{8) = observed significance level
for the hypothesis " the true state of nature is 0", (ii) b{é}) = u{d) - L =
gain-in-utility using &c{4: ul8)-u >0}, (iii) b{B) = likelitood of o,
(iv) b(8) = density of a diffuse prior, {v) b(8) = density of a prior or a
posterior. Given b, and ba’ the relative propensity profile for ne®
versus ve@ is (b {u)/b (v, ‘be(u)lbz(u)) = RP{b,, by v}, A prospec-
tive pooling method, T{b], bz)(e). will be required to preserve Relative
Propensity Consistent {RPC) ’

‘Nb|'ba)(”;)/ﬂbl'hg)("]).?.T('-']'Cg)(l-'z)/'r‘cp‘-‘g)“’-_;’ whenever
'ﬁ.?(bl.b:_; D,-U,:zﬂ?(c,‘ca; "'9"’2)' It then follows, under this seemingly
weak requirement, that

a, o

fat 1 N . =
T(b1.b2)\8, = Cb, bez. the legarithmic pool, if |B]23. The argu-

ment for this is quite straightforward. Clearly

Ttb].bE)(u)lT(b].bz)(v) = E{(bl.bz; u,v) say, is constant on RPC
equivalence classes which may be indexed (if every b:6-{0,K), for some ¥,
is feasible) by {(xz,y)e R,. Thus i = QORP for some function C: RE-'(C.»).
Choose p, v, n and &>0 so that max{6,6'xi, G/yi) <X where x, i
are arbitrary in (G,m), i = 1,2, Choose bi(u) =5 T bi(\:) = (Sl_vi and
bi(n) = 4. The problem is now easily reduced to an application of Cauchy's
equation {Genest, Weerahandi and Zidek 1983). In this last cited work an
alternative formula is also derived, under an external Bayesianity-like
condition, with C =1 and a; = ui(ﬁ). i = 1,2 so that the weights in the
resulting logarithmic pool become carrier-dependent. The weights for the
various experts, in one application of the formula would be allowed to vary
with 6.

By applying the logarithmic pool with this broader domain, one rediscavers
Fisher's method for combining significance levels, Nash's product for finding
the equilibria of multi-person negotiation problems and the usual rule for
combining 1ikelihoods.

6. ACCUMULATIHG OPIMIONS VIA SUPERBAYESIANITY,

This approach has great potential but as yet few results are available.
The possibility of exploiting someone else’s opinion has been investigated
(Lindley, Tversky and Brown 1979; French 1980, Lindley 19820b).

In a more specialized form this becomes the second-guessing problem
(Steele and Zidek 1980; Hwang and Zidek 1982).

In this natural but difficult=to-implement approach, the individuals®
opinions are treated as data (Winkler 1968; Morris 1977) and an individual's

opinion is revised in the light of this data by Bayesian updating.

French (1982), for example, assumes X = (!.',2.2) has a jointby normal

sampling distribution in the view of the "super-Bayesian', where

ko= InEP(E)IP(E)] and 12 s ln[Q(E)IQ(E] . This density is conditional
on E and, of course, the super-Bayesian's, super-prior, Re). The super=
posterior, M(E|X), is readily derived:

[ MEM/AEIN ] o tug-um” £ (-3 +1z]) + e REI/MEN]

where . = E(AJE,I).  Taking antilogarithms gives (essentially) the logari~

thmic opinion pool completely equipped with interpretable coefficients.

OBJECTIONS TO THE SUPERBAYESIAN APPROACH. There will not always be an

acceptable choice for this role. Each individual can, of course, play the
role himself, but this just reconstitutes the original problem in a new form.
The task befalling the super-Bayesian is difficult. There is little
empirical evidence to guide his choice of a Yikelihood. And he has to
discover the prieor information sets upon which the individuals' opinions are

based and to model the dependence between them.

7. CONCLUDING REMARKS.

Where fgasible, well-directed group interaction with unrestricted feed-
back would seem to be the most promising approach to consensus. The process
is unlikely to produce unanimity of opinion, however, and some method of
summarizing or accumulating opinion would then be called for, For the former,
the logarithmic opinion pool seems to me to be the most reasonable choice.

