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Abstract

This papes implemests asd empirically amesses 3 Baymiss methodology for the
spatial isterpolatioa of random maltivariate Gaunssiaa fiedds with umspecifed covarl
ance structure. Oze special feature of the method b that It doss not require all dtes
to monitor the same wot of pollutants, This featwre is particulazly relevast ia nvi-
rossuental bealth studies where polatica data ase oftes pocled together from several
mositoriag setworks which may or may 2ot meaitor the same set of pollutants. The
methodology is applied to the data la the Proviace of Ontarie, where monthly average
concestrations for summer moatks of sitroges dicide (NOy), csose (Oy) , sulpbur
dicckde (SO;) and sulfate (5O) are avallable for the period from Jannary 1 of 1983 10
Decesmsber 31 of 1955 at 31 ambient mositoring sites. Detailed descriptioas of spatial

interpolation for aly pollstaat cosomtrations at 37 approximate costrolds of Poblic
Health Usits ia the Province of Oatasio usisg all availalie data are presested. Em.
parical assessment of the methodology Is dose by a cromsvalidation study where each
of the 31 sites is successively semoved asd 1he remaising sites ase waed 1o predict its
concentration levels, The methodology sooms to perform well

Keyword: Air Pollution; Bayesiaa Spatial Interpolation; EM Algorithm; Ozone; Sulphate;
Niteate; Sulphur Diaxdde;

1 Introduction

Le, Sun and Zidek (1994, hereafter LSZ) recently proposed a Bayesian metbodology for
multivariate spatial intecpolation. The method bs particularly usefel in eavirommental bealth



studoes whero vector-valoed respoases are only measured at designated sites at succemive
time points and data are generally oot available at masy locations of interest. One special
feature of their approach is that it does not require all sites to monitor the samse sot of
pollutants; that ks, not all of a specific set of pollutants are observed ab all sites, The missing
poliutants at the monitoring sites ate termed missing-$y-design. Specifically they derive the
wsltivariate predictive distributica for all pollutants at the non-monitored Jocations, aloag
with the missing -by-design pellutants using all available data.

[n this paper, we apply the LSZ metbodology to Southern Ontario air pollutioa data. This
kiad of interpolation was needed in & recent stedy (2ot prosented here) of the amociation
between alr pollution and respizatocy morbidity in the population of Southern Ontario.
Specifically, monthly average pollutast concentrations down to the level of a Public Health
Unit (PHU) are seoded. Sisce a2 pollution data from several mogitoring setworks are
poaled together, not all sites monitor the same set of polistants. Here it is assumed that the
variation caused by differest networks to the observations is neghigible.

The pollutasts under consideration included NOy, SOy, Oy and SO, In general there are
two kinds of air pollutants: (1) & primary pollutant, which is directly emitted by identifiable
scuzrces; (i) & socondary pollutant, which is peoduced by chemical reactions witkin the
atmmoepbere betwoen pollutants and other constituents, SOy, NO; are primary pollutants,
Oy and S0, are secondasy pollutaats, S0O; W produced by burning of slphur costained
fuels and 5ta level depends on the local emission sources, like burning foel oil o smelting.
NO; can be produced by high tesnperature coenbustion and so its level could depend on the
local sources as well,

The sccondaty pollutants studied bevw ace all produced by oxidation of peimary peliu-
tasts. This oxidation is deiven by eltea-viclet radiation from sunlight and comprises chemical
reactions that are tempetatute dependent, Since the chemical reactions peoceed while the
polluted air is being advertod by wiads, secondary policlasts are generally moce widespread
1han primary pollstasts. We thus refer to secondary pollutants as regicmal. Since NO;
cas alvo be produced by oxidation, it could be ccasidered ax & regicaal pollotast. The
dominant factor in peoducing NO; could be cither local sources or axidation depending on
the almospleric coudition. The results from our asalyses indicate that NO; bebaves more
ke & primary pollutast in this case. Because of lamperanture depeadence of the governing
chemical reaction, Oy devels are high in early afternoca and midsumaner, low overnight and

