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Abstract
This paper implements and empirically assesses a Bayesian methodology for the

spatial interpolation of random multivariate Gaussian fields with unspecified covari-
ance structure. One special feature of the method is that it does not require all sites
to monitor the same set of pollutants. This feature is particularly relevant in envi-
ronmental health studies where pollution data are often pooled together from several
monitoring networks which mayor may not monitor the same set of pollutants. The
methodology is applied to the data in the Province of Ontario, where monthly average
concentrations for summer months of nitrogen dioxide (N02), ozone (03) , sulphur
dioxide (802) and sulfate (804) are available for the period from January 1 of 1983 to
December 31 of 1988 at 31 ambient monitoring sites. Detailed descriptions of spatial
interpolation for air pollutant concentrations at 37 approximate centroids of Public
Health Units in the Province of Ontario using all available data are presented. Em-
pirical assessment of the methodology is done by a crossvalidation study where each
of the 31 sites is successively removed and the remaining sites are used to predict its
concentration levels. The methodology seems to perform well.

Keyword: Air Pollution; Bayesian Spatial Interpolation; EM Algorithm; Ozone; Sulphate;

Nitrate; Sulphur Dioxide;

1 Introduction

Le, Sun and Zidek (1994, hereafter LSZ) recently proposed a Bayesian methodology for

rnultivariate spatial interpolation. The method is particularly useful in environmental health
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studies where vector-valued responses are only measured at designated sites at successive

time points and data are generally not available at many locations of interest. One special

feature of their approach is that it does not require all sites to monitor the same set of

pollutants; that is, not all of a specific set of pollutants are observed at all sites. The missing

pollutants at the monitoring sites are termed missing-by-design. Specifically they derive the

multivariate predictive distribution for all pollutants at the non-monitored locations, along

with the missing-by-design pollutants using all available data.

In this paper, we apply the LSZ methodology to Southern Ontario air pollution data. This

kind of interpolation was needed in a recent study (not presented here) of the association

between air pollution and respiratory morbidity in the population of Southern Ontario.

Specifically, monthly average pollutant concentrations down to the level of a Public Health

Unit (PHU) are needed. Since air pollution data from several monitoring networks are

pooled together, not all sites monitor the same set of pollutants. Here it is assumed that the
variation caused by different networks to the observations is negligible.

The pollutants under consideration included N02, S02, 03 and S04. In general there are
two kinds of air pollutants: (i) a primary pollutant, which is directly emitted by identifiable

sources; (ii) a secondary pollutant, which is produced by chemical reactions within the

atmosphere between pollutants and other constituents. S02, N02 are primary pollutants,

03 and S04 are secondary pollutants. S02 is produced by burning of sulphur contained

fuels and its level depends on the local emission sources, like burning fuel oil or smelting.
N02 can be produced by high temperature combustion and so its level could depend on the

local sources as well.

The secondary pollutants studied here are all produced by oxidation of primary pollu-

tants. This oxidation is driven by ultra-violet radiation from sunlight and comprises chemical

reactions that are temperature dependent. Since the chemical reactions proceed while the

polluted air is being adverted by winds, secondary pollutants are generally more widespread

than primary pollutants. We thus refer to secondary pollutants as regional. Since N02
can also be produced by oxidation, it could be considered as a regional pollutant. The

dominant factor in producing N02 could be either local sources or oxidation depending on

the atmospheric condition. The results from our analyses indicate that N02 behaves more

like a primary pollutant in this case. Because of temperature dependence of the governing

chemical reaction, 03 levels are high in early afternoon and midsummer, low overnight and
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in winter. The oxidation of 502 to 504 is dominated by photochemical processes in dry,

warm atmospheres.