The super Bayesian approach is the only one available for the latter, but much
remains to be done to put it in an implementable form. Finally, it should be
remarked that the group decision problem would seem to be of greater

practical importance than the consensus problem.
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II. MULTIBAYESIANITY: GROUP DECISIONS

1. INTRODUCT I ON

This talk is sbout multi-Bayesian statistical decision theory. The
fundamental ingredient is a group of Bayesians, B, who have been variously
called a "bunch' {Fisher 1972), a "population' {Dickey and Freeman 1975)
and a "bevy" (David 1982). These Bayesians can quantify their preferences
and degrees of belief as utility functions and prior/posterior distributicns,
respectively. | suppose they must jointly select a possibly randomized
statistical decision rule, §, by which to choose an action when the data is
cbtained. The worth of & to each Bayesian, BeB, is determined by his

prior or posterior (as appropriate) expected gain {or loss} in utility.

2. BASIC COMPONENTS OF MULT1-BAYESIAN ANALYSIS

This theory shares, with Wald's, the parameter, action, and x-sample
spaces, B, A, and X, respectively. The counterpart of the loss function

is also involved.

Let B denote a possibly infinite label set whose elements identify
the relevant characteristics of the Bayesians. Let ufa}x,9,8) denote
B's (bounded) utility for acA given xe4, 8e® BeB. In terms of

u, Wald's loss function would be
L{alx,8,8) = maxfu(a’|x,8,B):a” €A}~ u(a}x,0,8), {2.1}

B's problem is that of choosing a &: &{+|x) is a probability distri-
bution on the (measurable subsets of A for each xeX. In VWald's theory

§'s risk function is

r(6]0,8) = ff L{a x,8,8)6(da|x)P_(dx|6,8) (2.2)
x

This theory could just as well have been developed in terms of

w(s{0,8) & ] uta]x.8,8)8(da]x)p_(dx|8,B). (2.3)
%

Conventional Bayesian analysis is concerned with

B8 [x,8) £ ff uta]x,0,8)5(dalx)n_(d8]x.8) (2.4)
3]
or

B(s|8) £ [f B(s]x,8)P_(x|8) (2.5)
b

according as x is or s not observed. For simplicity, (2.5) is

assumed.

CRITERIA AND SOLUTION CONCEPTS. &'s assessment profile is

B ~B(§|8) if, as 1 now assume, x Is unknown (Bacharach 1975, p.183).
This profile replaces the function 6 + H(GIB.B). which is central to

Wald's theory.

The Wald, muliti-Bayesian connection is, in fact, stronger than

mere analogy. 1f utilities can be compared and

u(a|x,8,8) = ula|x,8) and P(+{8,8) = P(+]|) (2.6)

for alt @& while

“
B

{{g):0¢0} (2.7

where [B] denotes the probability measure which is degenerate at
8 then the multi-Bayesian and Wald theories are identical., Randomized
rules cannot be ignored here as they are in conventional Bayeslan

analysis.

in general, the two theories, Wald's and multi-Bayesian, differ
because utility functions are not unique.' They can be specified only
up to an order-preserving affine transformation because utility theory

does not admit interpersonal comparisons of utility (c.f. Luce and



Raiffa 1957, Jones 1980, p.180).

Because of the nonuniqueness of utility functions, two fundamental
approaches have been taken. One (Nash 1950), admits the indeterminacy
of utitities and develops solution concepts which do not depend on the
comparison of utilities. The other admits such comparisons {c.f.
Bacharach 1975).  And Savage (1954, p.172) argues that these compari-

sons would be possible in the case of a jury.

Savage (1954}, like Wald, bases his theory on Joss rather than gain
LN
and introduces an analogue of the risk function {equation (2.2)}, B's

"(personal) loss'':
Lp(GlB) = max{B(&°|8):6°eD} ~ B(S|B). (2.8}

This is the counterpart of what is sometimes called "regret™,

By exploiting the analogy between the Wald and the multi-Bayesian
problems which derives from the formal similarity of W(§|*B8) {equation
(2.3)) and 8(&|+) (equations 2.4), {2.5)) various concepts and criteria
become interchangeable to an extent which is determined primarily by

whether or not comparisons of utility are deemed to be possible.

Savage (1954) states the analogue of “admissibility", as the group

principle of admissibility. This notion | will call B-admissibility.

Savage (1954) also defines a solution which, unlike B-admissibility,
does require intercomparable utilities, called the group minimax rule, which
1 will call the B-minimax rule {or rules}, namely the &* {or §%'s) for

which
ft

max L, (8]B) = min max Ly (6]8). (2.9)
BeB SeD BeB

fBecause there is no natural origin on the range of a utility function,

solution concepts tike that embraced in equation (2.9) entail the creation

of a benchmark, a quantity, c(B), I will call a reference utility
level (RUL). The choice of this function is irrelevant, however, to

the B-admissibility criterion.