2



in winter. The oxidation of SOy to SO, & dominated by photochemical processes in dry,
warmn atznospheres,

The peoposed methodology i eenpirically assenand by cross-validation where the sites are
mccessively removed ose at a time and the remaining sites are used 1o impute the missing
data. The results are faiely preenising; some interesting findings are highlighted here asd
e detalls are given in other sectionn. As expected, the correlations between the observed
and predicted values are higher for regional pollutants thas foe local pollutants. The correla-
tions averaging over all sites foe Oy and SO, are 96 and 97 reapectively; the correlations for
NO; aod SO; are 61 and 78 reapectively. Figures | and 2 depict typical temnpoeal patterss
betwees the observed and peedicted values for regiosal and Jocal pallutants, Fee regiosal
pollutants, the metbodology pecforms very well in peedicting both the concentration lovels
and the temporal patterns. This result is 8ot too surprising since the regional pollutasts
tend to be Mighly spatially correlated. For local pollutants, there seem to be some biasos in
predicting the levels, This deficiency indicates the neod for more data in the neighborhood
when predicting the Jocal pollatants. On the other hasd, the temporal patterns seem to be
tracked well even with limited amousts of data. This result is encouraging in that it may be
possible to improve the carrent method to deal with the bias problem for local pollutants.
For example, a prior distribstion of the meas process where Lhe levels at oaly neighborhood
sites are used, could be adopted instead.

The proposed method allows for the wse of all available data in its interpolation. One
interesting question is whether anythiag can be galaed from this appeoach in comparison
with that of interpolating one pollutant at & time, Our results indicate that the cerrent
multivariate approach could provide substantial improvements over the univariate approach
on regiosal pollutants. The relative reductions of the mean squared prodiction errors froen
wsing the multivariate interpolation over the usivariate interpolation are about 300% and
90U% for Oy and SO, This information gain Is dee to the high correlation between O and
SOy and hence observed values of one pollutant help to predict the other. It is interesting
to note that the gain for SO is substantially higher than that foe (. This Is 30 because
there is moee infoemation available for O in predicting SO, thas vice-veraa; 21 sites moaitor
Oy compared to 10 for SO,. The knprovements are not as great for the local pollutants as
expected. For example, the reduction for SOy is from 1.27 to 0.14 and for SOy, from 0.76

o 0.62



The paper is organized as follows, For completeness, we briefly describe the theory in
Section 2. Secticn 3 describes its implementation ca the data from southern Ontario. Thea
in Section 4, we ook at bow wdl it works. Sectica § Jooks at the gains we make from

combiniag sites and pollatants is & sagle analysis.

2 Bayesian Interpolation Theory

Following LSZ, we assumme a scrmal model for the conditional pollutant sampling distriba-
tion,

XIZ.B.S ~OV‘I'(BZOS®’Q)l (l)
where: X = (X}, ..., X Jisan it the reapocee matrix, X, (t = [, ..., n) being the respouse
vector for all 5 wtes at time & Z = (Zy, ..., £ )sen # the matrix of covanates;
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is the coefficient matrix; £ is the anknown spatial covariance matrix of Xy and [, sanm xn
identity matrix. The conjugate prioms of £, 8 are,

BB X F~ N850 FY) @

B8 ~Wie5). (3)

Among s sites, s, are gauged and yield observations of poflutant concentrations, The
remaining &, sngauged stes peovide po observations. Accordingly we partition X into X*
and X0 X¥ iy the response matrix at ungauged sites, Aftor appropriate rearrasgement of
columns, we can farther partition X™ iato X* and X*. The response matrix X* represents
all unobserved pollutast concentrations and X7 those cbanrved. The partiticas of ¥, B*, F
and © are simalar, For instance,

2= (zae Zon)’
where Yoo and Xy, are s kb x sk, 8,& x s,k matrices, respectively.