The proposed methodology is empirically assessed by cross-validation where the sites are

successively removed one at a time and the remaining sites are used to impute the missing

data. The results are fairly promising; some interesting findings are highlighted here and

more details are given in other sections. As expected, the correlations between the observed

and predicted values are higher for regional pollutants than for local pollutants. The correla-

tions averaging over all sites for 03 and 504 are .96 and .97 respectively; the correlations for

N02 and 502 are .64 and. 78 respectively. Figures 1 and 2 depict typical temporal patterns

between the observed and predicted values for regional and local pollutants. For regional

pollutants, the methodology performs very well in predicting both the concentration levels

and the temporal patterns. This result is not too surprising since the regional pollutants

tend to be highly spatially correlated. For local pollutants, there seem to be some biases in
predicting the levels. This deficiency indicates the need for more data in the neighborhood

when predicting the local pollutants. On the other hand, the temporal patterns seem to be

tracked well even with limited amounts of data. This result is encouraging in that it may be

possible to improve the current method to deal with the bias problem for local pollutants.

For example, a prior distribution of the mean process where the levels at only neighborhood

sites are used, could be adopted instead.

The proposed method allows for the use of all available data in its interpolation. One
interesting question is whether anything can be gained from this approach in comparison

with that of interpolating one pollutant at a time. Our results indicate that the current

multivariate approach could provide substantial improvements over the univariate approach

on regional pollutants. The relative reductions of the mean squared prediction errors from

using the multivariate interpolation over the univariate interpolation are about 300% and

900% for 03 and 504• This information gain is due to the high correlation between 03 and

504 and hence observed values of one pollutant help to predict the other. It is interesting

to note that the gain for 504 is substantially higher than that for 03• This is so because
there is more information available for 03 in predicting 504 than vice-versa; 21 sites monitor

03 compared to 10 for 504• The improvements are not as great for the local pollutants as
expected. For example, the reduction for 504 is from 1.27 to 0.14 and for 502, from 0.76

to 0.62.
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The paper is organized as follows. For completeness, we briefly describe the theory in

Section 2. Section 3 describes its implementation on the data from southern Ontario. Then

in Section 4, we look at how well it works. Section 5 looks at the gains we make from

combining sites and pollutants in a single analysis.

2 Bayesian Interpolation Theory

Following LSZ, we assume a normal model for the conditional pollutant sampling distribu-

tion,

(1)

where: X = (Xl,'" ,Xn)skxn is the response matrix, X, (t = 1, ... , n) being the response
vector for all s sites at time i; Z = (Zl' ... , Zn)hxn is the matrix of covariates;

(

/31,1
B-

/3sk,l

/3l,h )

/3sk,h skxh

is the coefficient matrix; E is the unknown spatial covariance matrix of X; and In is a n x n

identity matrix. The conjugate priors of 2:, Bare,

(2)

and

(3)

Among s sites, Sg are gauged and yield observations of pollutant concentrations. The

remaining Su ungauged sites provide no observations. Accordingly we partition X into XO

and X(l). XO is the response matrix at ungauged sites. After appropriate rearrangement of

columns, we can further partition X(l) into Xl and X2. The response matrix Xl represents

all unobserved pollutant concentrations and X2 those observed. The partitions of E, BO, F
and <l> are similar. For instance,

where 2:00 and 2:(11) are 8uk x 8uk, 8gk x 8gk matrices, respectively.
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An indicator matrix R is introduced to simplify notation. Suppose the indices of missing
values in XP) were il, ... , i/ and the indices of observed values, i/+b ... , isgk' Let RI =
(ri1,' •• , riJ and R2 = (ril+1 , ••• , ri.gJ where rj, j = 1, ... , sgk is a sgk x I-dimensional
vector with the ph element being one and the remainder being zero. Thus, RI and R2
"mark" the position of missing columns. Then R = (RI, R2), and we let Eij = R~E(1I)Rj,

Wij = RjiP(ll)Rj and Bf = RjB(i)' i,j = 1,2.