It is also irrelevant for a solution concept which might be called
B-Bayes {Bayes if (2.6) and (2.7) hold]. Madansky (see Bacharach 1975,
p.186} exploits the Wald-multi-Bayesian connection to show there exists a

probability distribution on B, &, (a B-prior distribution} such that

the solutions of the group's decision problem must maximize
B{éju) = [B(§|BIx(dB). (z.1)

The work of Harsanyl (1955; 1977) in the context of welfare economics

yields {2.11} with o the uniform distribution.

All other solution concepts to be presented do require that a RUL

be specified. Various possibilities exist (Rapoport 1970), notably:

Savage's : c_.(B) = max{5(6~18):6"eD}

Shapley's : c_ (8) = B's security level = min{B{6"|B}:6 D}

Nash's H c“( ) = t's current utility level.

Nash explicitly introduces the ''agree to disagree' action as an
allowable choice and, as well, gives each BeB the right to precipitate
a breakdown in negotiations by insisting on this choice. Nash's theory
recognizes that an individual, B, cannot be forced by the group to
agree to a choice 6eD for which B(§|8} < cN(B). Thus the set of Nash
feasible solutions consists of those (&'s) for which B(§]|B)- cy(B)>0.
In contrast, the B-Bayes and D-minimax solution concepts 2llow the
nossibility that the group might choose a SED which leaves individual

B's with a net loss of utility.
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0f the solution concepts for finite B, In the survey of Weerahandi

and Zidek {(1981), the most celebrated is that of Nash (1950): maximize

n {B(5]B) - (8] (2.12)
B +

where c(B) = c (B) and, in general, [x]*= max{x,0} {Nash's derivation
of this product does not depend on the particular choice of c{=)). A

slight weakening of Nash's assumptions (Kalai (1977) gives : maximize ’

p(s|a) AT (B(S[B) - cy(8)] %) (2.13)
] +

where a(f) 20 and Ja (B} = 1 but is otherwise unspecified. Shapley's
selution concept agrees with Nash's in this situation (Jones 1980} except

that c(B} is csh(B) and not cH(B).

Nash's derivation of {2.12) and Kalai's of (2.13) explicitly assume
that utility functions are not comparable. And this is reflected in
their respective forms; the transformation u-+au+b leaves the solution-

set invariant as it does in conventional Bayesian decision-theory.

A general class of solutions for finite B and comparable utilities,

p%r = {6 :~o< psw} (2.1k)

1]
may be obtained by maximizing

:11/:

{La (8} 2B(6|B)] (2.15)
8

subject to

4B(8]B) > 0 for all B8 {2.18)

where AB(8|8) = B(S|B) - c(B). The cases, p= -=, 0 and +=

are obtained in the limit.

Savage's minimax solution is obtained by letting ¢ be his RUL,

replacing 4B by - AP and minimizing the resulting version of (2.15)

when p = ¢+o,

3. SUBSAMPLING ASSESSHMENTS

B is still required to choose &. However, 1 now suppose that
6 will be Implemented only by a subgroup, scB. Only s's members
will derive any change-in-utility from the use of this rule, The
remainder will simply retain their current utility level, cN(B), BEB~-s.
lt is known only that s€S, & specified collection of subsets of B
but not which of these is to be chosen. Since BeB is potentially a

member of s he retains his self interest in the group's ultimate choice

of §.

If s 1s fixed by some unknown process and is Ttself unknown and
$=1{{B}: BeB} the group’s choice of § would have to depend on a
comparative analysis of its assessment profile, B(&[+}; the problem
of Section 2 reappears. MNothing is known about the general version of

this problem with arbitrary S.

Example 3.1
-~ e “f
Here x, § and B are px1l vectors with

x[8,8 ~ N(8,2), B[8 A NB,T) and BeR, =B, S = {{B):BeB)} and

uta|x,8,8) = C (B) - D(BIa~€)" Qla-8)

where D >0 and acA = RP. Then, as is easily shown, &'s assessment

profile is
B(8]8) = ¢,(8) - n(B) £ (B-8)" R (E-8).

Here Cl(-) is a certain function whose exact form is of no relevance.

AMlso R2°QL, B=02{6-%), c=HZ+D and T=21-3.
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If B had been specified, then the best possible choice of 6 would
be the Bayesian estimator, given by ﬁ =B, i.e. 6= I8 + Tx. But we
are supposing that s = (B] has not been selected and that every BeB
is eligible to be chosen. A mutually acceptable 8 =80 is to be fourd

before this choice Is made and it cannot therefore depend on s.