An indicator mateix T is lstredeced to simplify sotation. Suppose the indices of missing
walues in XI") were 45, ..., & and the indices of observed values, ijsy, <00y ipe Lot By =
(Pagveo my) and Ry = (rggye m,,,) where vy, j oo 1. s,k is a o,k x 1.dinsensional
voctor with the ;* dement beang ooe and the remainder being zero. Thus, R; and A,
“mark”™ the pesition of missing columns. Then R « (R, A;), and we Jt £, « A5, R,,
'U-Q.(II)R: ‘“B:-mq.)v =12

Fee given hyperparameters, LS7 prove that the peedictive distribution of X7 | X7 = 27
follows a matrix T distzibution. Meoee procisely,

X* X" w2 ~T(05). 6. RZ + 0oy Ra¥3) (27 ~ BJZ),6" =1+ 1)

where:
cxwl+Z'F'Z & (2 = BRZ)'V;} (2* -~ BYZ);

Qo = B0 — Sy K3 R0 0.

I the last resslt, { is the sumber of miming pollutas concentrations at gauged sites and
time ¢, If we adopt & squared Joss fanction, the Bayesian interpolator is

E(X° | X7 = %) = BZ + G Ra¥3) (s ~ BIZ). (4)

Following Rrown, Le and Zidek (1904, heenafter RLZ), 157 adogt an empirical apgroach
and estimate hyperparametors, More precisely, LSZ maximizo the conditicoal hikelibood
function for gives X7 « 27 and also wse two usbissed estimators. To reduce the nember
of paramcters, LSZ adopt a Kronecker structure, @ = A @ 0, where A is the between-sites-
hyperparameters and {1, between pollutants. LSZ wse the following procedure to estimate
all hyperparametors, First, they wse two unbiased estimators to estimate 5, F~; second,
they apply the EM algorithm to estimate £, #* and A,, where A, has the between gauged.
sites hypercovariance matrix; third, they invoke a procedure of Sampson and Guttoep (1992,
hereafter SG) to extend A, to A. Flaally, LSZ assame an exchacgeability steuctuze on B*
to extead B, to B*.

SG's somparametric approach estimates a spatial dispersion matrix when the data field
15 found to be anisotropic. The dispersion matrix has the same meaning as a vanogram
matrix except that isoteopy is not implicitly implied. The SC method involves two steps.
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First, with the sonmetric multidimensional scaling (MDS) algorithm (see Mardia, Kest
and Bibby 1079), a two dimensional representation of the sampling sites is found. In this
two dimenssonal Buclidean space, called the D-plane, a moactonie functioa of the distance
betwren two points approxiznates the spatial dispersion between the same two podnts, The
D-plase, bas a cousterpart in the G-plase comprised of the geographical cocedinates of
the sampling sites. Step two yields thisplate splines to peovide smooth mappings froem the
G-plase into their MDS represestation. Then the composition of this mapping f and a
monotone function g derived from MDS yields a ncaparametric estimator of war(Z(z,) ~
Z(zy,t)) Baving the form 9f| flz,) ~ fiz) |) Sor any two geographic Jocations 2, and x,.
This rough g ia then replaced.

Now lot wx turn Lo nplementation issues in the next section.

3 Fitting the Interpolator

The daily maximum hourly levels of nitrogen dioxide (NO;), osone (Oy), sulphur daxide
{S0;) and the daily mean levels of salfate (SO,) were recoeded from January | of 1983 to
Decernber 31 of 1962 in Ontario asd its surrcunding areas. These data come from several
mooitoring networks in the Province, including the Environmest Air Quality Monitoring
Network (OME), Air Pollution in Ostario Study (APIOS) and the Casadian Acd aad
Precipitation Monltoring Netwock (CAPMON). The seader should sor Barnett R, T. et ol
(1992) for a more detailed description of the data. [n all, the netwock has 37 diferent
monitoring loeations (sites) but st all sites monitor all of the four air pollutants.