For given hyperparameters, LSZ prove that the predictive distribution of Xo I X2 = X2

follows a matrix T distribution. More precisely,

where:

c = 1+ ZtF-1 Z + (x2 - B~Z)t'Ir221(x2 - B~Z);
<I>012 = <I>oo - <I>0(1)R2W221 R;<I>(l)O'

In the last result, 1 is the number of missing pollutant concentrations at gauged sites and

time t. If we adopt a squared loss function, the Bayesian interpolator is

(4)

Following Brown, Le and Zidek (1994, hereafter BLZ), LSZ adopt an empirical approach

and estimate hyperparameters. More precisely, LSZ maximize the conditional likelihood
function for given X2 = x2 and also use two unbiased estimators. To reduce the number

of parameters, LSZ adopt a Kronecker structure, <I> = A 0 n, where A is the between-sites-
hyperparameters and n, between-pollutants. LSZ use the following procedure to estimate

all hyperparameters. First, they use two unbiased estimators to estimate B(l)' F-l; second,

they apply the EM algorithm to estimate n, 8* and Ag, where Ag has the between-gauged-

sites-hypercovariance-matrix; third, they invoke a procedure of Sampson and Guttorp (1992,

hereafter SG) to extend Ag to A. Finally, LSZ assume an exchangeability structure on BO
to extend B(l) to BO.

SG's nonparametric approach estimates a spatial dispersion matrix when the data field

is found to be anisotropic. The dispersion matrix has the same meaning as a variogram

matrix except that isotropy is not implicitly implied. The SG method involves two steps.
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First, with the nonmetric multidimensional scaling (MDS) algorithm (see Mardia, Kent

and Bibby 1979), a two-dimensional representation of the sampling sites is found. In this
two dimensional Euclidean space, called the D-plane, a monotonic function of the distance

between two points approximates the spatial dispersion between the same two points. The

D-plane, has a counterpart in the G-plane comprised of the geographical coordinates of

the sampling sites. Step two yields thinplate splines to provide smooth mappings from the

G-plane into their MDS representation. Then the composition of this mapping f and a
monotone function g derived from MDS yields a nonparametric estimator of var(Z(xa) -

Z(Xb, t)) having the form 9(1 f(xa) - f(Xb) I) for any two geographic locations Xa and Xb.
This rough 9 is then replaced.

Now let us turn to implementation issues in the next section.

3 Fitting the Interpolator

The daily maximum hourly levels of nitrogen dioxide (N O2), ozone (03), sulphur dioxide

(S02) and the daily mean levels of sulfate (S04) were recorded from January 1 of 1983 to

December 31 of 1988 in Ontario and its surrounding areas. These data come from several

monitoring networks in the Province, including the Environment Air Quality Monitoring

Network (OME), Air Pollution in Ontario Study (APIOS) and the Canadian Acid and
Precipitation Monitoring Network (CAPMON). The reader should see Burnett R. T. et al

(1992) for a more detailed description of the data. In all, the network has 37 different
monitoring locations (sites) but not all sites monitor all of the four air pollutants.

Monthly average pollutant concentrations at gauged sites are simply computed as the

mean of the observed daily levels for that month, January 1983 to December 1988. The time

series of observed monthly mean concentrations for each pollutant consists of 72 values. The

series with more than one third missing values are omitted from this analysis. As a result,

the number of gauged sites is reduced to 31 from 37. Figures 3 depicts the locations of

each pollutant measured at a subset of the remained 31 sites. The whole Ontario Province

divides into thirty-seven PHDs or districts (Duddek et al 1994). The PHD is similar to a

Census Division, the difference being marginal disagreements in boundaries. Some PHD s,

for example, are aggregates of two Census Divisions. Figure 4 displays the locations of the

approximate centroids of these PHU's. Hence, the total number of gauged sites Sg is 31 and
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the total number of ungauged sites Su is 37.

At the 31 gauged sites, there are 64 observed and 60 missing time series. Among the

64 observed time series, about two percent of the values are missing, including those below

the detection limit. In this analysis, each of the missing values is replaced by the mean

of the monthly observed values of the same pollutant and month in other years. If all six

measurements in the same month are missing, the grand mean of observations in the six

years will be used. However, no such case exists in the data set. A more delicate method
I

of filling in the missing data may be used here. But with such a low percentage of missing
\

data the extra effort seems unnecessary.

The LSZ theory is developed under two important assumptions of normality and temporal

independence (see Equation (1)). Checking multivariate normality assumption is not easy.