Since, as is easily shown, x|B ~ N(B,L+1) & possible candidate for
B is B+ §0(x) = x, this being & B-unbiased rute. This choice then

entails 8 = ao(x) = x as well,

If p<2 aresult of Gatonis (1981; Theorem 2.1} obt:ined ina
different setting, impiies that 60 is B-inadmissible. However, if
2 <p then 30 is B-inadmissible and there exist estimators, 31, whose
assessment profiles are uniformly larger for all B than that of éo.
Any such 61 would be jointly preferred to 60. A general class of

~

potential alternatives to 80 is given by Thisted {1976). END OF EXAHPLE.

Now suppose s€S is chosen at random according to a sampling design,
p= {p{s)iseS}, p20. Let us assume for the remainder of this section
that B is finite and require that ZIp(s) = 1. The case of an infinite

B remains unexplored.

Each BeB is concerned with w(B) = BEsp(s), his inclusion
probabitity, 0 < m(f) £ 1. Assume n = Lw(B), the expe‘cted sample
size, is fixed. His expected utility is, in any case
7(R)B(S|B)+ T (B)cN(B) where T = 1-1. Thus the problem of choosing &
again reduces to that considered in the last section, albeit with a

different assessment profile.

The solution concepts presented in the last section not only imply a
class of optimal choices for § for fixed p but imply an optimal design

as well.

a.

To unify this discussion, the analysis will focus on the ¢riterion
function given in equation (2.15). For simplicity the seemingly
realistic choice c(B) = cN(B) will be adopted. Thus the appropriate

utility increments are:
n(B) &B (&|8) (3.1)

where  AB(3|8) = B(8|B) - c\(B).  The problem under consideration

then reduces to maximizing

{Za(B) mp(8) [aB(&[8)] P1/P-wg p g , (3.2)
subject to Mash-feasibility:

AB(&|R) > 0 for all BeB, (3.3

with p=2o and p =0 defined in the timit. For 1<p, f is
maximized at w(B) = 1 for Beci, where |s| =n and
Zé.(B)-fmax{EJ‘\(B): |s“] = n, s”¢Bl. \f, however, 0 < 1 the situation
is more complicated and Kuhn-Tucker optimization methods would need to be

employed.

Se if p > 1, the optimum choices of (m,8) (%, &%), satisfy the
requirements wH(B) = 1, for Best while steB, |si| = n and 8% jointly
maximize EG(B)[AB(GIB)JD. For p=+= this means an
s = s¥c B, |s%*| = n which contains the B% for which a(B)AB(S]B) is

jointly maximized in B and &. For p <1, little can be said.

This analysis reveals a striking feature of the Madansky-Bacharach-
Harsanyi-Blackwel1-Girshick ({(B-Bayesian) and other solutions for p > 1.
The group of N Bayesians would defer the choice of & and subsequent
action to that subgroup of size n who had jointly the greatest possible

expected personal gains of any such subgroup.
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The Xalai-Nash solution {p = 0) is quite different from the
B-Bayesian results which were just described. In this case (3.2)

becomes

n [m8)] 8 [ass|py] 8

Therefore the optimal choices of = and & are made, each without
regard to the other. The optimal &'s wunder subsampling are just the
Nash solutions in the original problem. The optimal # Is easily

evaluated .

The maximal value of the objective function given in (3.4) js

attained at

B
n
'
-
1
n
=
[
[
+
=
M

. N

(N - J)ail(ul + oaes * o.N_J), otherwise,

where J is the first k=10, 1, ..., n for which

{n=k }a Wl -a < 0 after the ui's have been ordered
ne| == — — — ——— —

l- RN
Q) £ .ee S

H-k

EXAMPLE 3.2

Suppose N = 19, n = 10 and
a = {(0.01, 0.01, ..., 0.01, 0.05, 0.20, 0.25, 0.35). So J =4
i, =1 for i2> 16 while LI 0.4, i < 16 for an expected sample
1

size of n = 10.]|

When certain members of B are designated, by the large size of
their a's, as having a particularly important rele in the analysis,
these must be included in the sample. As for the remainder, there is
at least some chance each will be included. However, utilities are

assumed to be incomparable so the importance of individuals is measured

3.4)

(3.5}

10.

only in terms of a and not, as in B-Bayesian case, in terms of expected

utitity gains as wetl,

4.  SUPERPOPULATION ASSESSHENTS

Suppose B is a subset of B, a set which will be called a

superpopulation. It is assumed that 6=6(-1x,B) has been specified.