Mosthly average pollutast concentealions at gasged stes are simply computed as the
mean of the observed daily levels for that moanth, Jansary 1983 to December 1968, The time
series of observed monthly mean concentrations for each pollutant consists of 72 values, The
series with more thas ooe third messing valees are amitted from this analysés. As a result,
the number of gaugoed sites s roduced to 31 from 37, Figures 3 depicts the locations of
each pollutant measured at a subset of the remained 3] sites, The whole Ontario Province
divides into thisty.seven PHUs or districts (Duddek et al 1004). The PHU is similar to a
Cezvur Divisson, the difference being marginal disagreements in bowndaries. Some PHUs,
for example, are aggregates of two Census Divisicns. Figure 4 displays the locations of the
approximate centroids of these PHU's. Heace, the total sumber of gauged sites 5, #s 31 and
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the total pumber of ungauged sites s, is 37,

At the 31 gauged sites, there are 64 observod and 60 mising time series, Among the
€4 ohserved time series, about two percent of the walues are missing, including those below
the detection limnit. lo this asalyss, each of the miming values ix replaced by the mean
of the monthly observed valwes of the same polictast and month in other years, If all six
measurements in the same month are missing, the grand mean of observations im the six
years will be used. However, no such case oxists in the data set. A more delicate method
of filling in the missing data may be used here. But with sech a low percentage of missing
data the extra effort seems unnecessary.

The LSZ theory is developed uader two important assumptions of acrmality and temporal
independence (see Equation (1)) Checkiog mueltivariate normality asumption is not easy.
In this paper, we only examine the normal quantile plot for each pollutant separately. The
soemal quantile plots of the residuals of the raw data seemn very noalinear. Therefore, the
observed data mest be trassformed. With & legarithmic teansfoemation of the observed
data, the residuals appear to be marginally normal. Figure 5 shows a typical example of the
pormal quantide plots of the data. The plot s based oo the measured alr pollution levels
of SOy at gauged Site 4. In the sequel, when we refer to these pollutants we mean their

log-transformed versions.

The temporal independence assemption s checked with astocorrelation and partial anto
correlation plots. Autocorrelation and partial astocorrelation plots of the temporal residoals
of the log-trassfoctmed data are shown in Figure 7. The plot is based on the measurod air
pollution bevels of SOy at gauged Site 1. The correlation plots show no sign of autoccere
lation. By repeating the above initial data analysis for the obsorved pollutast levels at all
gasged sites, wo conclude that the sssamptions of cur interpolation theory scem reasomable
with the Jog-transformed data.

The limear trend and seasonal component of the time series are captured with Z, =
{1,8,c08(2 7 1/12), sin(2r1/12)], where t = 1,...72. Here t = | represents the January
of 1983, t « 2 represents the February of 1953 and so oo, ustil ¢ = 72, which represents
December of 1988 The coefficients of the linear trend and seasonal component are estimated
with ordinary least squares. In Figure 6, the Usme series plots and the least squares fitted
curve of the four observed pollutasts at Site 5 aro displayod. The 6t of the time series for



NO, 30, 0, 80,
NO, | 100 02 003 014
SO0, |02 100 079 .0.34
Oy |03 079 100 -0.15
SO, | 014 03 015 1.00

Table 1: The Estimated Between-pollutants-hypercorrelation Matrix of the Log-transformed
Moathly Data

lo9(O;) is far better than that of the other three, because of its periodic nature. The strong
yearly pattera of azone ks partially explained by the fact that the creation of oznome is highly
related to solar radiation.