In this paper, we only examine the normal quantile plot for each pollutant separately. The

normal quantile plots of the residuals of the raw data seem very nonlinear. Therefore, the

observed data must be transformed. With a logarithmic transformation of the observed
data, the residuals appear to be marginally normal. Figure 5 shows a typical example of the

normal quantile plots of the data. The plot is based on the measured air pollution levels

of 504 at gauged Site 4. In the sequel, when we refer to these pollutants we mean their

log-transformed versions.

The temporal independence assumption is checkedwith autocorrelation and partial auto-
correlation plots. Autocorrelation and partial auto correlation plots of the temporal residuals

of the log-transformed data are shown in Figure 7. The plot is based on the measured air

pollution levels of 504 at gauged Site 1. The correlation plots show no sign of autocorre-
lation. By repeating the above initial data analysis for the observed pollutant levels at all

gauged sites, we conclude that the assumptions of our interpolation theory seem reasonable

with the log-transformed data.

The linear trend and seasonal component of the time series are captured with Z, =
{I, t, cos(2 7r t/12), sin(27rt/12)}, where t = 1, ... 72. Here t = 1 represents the January

of 1983, t = 2 represents the February of 1983 and so on, until t = 72, which represents

December of 1988. The coefficients of the linear trend and seasonal component are estimated

with ordinary least squares. In Figure 6, the time series plots and the least squares fitted

curve of the four observed pollutants at Site 5 are displayed. The fit of the time series for
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N02 804 03 802
NOz 1.00 -0.29 0.03 0.14
804 -0.29 1.00 0.79 -0.34
03 0.03 0.79 1.00 -0.15
802 0.14 -0.34 -0.15 1.00

Table 1: The Estimated Between-pollutants-hypercorrelation Matrix of the Log-transformed
Monthly Data

log(03) is far better than that of the other three, because of its periodic nature. The strong
yearly pattern of ozone is partially explained by the fact that the creation of ozone is highly

related to solar radiation.

The air pollution level in summer is of special interest in health impact analysis (not

shown). In the following, only the interpolation for summer data, i.e. from May 1 to August

31, is demonstrated. Each summer data time series thus has 24 values (months). We take as

our purpose, the interpolation down to 37 PHU approximate centroids in Southern Ontario,

of N02, S04, 03 and S02 levels in the summers of 1983 to 1988.

The interpolation procedure begins by finding the unbiased estimators of F-l and Brl);

next, the EM algorithm is invoked to estimate 8*, Ag and n; third, the SG method is applied
to extend Ag to A; then, with the exchangeability assumption on BD, B(l) is extended to BD;

finally, all hyperparameters having being estimated, the interpolated values are computed

by the Bayesian interpolator.

Software to implement the approach has been developed and a working version is now

available. Applying the approach to the summer data yields an estimate of 610 for the

prior number of degrees of freedom. Table 1 gives the corresponding estimate of the hyper-

correlation matrix of the log transformed N02, S04, 03 and S02 values; the corresponding
hyper-variances are 0.66, 1.63, 0.22, 1.85. Among the estimated hyper-variances, that of

[Og(03) is smallest, log(S02), largest. This result indicates that the overall variation of the

observed ozone levels is smaller than that of 802. The result confirms our prior knowledge

that ozone unlike S02 is a regional pollutant and somore homogeneous. The biggest pairwise

correlation among the four pollutants is found to be between 03 and S04. Since both 03
and S04 are regional air pollutants and both are related to sunlight, we would anticipate

that result.
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Figures 8, 9 and 10 summarize the result of the SG step. The righthand plot in Figure 8 is

a twisted 30-by-30 checkerboard in the Dvplane. The origina130-by-30 checkerboard is in the

G-plane and the coordinates of its lower left corner are the minimum latitude and longitude of

the gauged sites. The coordinates of its upper right corner are the corresponding maximum.