In Wald's and, more generally, the frequency theory of statistics, &'s
performance is assessed by considering not only what it does with these data,
x, but, as well, what it would be with every other data set % which might
have been obtained but was not, The seemingly natura) counterpart of this
principle here would require that we ook not only at what this procedure
would do for this group B but, as well, what it would do for every other
group, ﬁ, that might have used it to analyze these data but did not,

This is one interpretation of the idea underlying superpopulation evaluation,

Choosing an evaluation criterion is problematical. In general there
cannot exist an objective, i.e. group utility function as Arrow's celebrated
theorem shows (Arrow 1966; see also Bacharach 1975). Such a criterion n;ay,
however, exist in individual cases {like that of Steele and Zidek 1980; see
also Savage 1954, p.172) when equation (2.6} holds. In what
might be called J‘th».a ‘'super-Bayesian' approach, the criterion would be
subjective, the utility function of an individual (the "*investigator' in the

terminology of Lindley, Tversky and Brown 1979) selected from the super-

population,

With a criterion selected and (x,B) treated, formally, as "data", the

classical decision problem re-emerges as the next step in a potentially

infinite regress.
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EXAMPLE 3.1 {continued)

To the other assumptions we add these: CO(B) £¢C., D(B)

D

where CD and D are constants, D > 0, and Ele ~ N{8,T) independ=-
ently of x|@ ~ N(8 E£). The Bayesian solution concept led to the rule
t{x|B) = ¢B + Ix in earlier analysis. The efficacy of this procedure

is the issue of interest here.

Because t(x|B)}8 ~ N(0,A) where A = °Tg + T°IE, this problem
is easily reduced to canonical form, and so may be analyzedby the methods
presented earlier with this example. The results would indicate that ¢

is S-admissible If p £ 2 and S-inadmissible if 2 <p,

The qualitative implications of this mathematical result are somewhat
surprising. If 2 <p and § = 5(;|§J needed to be specified before the
arrival of x and 8 then the choice & = t would not be acceptable.
This would prove perplexing to an executive who planned to employ a
Bayesian consultant, The super-Bayesian would use his S-Bayes rule,

not t, in any case.

Before leaving this example, It is worth noting that an extended
version of the usual notion of equivariance obtains, 1f, for example,
rsre=o’c , L =1 and the resulting value of [ is estimated by

[(p-2)/lix-—ﬂl|2 I, the James-Stein estimator is obtained:

4
w(x]B) = EB + éx. It is an S-affine equivariant rule under the trans-
formations x=a x+b and B+a B +Db where a is orthogonal
and bcRp. S0 the James-5tein estimator is translation equivalent in

this extended sense even though it is not in the more familiar setting.
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IIT. MULTIBAYESIANITY: APPLICATIONS

1. INTRODUCT EON

tn previous lectures | surveyed solutions of the consensus and multi-
Bayesian decision problems in the context of statistics. In this talk
I1lustrative applications will be presented.,

2. ESTIMATING THE MORMAL MEAN (Weerahand! and Zldek 1982)

U will begin by recalling Nash's solution (Nash 1950).  Suppose two
Bayesians, B;s i 21,2, must jointly select a {possltly randomlzed) decision

rule, &, fof which their expected galns-in-utility are ui(ﬁ)-ci, i=1,2,

Here ;s i=1,2, 1s the utility of their current assets.

2 .
Any Nash solution is required to maximize Il [;1(6)-c1] subject to
i=l
Nash-feasibility: ui(é)- ¢ > 0. This Is implied by certain weak assump-
tions. In particular, each B is required to honestly disclose his

preferences and degrees of bellef and to belleve the other's disclosure,

Bayeslan B =i, { = 1,2, is assumed to have a posterior distribution

with the multivariate normal density function given by
meli) = exp[- 3(6-0)7 M0-0,)] (z.1)
~ ~ ~iLi S .
where Xi is a specifled positive definite matrlx and OeRP, Biekp.
As his gain-in-utility function, take
u(@19,3) = exp[- 3 (8-8w Mo~ 6] (2.2)

where Ei is a positive definite matrix of constants. t assume for

simptlicity that W o= n4-21 >0 for some A but the results | will describe

are easily generallzed.

The expected gain-in-utllity for Bayeslan i of the estimate B=§

s easlly shown to be, after a conventent rescaling,

2.

EICTEY
B(8[1) = [ B(8|1)6ad) = ap(s}i).