The air pollution level in ssmmer is of special intesest in health impact analysis (oot
shown). In the following, only the interpolation for sumener data, i.e. from May | to August
31, Is demonstrated, Each susnmer data time series thus has 24 values (months). We take as
ot purpose, the interpolation down to 37 PHU approximate centrolds in Southern Ontario,
of NOy, SOy, Oy and SOy levels in the susmmers of 1983 to 1965,

The interpolation procedure begins by finding the unbiased estimators of F~' and By,;
next, the EM algorithm is invoked to estimate 8, A, and {}; thied, the SG method is applied
o extend A, to A; then, with the exchasgeability asumption ou B®, B, is extendad to B%;
finally, all hyperpatameters having being estimated, the interpolated valoes are computed
by the Hayesian interpolator.

Software to implement the approach has been developed and a working version is now
available. Applying the approach to the summer data yields an estimate of 610 for the
prior number of degrees of freedom. Table | gives the corresponding estimate of the hyper-
coerelation matrix of the log transformed NO;, S04, Oy and 50; values; the corresponding
hyper-variances are 0.66, 1.63, 022, 1.85. Amoag the estimated hyper-variances, that of
log(Oy) is smallest, log( SOy), largest, This result indicates that the overall variation of the
observed czone bevels is smaller than that of SOy The result confirms our prior knowledge
that czone snlike SO i a regional poliutast and o more bomogeneous, The biggest pairwise
correlaticn among the four pollutants is found to be between (O and SO,. Since both O,
and SOy are regional air pollutasts and both are related to suslight, we would asticipate
that result



Figuares 8, 9 and 10 summarize the result of the SG step. The righthand plot in Figure 8 is
& bwistond 30 Ly -30 checkerbourd i Lhe D-plane. The origimal 30-by-30 checkerboard is i the
C-plaze and the coordinates of its Jower Jeft corper ase t3e misitum Iatitude and loagitude of
the ganges] mben. The coordinates of its upper right corner are the correspoading maximum.
The lefthand plot ia Figure 8 shows an exponential fit between dispersicn and the D-plane
distance (refer to Section | for a brief summary of the SG method). The parameter A controls
the smoothness of the twisted checkerboard. By sacrificiag the fit between the dispersion
and D-plase distance, we get a fatter chockesboard. Figure 9 shows that checkerboard along
with a rougher fit between the dispersion and D-plase distance obtained when the sescothing
parameter value increases from 0 to 2500, The straight line ia the righthasd side of Figure
10 shows that the estimated covariance and the observed covariance ase canfoemable,

After applying the GS method, we compute the interpolated air pollutant levels at all
the PHU approximate cestroids over six years by applyisg Equation (4) and ssing the above
estimated Byporparameter values, To check the interpolated values, we plot is Figure 11 the
overall meana of obaerved czone levels at each gauged site in the summmers of 1953 to 1966,
Those of interpolated czone levels at the PHU approximate centroids appear in Figure 12,
As expected, when a higher mean O, level is observed at a gauged site, our Bayesian method
imterpolatos higher Oy values at the PHU approximate centroids near that site. Analogous
results obtain for a lower observed Oy Jevel.

4 How Accurate is the Interpolator?

In this section we study the performance of the interpolator fitted in the last section.

We can assess the interpolation peocedure by looking at the correlation between the
observed and estimated data through cross validation (CV hereafter). CV successively deletes
moaitoring sites one at a time and imputes their missing data from the remainder. In our
study, we deleted ane gauged site at a time and interpolated the pollutant Jevels at the same
site using the cbaerved levels at the other sites.

Table 2 gives the correlation between the estimated and observed levels at each gauged
site for eard obaseved pollutant. Notice that the correlatioas between SO, and 0y are

groerally higher than those of SOy This finding suggests that predicting SO, or O is easicr
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[ Sites | 08 1502
1

3 0.9

E .