The lefthand plot in Figure 8 shows an exponential fit between dispersion and the D-planc

distance (refer to Section 1for a brief summary of the SG method). The parameter Xcontrols

the smoothness of the twisted checkerboard. By sacrificing the fit between the dispersion

and D-plane distance, we get a flatter checkerboard. Figure 9 shows that checkerboard along
with a rougher fit between the dispersion and D-plane distance obtained when the smoothing

parameter value increases from 0 to 2500. The straight line in the righthand side of Figure

10 shows that the estimated covariance and the observed covariance are conformable.

After applying the GS method, we compute the interpolated air pollutant levels at all

the PHU approximate centroids over six years by applying Equation (4) and using the above

estimated hyperparameter values. To check the interpolated values, we plot in Figure 11 the

overall means of observed ozone levels at each gauged site in the summers of 1983 to 1986.

Those of interpolated ozone levels at the PHU approximate centroids appear in Figure 12.

As expected, when a higher mean 03 level is observed at a gauged site, our Bayesian method
interpolates higher 03 values at the PHU approximate centroids near that site. Analogous

results obtain for a lower observed 03 level.

4 How Accurate is the Interpolator?

In this section we study the performance of the interpolator fitted in the last section.

We can assess the interpolation procedure by looking at the correlation between the

observed and estimated data through cross validation (CV hereafter). CV successively deletes

monitoring sites one at a time and imputes their missing data from the remainder. In our

study, we deleted one gauged site at a time and interpolated the pollutant levels at the same

site using the observed levels at the other sites.

Table 2 gives the correlation between the estimated and observed levels at each gauged

site for each observed pollutant. Notice that the correlations between S04 and 03 are
generally higher than those of S02. This finding suggests that predicting S04 or 03 is easier
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Sites N02 S04 03 S02
1 0.99
2 0.98
3 0.96
4 0.97
5 0.58 0.86 0.97 0.61
6 0.98
7 0.98 0.88
8 0.76 0.95 0.81
9 0.99
10 0.90
11 0.64 0.99 0.72
12 0.98 0.91
13 0.56 0.94 0.64
14 0.39 0.96, 0.61\
15 0.77 0.98 0.72
16 0.99
17 0.73 0.97 0.97 0.91
18 0.98
19 0.68 0.95 0.81
20 0.39 0.93 0.88
21 0.69 0.95 0.68
22 0.98
23 0.91
24 0.66 0.98 0.66
25 0.96 0.57
26 0.75 0.93 0.90
27 0.76 0.94 0.63
28 0.95 0.91
29 0.97
30 0.90
31 0.91 0.86
Mean 0.64 0.97 0.96 0.78

Table 2: Correlations Between the Log-transformed Observed and Estimated Pollution Lev-
els at Gauged Sites
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Figure 13 confirms that finding. That figure displays the plot of residuals of log-transformed
monthly observed and estimated pollutant levels.

Similar findings are revealed in Figure 14 which plots estimated levels against observed

levels for each (log-transformed) pollutant. In those plots, a straight line would mean per-
fectly accurate interpolation. The plots confirm conclusions suggested by the tables and

demonstrate again that 03 and 304 are regional pollutants. They are easier to predict than

their nonregional counterparts.

In the analysis described above, we explored the quality of the interpolator (posterior

mean). However, one potentially important advantage of the LSZ method lies in its capa-

bility to provide a predictive distribution. We need to assess the quality of the predictive

distribution as a whole to fully determine the value of the method.

Note that the marginal distribution of a Matrix T is another matrix T (c.f. Press 1982);

when the numbers of its rows and columns are one, the matrix T becomes a student's t. By

repeatly applying this fact, we can theoretically derive the univariate predictive distribution

of any given pollutant at an ungauged site at any specified fixed time. Finding a 95%

credibility interval for that univariate (t) distribution is easy. The quality of that distribution

can then be judged by seeing how often the observations fall inside these intervals. We apply

this idea to the CV study described above.