[ (91"§)Tﬂ-1(9i“§) where $(u) = exp{-3u), u > 0. Finally,-

1t will be assumed, quite reallstically, that the costs of disagree-
ment are o¢{1).= ¢(2) = 0, that is, that no penalty is attached to the
Jolnt decislon not to declare an estimate beyond the loss of anticipated
!

utiltity,

Denote the "agree to disagree' decision by 60 and assume that

B8 i) = 1) =0 For 1= 1,2.

B-ADMISSIBLE ESTIMATION RULES. OF fundamental Interest Is the set s,

consisting of all 2-tuples, (B(§]1), B(§]2)) obtained by varying

ge Rp U{ﬁol. The convex hull of S, say 5, would consist of all
utlll}y palrs which can be achieved by adopting randomized rules, i.e.
{((s]1), B(S|2)) : 6 randomized}. Let &5 represent S's boundary
and P, that portion of &5 which corresponds te the elements, ﬁ.

of the class, C, of nonrandomized rules which are B-admissible wlthin

8. The sets S, 8§35, P and C will be characterized in this subsection.

For simplicity B{-]i) Is hereafter denoted by u (e,

Obvicusly, 5c[0,1]2 and u, =1 is attained at 8=6, sosthat

the corresponding u, Is uniquely determined. However, if u = )
i

0<}«<1, 8 and hence u_ is not unlquetly determined; In this case,

2
If p=1, § may have either of two possible values while, If /p > 1,
It is merely constrained to lle on an ellipsotd, Thus, If p=1, §
i5 a curve while, if p > 1 it is a compact subset of EJ.IZF. The

precise form of S 1is of no relevance to our analysis, but our results

will be more easily interpreted by referring to the Flgure,

The set of uz-values corresponding to u, = "1(§) =¢, l.e.

u, = u2(§) ls the cross-section of S at u, =e. The maximum and
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min i mum uz-values within this cross-section are the points of 35 at

u, = ec. Bywvarying ¢, 0 <= ul(gl), these extrema generate 3S.

Finding the extrema of u, or equivalently (8?-6)7-1(02—6)

for fixed v, or equivalently (Blg-§)1—1(91~§) is easlly accomplished.

The resutt Is: 3S consists of the distinguished point {(0,0) and the

utility pairs, (ul‘“?) corresponding to §= 91' 1,2 and the elements of
B = (1+07700, +8,). =< A <m, A #-1) (2.3

The quantity X which indexes the set in {2.3) is the Lagrange

multiplier. It varies with u and its value, as we shall see below,

determines whether the u2-extremum it determines Is a maximum or a

minlmum,

As s easily shown, the utllity palrs corresponding to the elements

2, .22 &
of (2.3), (u;,u,), are u = oL Ai:[ y 1=1,2, where 4, = D1+ X) !

252 2 cvn _o y\Ta-len _
8,=2% 8, and D° =(8,-0,)'A7N(0-8,).

The character of 35 1Is now easy to determine. It is easily shown
that .
= - 2.4
d“zldul A(uzlul) ‘ (2.4)
: {
and N o
rd
2 2 _ 2 !
dfuy/duy = (up/udA[240] + 278, {2.5)

where A;_ = 361lal =-?(1+)\)-3 2.
Observe that as JX»-1, (ul,u2)+(0,0). From (2.4) it follows that
as A Increases from -1 to O, v and u, increase to ¢[D2:| and

1 respectively, the values corresponding ‘to 8= 52. Then as A continues

to Increase from 0 to +w, v increases to 1 whitle u, decreases to

¢[p,], these latter values corresponding to the cholce § = 0. A

- = e . =



M-, (ul,u2)+(0.0). As )\ decreases from -1 to -= , u, and

1™

u, increase to 1 and ¢[Dzj, respectively. Thus: 95 |

The upper branch increases from (0,0) to (ul(Bz).uQ(Oz)) and then

decreases to (ul(g.l"“l'{gl.”‘ The Jower branch increases from (0,0)
o (u,(8,),u.(8,))

The nonrandomized rules which are B-admissible in § correspond to
the utility pairs in Pe¢3S. Obviously, P is that part of 35's upper
branch which joins the utility palrs corresponding to § = §1 and
8= 8,. The Nash solutlon will be nonrandomized If the function u, of
uy defined by P, is concave. This will be the case If dzu,‘,!dui 0.

on P, Equation {2.5) implies: P determines a concave functlon, u

2
of v if and only if

S
D= (9, - 80 A TG, - Ba) sh (2.6)

.

The quantity D% in (2.6} Is a Mahalanobis distance: So the

2

condition is intuitively natural since D° Is a measure of the consensus

between the two decision makers.