1 0.97

5 0.58 | 0.56 | 0.97 | 0.61
b 0.98

T 0.98 0.55
5 0.16 a5 1 0.81
9 0.0

10 0.9
T 0.9 0.72
12 09| 09
13 | 0.5 0511064
1M | 039 0.6 | 0.61,
15 o 0 [0.72
16 (RS

'y | 097|097 | 0.91 |
18 0.9

19 [ 0.68 095 [081
20 | 0.99 0.93 | 058
21| 0.69 0.95 | 065
22 0.98

23 0.91
2|06 0.5 1 0.60
2 . 0.95 [ 0,57
% |05 0.93 | 0.90
21| 010 0511063
= 055 | 0.9
29 097

30 0.9
31 0.91 | 086
Mean | 0.64 [0.97 1096 | 078

Table 2: Correlations Botween the Log-transformed Observed and Estimated Pollutica Lev-
ol al Ganged Sites
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than SO;.

Figure 13 confisms that finding. That figure displays the plot of residuals of log-transformed
moathly observed and estimated pollutant levels

Similar findings are revealed in Figare 14 which plots estimated levels against obeerved
levels for each (log-transformed) poliutazt. [n those plots, a straight line would mean per-
fectly accurate interpolation. The plots confirm conclusions suggested by the tables and
demosatrate again that Oy and SO, are regiomal pollutants. They are easier to predict than
their nonregional counterparts,

In the analysis described above, we explored (8o quality of the interpolator (posterior
wmean). However, ome potentially isnportant advantage of the LSZ method lies in its capa-
bility to provide a predictive distribation. We need to assess the quality of the predictive
distsibution as & whale to fully determine the value of the method.

Note that the margiaal distribution of a Matrix T is another matrix T (e.f. Press 1982);
when the numbers of its rows and columns are one, the matrix T bocoowes a student’s L. By
repeatly applylng this facs, we can theoretically derive the univariato predictive distribution
of any given pollutant at an ungauged site at any specified fixed time. Finding » %5%
credibility interval for that univariate (t) disteibution is easy. The quality of that distribution
can then be judged by seeing how often the observations fall inside these intervals. We apply
this idea to the CV mudy described abowve,

First, at a *deleted™ gauged site, we compate a 95% credibility interval for each of the
four cbserved pollutants and of the 24 semmer months. Secoad, we count how many of these
intervals cover the cbaerved values and find the coverage percentages for NOy, SO, Oy and
S0y, respectively. These percentages are respectively, 83,1, 97.5, 988 and 99.6. These
percentages deviate from 1009, some appeeciably. These deviations may be explained by
the large sumber of degroen of freedom (m) sedected by the EM algocithm for the jotent
distribution of the four pollutants, For NO; especially, the resulting marginal distribution
has excessively light (vormal like) tails. We learn from this analysés of the need, in marginal
analysls to select m differently. [ndeed, for NOy we find through CV assessment, that m
would have to be about 10 1o give the required 100% coverage. However, our results remain
too incomplete to be presented in this paper.



The asalysis of the last paragraph bears o the following question. Can a simpler 10 wae,
normal distribution be substituted for the multivariate T predictive distribution” That might
naively seem possible since the univariate normal approximates its longer tailed relative quite
well, However, our results suggest this substitution cassot be recommended at least without
additional study. Our initial impression comes from an evaluation we did of the empirical
coverage percentage of threestasdard deviation confidence intervals (CI). If the predictive
distribution were normal, all the three standard deviation Cls would include the tree values
about 100 percent of the tine. As the percentages in Table 3 indicate, this high coverage
probability is not addieved, particularly for SO;. The beavier tailed peedictive matrix T

distribution seemas Lo be required,
Pollutant
ROy l?ﬁ .