First, at a "deleted" gauged site, we compute a 95% credibility interval for each of the

four observed pollutants and of the 24 summer months. Second, we count how many of these

intervals cover the observed values and find the coverage percentages for N02, 304, 03 and

302, respectively. These percentages are respectively, 88.1, 97.5, 98.8 and 99.6. These

percentages deviate from 100%, some appreciably. These deviations may be explained by

the large number of degrees of freedom (m) selected by the EM algorithm for the joint

distribution of the four pollutants. For NO2 especially, the resulting marginal distribution

has excessively light (normal-like) tails. We learn from this analysis of the need, in marginal

analysis to select m differently. Indeed, for N02 we find through CV assessment, that m

would have to be about 10 to give the required 100% coverage. However, our results remain

too incomplete to be presented in this paper.
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The analysis of the last paragraph bears on the following question. Can a simpler to use,

normal distribution be substituted for the multivariate T predictive distribution? That might

naively seem possible since the univariate normal approximates its longer tailed relative quite

well. However, our results suggest this substitution cannot be recommended at least without

additional study. Our initial impression comes from an evaluation we did of the empirical
coverage percentage of three-standard-deviation confidence intervals (Cl). If the predictive

distribution were normal, all the three-standard-deviation Cls would include the true values

about 100 percent of the time. As the percentages in Table 3 indicate, this high coverage

probability is not achieved, particularly for S02. The heavier tailed predictive matrix T

distribution seems to be required.

Pollutant Coverage
N02 100%
S04 100%
03 98.6%
S02 94.5%

Table 3: Empirical Percentages of Three SD's Intervals

Besides checking the empirical coverage probabilities for the pollutant-wise marginal

credibility intervals, we also looked at them for the simultaneous case. LSZ give the for-

mula for a simultaneous credibility region at level 1 - et. With it, at a fixed summer month

and "deleted" gauged site, we test whether the observed vector fall inside the correspond-

ing credibility region (hyperellipsoid). Because parts of individual site response vector are

missing-by-design, the lengths of observed vectors at different "deleted" gauged sites may

differ and so might their hyperellipsoids. The empirical coverage probability equals to the

proportion of the observed vectors in their hyperellipsoids. At levels of 50%, 80%, 90%, 95%

and 99%, they are 57.2%, 81.7%, 89.5%, 94% and 98%, respectively.

5 Multivariate vs. Univariate Interpolation

By interpolating one pollutant at a time, one can apply the univariate theory, proposed by

Le and Zidek (1992), to the problem studied above. Sowhy a new theory when an old theory

exists? The answer lies in the information gained in the new approach and the corresponding

increase in the accuracy.

12



With the univariate method, only partial data are used for each interpolation. The

new method includes all the available data. In this section, we compare the performance
of the two methods: univariate interpolation and multivariate interpolation. Consider the

interpolation of 03 in the southern Ontario study for example. When the levels of 03 are

interpolated down to the ungauged sites by the univariate theory, only the observed 03 levels

at gauged sites are included in the interpolator. By the new method, all observed values of

N02, S04, 03 and S02 are included.

Theoretically we can show that the multivariate interpolator leads to a smaller mean

square error than that of its counterpart. More precisely, let ~o, Yo be any two random
vectors and X a random variable. Then

(5)

The proof can be found in Sun (1994).

Returning to the 03 example, we take ~o to be the observed levels of 03 at the gauged

sites, Yo, the observed levels of the other pollutants and X, any unobserved pollution level
at an ungauged site. Then the univariate Bayesian interpolator is, E(X I ~o = xo), the
multivariate, E(X I ~o = Xo, Yo = Yo). When the model is correctly specified and all

the hyperparameters are known, the theoretical result above implies that the multivariate

interpolator does at least as well as the univariate one.

The following CV study answers empirically the same question, again, using the monthly

air pollution data set from southern Ontario. At each gauged site successively, the observed

pollutants are deleted as if they were not observed. Then both univariate and multivariate

Bayesian interpolators are applied to obtain the predicted values of the "deleted" values based

on the data at the other gauged sites. When the values are predicted by both methods for

all 31 gauged sites, we calculate the mean squared prediction error for the univariate and the

multivariate interpolator, respectively. The results for the monthly summer data are listed

below.

The values depicted in Table 4 confirm the theory.