Other noteworthy features of § are easily derlved, and these

appear in Figure A.

Observe that each of the sets, S, f{llustrated in Figure A:
(1) includes (0,0), (ii) Is symmetric about the 45° line, (ii}) Is

below (respectively, to the left of) the line u_ = 1(ul= 1) except at

2
their unique point of intersection which represents § = §2(§),

{iv) has a concave (respectively, convex) increasing upper (lower)
boundary to the left of the polnt which represents 8 = 02(6). All

S's must have featwres (i) - (iv). The only qualitative difference that

5.

may exist between any two :i's {is found by Inspecting their boundaries

be tween 6 s 61 and 6 = 6 5 Figure A portrays the fact that this
T T T2
portion of the boundary will be a concave curve 1f and only if p? <.,

¢
RANDOMIZED DECISION RULES.  An inspection of the curve in Figure A for

Dz = 7 makes obvious the need to introduce randomized decision rules,

There Is a considerable divergence of preferences or (a posteriori)
opinions of the two Bayesians. The best nonrandomized rute (X = }) In
(2.3)) ylelds a relatively small increase (-42) in utility to elther
Bayesian, S0 a coin toss leading {approximately) to either § = Ql

or § = 92 would seem preferable, for then one of the Bayesians will be
wel)l satisfied, while the other is not much worse off than if the best
nonrandomlzed rule had been adopted. And their expected utilities would

rise considerably (by -52). Thus It is mutually beneficlal to cooperate

and jointly adopt a randomized rute &. i

The Introduction of randomized estimation rules changes the set of
expected utilities to the convex hull, S, of S, It should be oted

that if p> 2 then S =75 when sz_ll.

Recall that maximlzing P, the Nash product, amounts to maximizing
a, o
the function (ul,i.:,‘,)-'-u:l']'u22 over S, the convex hull of S.I It can

be shown that the optimal nonrandomized rule, l.e. the rule which chooses

60 = @8, +a8, with certainty, Is globally optimal If and only if

efther . /

() 0% = (g - 9WNE -0 s or

(1) 0>u and 5 < (0%/2)(Max{o, o)} ~ §) where 5 Is the
positive root of

tan h(sMs)t = uwp?, (2.7)



When nelther conditlon (i) or {ii) holds, the Rash solution is

randomized and it consists of choosing the estimates

(3+ 2507200, + (3 - 2507208, and (} - 2507238, + (3 + 250709,

with probabilities a and 1 - o, respectively, where s is the

pesitive or negative root of equation {2.7) according as & > 1/2 or

® <1/2, and

- 2 -
a = [{(ul - a,)0%/5 + 1]/2 {2.8)
As D2 = o, n2l(u§) +1, a-~+ o and the Nash solution converges
to the rule, "choose 91 and 22 with probabilities o, and oy,

respectively. On the other hand, p?+ 4 implies s + 0, and when
s < D2/2 (Hax[al.az} - 1), the nonrandomized rule; ﬂlgl-r “252’
becomes optimal. The convergence of 02 to u Is insured by Increaslng

the amount of data which is available.

3. SECOND GUESSING STRATEGIES

.

I will now present an example wherein the “second guésser" In the
role of a super-Bayesian exploits hls adversary by taklng advantage of his '
special positfon in the scheme of things to win a guessing contest.

The structure of our guessing model can be described by a system of

four p=-vectors.

Target values: (91,02, S000 BP) T @
First Guess: (X)2X50 -ees Xp) = X
Second guesser's hunch: (Yl.YQ. sees Yp) = Y
Second guess: (Gl’Gz’ ACoH Gp} = G

The 61 represent the real values to be guessed. The xi are guesses
made by the person who goes first, and all these are assumed to be available
to the second guesser before he acts. The Yi represent the second

guesser’s best estimate of the 01. Flnally, the Gi are the gucsses to

be announced by the second guesser.

7.

Our principal task is to determine

how G should be based on % and Y.

The objective of each player Is to come closer to @

than hi

s

opponent, so weé begin by setting V& number of times in p the second

guess Is closer than the first.

Assume the existence of the joint, continuous distribution,

8|x,¥

which could be purely subjective or involve "objective componenté". Let

v = (vl, 0005 vp) be the medians of the marginal distributlons,

(o, |x.v}.

Then Hotelling's strategy, ¢t » with G

£ _
i

Xi - € according as xi < v, or not, is optimal.