S04 100%
0O, 9R.6%
S0 $4.5%

Table 3: Empirical Percentages of Three SD's Intervals

Besides checking the empirical coverage probabilities for the pollutant-wise marginal
crodibility intervals, we also looked at them for the sisnultaneous case, LSZ give the for-
mula for a simultancous credibility region at level | — a. With it, at a fixed summer month
and “deletod” gauged site, we test whether the odaerved vector fall inside the correspond.
tng credibility region (hyperellipsoid). Becasse parts of individeal site response veclor are
missing-by-design, the lengths of obaerved vectors at different “deleted” gavged sites may
diffex and 0 might their hyperellipacids, The cmpirical coverage probability equals to the
peopostion of the observed vectors in their hyperellipsoids, At lovels of 50%, S0%, 90%, 95%
and 9%, they aze 57.2%, 81.7%, 89.5%, M% and 98%, respectively.

5 Multivariate vs. Univariate Interpolation

By interpolating one pollutant at a time, coe can apply the univasriate theory, proposed by
Le and Zidek (1992), to the problem studied above. So why a mew theory when an old thecey
exists? The asswer lies in the information gaised in the sew approach and the corresponding

increase in the accuracy,
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With the enivariate method, oaly partial data are used for each interpolation. The
pew method includes all the available data. [n this section, we compare the performance
of the two methode: wnisgriate isterpolation and maltivariate interpoletion, Copsidor the
interpolation of O, in the southern Owtario study for example, When the lovels of Oy are
interpolated down to the ungauged sites by the univariate theory, oaly the ohserved O levels
At gauged sites are included is the interpolater. By the new method, all observed values of
NO;, SO, O3 and S0, are included,

Theceetically we can show that the multivariate interpolator leads to a smaller mean
square error thas that of its counterpart. More precisely, let X, Y, be any two random
vectors asd X a random wvatiable, Then

E(X — E(X | X, Yo))* < E(X ~ E(X | X,))". (5)

The procof cas be fousd in Sun (1994).

Returning to the Oy example, we take X, to be the observed levels of 05 at the gasged
sites, Y, the observed levels of the other pollutants and X, any unobserved paollution level
at an usgauged site. Then the univariate Bayesian interpolator is, E(X | X, = 24), the
multivariate, E(X | X, = 20, Yy = ). When the model is correctly specified and all
the hyperparametess are known, the theoeetical result above implies that the multivariate
interpolator does at least as well as the univanate one.

The following CV study answers empisically the same question, again, using the moathly
air pollution data set from southers Ontario, At each ganged site successively, the obsrrved
pollstants aze deleted s if they wore ot observed, Then both usivariate and multivariate
Bayesias isterpolators aze applied to oblain the prodicted values of the “deleted” values based
om the data at the other gauged sites. When the values are predicted by both methods for
all 31 gauged sitex, we caleulate the mean squared prediction error for the univariate and the
suultivariate interpolator, respoctively, The results for the monthly summer data are listed
below,

The wvalues depicted in Table 4 confirm the theoey.

One interesting point bears emphasis. Our results show that the relative reduction of the
mean squared prediction esror from wing mueltivariate interpolation over univariate intes-
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[Pollutaza T Mulifvariate | Univariate
"NO, 0.19 0.25

SO, 04 1.27
Oy 0% 0.13
SO, 0.62 0.76

Table 4: Meoan Squared Prediction Error foe Multivariate and Univasiate Interpolator

polaticn is much higher for SO, and Oy thas 50Oy, For SO, and O, the changes are from
1.27 and 0.13 to 0.14 and 0,05 respectively; for SOy and NOy, from 0.76 and 0.28 to 0.62
and 0.19 respectively. This result like others im Section 3, can be explained by the fact that
504, Oy are regional pollutants while SO; and NO; are not. A regional air pollutant has
higher correlation with other pollutants, as indicated by the estimated between-pollutants-
hypercorrelation n the previous Section. Including the other correlated pollutants in the
analysis should enhance the interpolator's performance relatively mare. Foe a local pollu-
tant, since it has Little oc o correlation with other pollutants, the inclasion of additional
pollutants in the analysis will not improve the isterpolator as much, Thervfore, we can con-
clude on heuristics alome that the multivariate interpolator does better than the univariate
interpolator. It does not do so much better on local pollutants bowever.