One interesting point bears emphasis. Our results show that the relative reduction of the

mean squared prediction error from using multivariate interpolation over univariate inter-
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Pollutant Multivariate Univariate
N02 0.19 0.28
804 0.14 1.27
03 0.05 0.13
S02 0.62 0.76

Table 4: Mean Squared Prediction Error for Multivariate and Univariate Interpolator

polation is much higher for 804 and 03 than 802• For 804 and 03, the changes are from

1.27 and 0.13 to 0.14 and 0.05 respectively; for 802 and N02, from 0.76 and 0.28 to 0.62

and 0.19 respectively. This result like others in Section 3, can be explained by the fact that

804, 03 are regional pollutants while 802 and N02 are not. A regional air pollutant has

higher correlation with other pollutants, as indicated by the estimated between-pollutants-

hypercorrelation in the previous Section. Including the other correlated pollutants in the

analysis should enhance the interpolator's performance relatively more. For a local pollu-

tant, since it has little or no correlation with other pollutants, the inclusion of additional

pollutants in the analysis will not improve the interpolator as much. Therefore, we can con-

clude on heuristics alone that the multivariate interpolator does better than the univariate

interpolator. It does not do so much better on local pollutants however.

To further strengthen our comparison, we use log predictive scoring. First, we compute

the mean log score for univariate interpolation. In particular, we: choose a pollutant; delete

a gauged site for that pollutant; compute the predictive density function for the pollutant

at a fixed summer month; plug the "deleted" value into the density function to get the log

predictive score and finish the above process for each summer month; change to the next

pollutant and repeat the same thing. The log predictive score for univariate interpolation is

the grand mean of those log scores. That value is -8.41. Second, for the log predictive score

from multivariate interpolation, deleting a gauged site at a time, we: compute the marginal

predictive density functions for each pollutant at a fixed summer month based on the simul-

taneous predictive density function; find the log predictive density (score) for each observed

monthly pollutant level and take the mean of the log scores. We found the value to be
-0.68. Since the log predictive score explains how well a particular "observed" value is pre-

dicted by its predictive distribution, a bigger score by a predictive function implies stronger

predictability. Based on those mean log scores, we conclude that the univariate marginal

predictor derived from the multivariate one does better than the completely univariate one.
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Figure 2: Observed and predicted values of N02 at site 17 (26 Breadalane Toronto)
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Figure 3: Monitoring Sites Yielding S04 Data
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Figure 4: Locations of selected sites in Southern Ontario plotted with Census Subdivision's
boundaries, where monthly interpolated pollution levels are needed.
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Figure 5: Normal quantile-quantile plots for original and log-transformed monthly levels of
S04 in flg/m3 at Gauged Site 4.
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Figure 6: Plots for monthly observed and fitted, log-transformed levels of 03 in ppb, S02,
N02 and S04 in flg/m3, at Gauged Site 5.
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Figure 7: Plots for auto correlation and partial auto correlation of monthly, log-transformed
levels of 504 in f-lg/m3 at Gauged Site 4.
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Fitted Variogram is Exponential
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Figure 8: A rough checkerboard obtained in the SG step.
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Fitted Variogram is Exponential
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Figure 9: A smoother checkerboard obtained in the SG step.
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Figure 10: Scatter plot of observed covariances vs predicted covariances obtained by the GS
approach.
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Figure 11: Means of monthly levels of 03 in ppb, in summers of 1983 rv 1988 at gauged sites
in Southern Ontario plotted with CSD boundaries.
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Figure 12: Means of monthly levels of 03 in ppb, in summers of 1983 ,.....,1988 at selected sites
in Southern Ontario plotted with CSD boundaries.
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Figure 13: Scatter plots for residuals of monthly observed pollutant levels against residuals
of interpolated levels at the log-scale in summer, where levels of 03 are in ppb; 502, N02
and S04 in f.Lg/m3.
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Figure 14: Pollutant-wise scatter plots for residuals of monthly observed pollutant levels
against residuals of interpolated levels at the log-scale in summer, where levels of 03 are III
ppb; 502, N02 and 504 in J1g/m3.
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