A simpler, sub-optimal strategy is "hunch-guided", un)ike Hotellling's

(=

which is "median guided’: Ei = X

or X, >Y,,

i

i

Then

{Three-Quarter Theorem):

i

+ € or xi - £ according as X
i

X,
i

+ € or

i

f X=%-8 and Y=Y -8

are ldentically distributed, independent and symmetric about zero, then

the hunch-gulded guess has probabllity 2

of winning as € + 0.

glves a lower bound for the performance of the optimal strategy.

may only be from the optimistic perspective of the second-guesser,

This
This

have enjoyed considerable empirical success at second-guessing, uslng

this strategy, however.

; {
3 2 2
when 68juh Nl o Ip) b~ Ny, 0, %) and X,Y[8,u ~ N(G(Ip,lp).l‘),

P ° ]
2 ’
OY Ip

Jff

the median-gulded strategy reduces to a more expliclt form. Under the

preceding Gaussian model the Hoteliing strategy is

c.*
1

= Ky +e If xi<wo+(1-y)[8§+(1-8);3

X

i

€

otherwice,

+ (- @B - X)
+ Q- B)Y, -F) ]

< Yi.

v

i
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-2, =2 ~2 -2)"L 2 2 2
where v =0 “(0 " +0p T s 0y v 0% =gy t o,
a = 09-2(09-2 + Ox-2 + UY-Q)-I
and B = ox_z(ox_z + 01-2)'1 .

The basic part is the mixture of means, Yu, + (1 - Y)[Bi‘ﬂ(l-ﬂ)?]
which Is perturbed on trial i by the "mixture" of residuals
a0+ (1 - cu)[ﬁ(xi = X) + (1 - BMY, - ¥)]. The coefficlent

T appearing in these mixtures is near 0, 1, or 1

B = oX %(ox
accordingly as 0x20Y_2 is near », 1or0. This ratioc Is one natural
measure of the relative abilitles of the two guessers, and this inter-
pretation is reinforced by considering the extreme cases. When
ox2oy'2mm the first guess is essentially Ignored, and when

cx2UY_2'\' 0 it Ts the hunch that is Ignored. This last case is of
particular interest since It corresponds to trylng to outguess a far better

informed adversary.

The strategies just derl-ved have the drawback that they are functions

2 2 2 2
of Yge 0'_l » Jg'y Oy and ay", Although the magnitude of Uy and of .

the relevant variance ratios may be sufficiently understood for some appli-
cotions, their exact values cannot always be specified. They may be
determined empirically, however, (see $teele and Zidek 1980). In partlc~
ylar, IFf uuz =0, UY2 = o, crx2 is known and 002 unkhown, the

Inferred optimal strategy becomes 'mean-quided" : Gi* = xi +e or xi-e

ccording as X, < X or x, >X.

1
This has Intuitive appeal even outslde the context of Gaussian distri-

butions, and If p Is large, the second guesser has a conslderable

apparent advantage (Hwang and Zidek 1982). Let €1 and g2 represent

the number of wins for the first and second guessers, respectively, Assume

xi - 0i are i.i.d., conlinuous and symmetrically distributed about 0.
Let Ai =8 . Gi and T(x) = lim| (4 :[Ai | < x}|/p which, 1 will assume,
exlsts, Then G2/p+3% + I”c(x)dr(x) (a.e) where F is the common

d.f. of xi - G]., i=1, .(.).. p-¢ If the Bi's are i.i.d., continuous
symmetric with mean 0 ond d.f, G, G2/p > } + IwG(x) ~ G(-x)dF(x)} (a.e.)
and so if G(x) > F(x) and < F(x) for xzoo and £ 0, respectively,
G2+ } + B (a.e.} where B2 %. This Is an analogue of the **-Theorem"

of Steele and Zidek (1980).

Under severe sufficient regularity conditlons Vimiting distributions

for Gl may be obtained:

(i) If 6, =m forall i, Gl/p*-f(o)lzl dn distribution where

—_— i

Z~VvN(0,1) and f s the dens!tzg_{the xi-ei and

3
(i) 1f fe)>o0, [cl-[pi]/[{ pi(ppi)-'z +2 " N(0,1)

.

In distribution where P, = PO < X; - @ <|ﬂi|. i=1, ..., p

provided that }jf(ai)/p +0 as pow

The first of these theorems applies when the 0's are concentrated.,

at a point, the second when they are widely distributed. Their great
dissimilarity suggests the general result will be quite t:omple:m."f in
any case, all of these results establish the great advantages which p

Ve
obtain for the second guesser.

Little more Is known about second guessing, Plttenger (/;80)

indicates another direction for the theory. ,
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