To further strongthen our comparison, we use log predictive acoring, First, we compute
the mean log score for univariate intespolation. In particular, we: choose a pollutant; delete
a gauged site for that pollutant; compute the predictive density function for the pollutant
at a fixed sammer month; plug the *deleted” value into the density function to get the log
predictive score and finish the above process for each summer moath; change to the mext
pollutant and repeat the same thizsg. The log predictive scare for univariate interpolation is
the grand mean of those log scocon. That value is 8,41, Secomd, for the log predictive scoee
from multivariate interpolation, deleting a gauged site at a time, we: compute the marginal
predictive density functions for each pollutant at a fxed summer moath based on the simul-
tazeous peadictive density function; find the log predictive density (score) for each cbaeeved
monthly pollutant level and take the mean of the log scores. We found the value to be
~0.63. Since the log predictive scare explains bow well a particular “observed™ valoe is pre-
dicted by its predictive distribution, a bigger score by a predictive function implies stronger
predictability. Based on those tean log scores, wo conclude that the usivariate masginal
peredictor derived from the multivariate one does better than the completely univariate cue,
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Figure 1; Observed asd predicted value of SO, st Site 17 (26 Breadalane Torcato).
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Figure 2: Observed and predicted values of NO; at site 17 (26 Breadalane Toronto)
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Figure 4: Locatlons of selected sites in Southern Ontario plotted with Ceasus Subdivision's
bousdarios, where moathly iaterpolated pollstion levels are needed.
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Figure 5: Normal quastile-quantide plots foc original and log-trassformed momthly Jevels of
SO, in po/m® at Gauged Site 4.
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Figure & Plots for moathly observed and fitted, log transformed levels of Oy in ppd, SO,
NOy azd SO, in pg/rm®, st Gauged Site 5.
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Figure 7: Plots for astocorrelation and partial astocorrelation of monthly, log-transfoemed

levels of SO, in pg/m® at Gruged Site 4.
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Figure 8: A rough checkerboard cbtained in the SG step.
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Figure 9: A smoother checkerboard obtained in the SG step.
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Figure 10; Scattor plot of observed covariances vs predicted covariances obtained by the GS

approach.
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Figure 11: Means of monthly levels of O in ppb, in sunumers of 1983 ~ 1953 at gauged sites
in Southern Outario plotted with CSD boundaries.



Figure 12; Means of monthly lovels of Oy in ppb, i summmers of 1983 ~ 19585 at selocted sites
in Southern Ontario plotted with CSD boundaries.
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Imepciated Residuals in Summer

1

Residuals of Observations In Summer

Figure 13: Scatter plots for resdduals of moathly obeervod pollutant levels against residuals
of interpolated Jevels at the log-scale in summer, where levels of Oy are in ppb; SOy, NOy
and SO, in pg/m’.



- -
i: z
- - - ' .
-} v a‘.,, "‘Y ’.‘ :.. w .
- " . - -
: . L4 ol 3 ‘,“"::ﬁk,' .3' ‘c o ’. -
[ e, RO - . -
- o B a e V4 e
I £
.y " “ "
‘ - ol | = '.. .’\' ~ % > -
e qﬂ.. SR T " -
i. R g ¥ S
. s J.. .‘ - - -
P " ., .. ~o L
' * ® o oD
43 AN e & " " “m
AT Ty .y -

D i L
a9 ar 1

N .o - s “r . o

"
.

e ey et Sy T
AL A W
. .
O
: -
'..
a:*.
3
)
-“Q‘:' g..
E’n:ai-a
8‘6".;
0,
at
‘\9v'. .
A
. 3
.

Figure 14: Pollutast wise scatter plots for residuals of monthly observed pollutant levels
against residuals of interpolated levels at the log-scale in summer, where levels of Oy are in
pp¥;, SOy, NOy and SO, in pg/m?.



