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Abstract

This paper extends methods S monkacar pegressen snalysis that hare
bocn developed for the asalysis of clastesed data. [ novelly Bes in e
Sunl incorporation of nandom cluster cffocts and sirecterad erroe in Wbe
mossmsement of the explasatory warishles. Momesis wp Lo secomd coder
are assned 10 Save Seem specifod for e Jatter to smable & gescralised
otimating sqeations sppronch 10 be wend for Sisag and teting soalia-
ot meodels Baking cospumse 6o thete cupinnntony wasisbes and random
effocts. Tuplor expansion melhods ate weed and & dificuliy with carlier
appecachos overcome. Flaaly we doscride w» appicatoa of ths method-
clogy %o indienie bow i can be ssed. That application coscerss the dogree
of asocistion of doepital admbsscos for acute seapinatory hoalth pooblems
and s pollation.

1 Introduction and Summary

In this paper we saggest a method of accounting for structural mea
m«mmmhmwmdnuuldmt«edw‘.
The novelty of the method bes in our simultancous i

of random measurement errors and random cluster effects. o the
process of developing that method we refine a method of Lindstrom

'Wm—t-—dtﬁ&m-wdb o cowbract from Health Canada and
& groot from the Netural Soimer and Fagumorng Basesech Comnetl of Canada




and Bates (1990) as adapted in Bursett and Krewski (1994, here
after BK.94). We begin by describing bow the noed for such a
method arises. Then we summarnise the results of this paper.

Regressioa methods are commonly used in asalysing clustered
data. Statistical epsdemiology peovides examples such & the study
of Durzett et al (1994, becealter BET) who examine series of daily
counts of hospital admissions for respiratory moebidity. Each se-
ries forms a cluster associated with one of a sumber of boapitals in
southern Ontario. Their study concerns the effect of air pollation
ca respiratory health,

Data may be clustered to avoid the confounding of factors. For
example in the just-cited study the number of daily hospital admis-
sicas and the Jevel of air pollution will simultanecusly increase with
population size. Thus the unclusterod data would indicate stromg
association between bospital admisions and air pollution. To avoid
the coafounding of the factees of pallution and population size, one
maght well disaggregate the count data by ssbregional clusters and
analyse the time varying pollution and admission levels cluster by-
claster to coatrol for population size.

BET take exactly that approach. In their regression amalysis of
association between admission and pollution levels, they form (Y, X)
panmmghwwwmmymwm
and X, lagged average daily concentration of air pollutants. Their
stiedy seeks 1o determine if ‘blips' of short duration in Y tead to
follow these in X. A positive finding gives evidence of a cacsal
linkage between Y and X even with observational data, the short
time latervals of such blips tending to make confounding with blips
in other factors seem implausible.

However, the apperoach encountess an obstacke: the X's seodad
for their analysis have not boeen measured in all clusters. This ob-
stacle may be expected in any study involving a dataset formed
by joiniag others compiled for & vaniety of different purposes. This
obstacle forces BET to use as surrogates for their unmeasared X's
others obtained from often distant ambient pollution monitors.

We regard X as randoen (having a distribution coaditional on the
values of the surrogates). Thus we face an errors-in-vasiables prob-
Jem of the structural rather than functional type. [Even in the latter



case, Pierce et al (1992) argue that X should be fornally treated
as random Their paper is but voe from an exteasive literature on
structural measurement error that we canzmot feasibly review in de.
tail. Puller (1957) does survey that literature i his compechensive
work on the theory of measerement error. More recent work (see
Carroll, Ruppert and Stefanski 1995 for a review) has addressed
that theory for noolinear regression. |

Intuition suggests the use of the cluster means of the X-distributions
instead of surrogates Bke those in BET to impute the unmeasured
X's. However, while this approack may reduce the bias expected
freen structural measurement error, it does nol get around the prob-
lem (soe Zidek 1996) introduend in noakinear regression by lack of
precision in an imputation procedure ke that decribed above, If
ignored, that difficalty wosld call inferential findings isto question

Zadek (1996) discussns some of the deleterious effects of measure-
ment errors. In & report of particular relevance here, Zidek ot al
(1934) consider & nonlimear regression analysis with two factors, one
causative, the other not, but associated with the first, The variables
representing these factors are measured with error, If the rolative
size of this error for the first compared to the second is large, the
first may be found nce-significant and the second significant, even
when their association is anly moderate,

We will aot discuss hore methods for finding the X-dwtribution
but the wvalue of our method is enbasced by the peogress that has
been made in Sinding that distsibution whes X repeesents certain
kinds of air pollutants with Gaussian distributions (after suitable
transformation). (Le and Zidek 1992; Brown, Le and Zidek 1994; Le,
Sun and Zidek 1994; Sun 1994; Sun 1995; Sun, Le, Zidek and Bur-
nott 1905). Diggle et al (1995) obtain results for the non-Gasssian
case and Diggle et 2l (1996) demonstrate this methodology in an
application.

With or without meassrerment error, the cluster-bhased asalysis
may lack the power needed to fnd » small positive association be-
twoen ‘blips’ within clusters. How can we gain the power neoded to
find them?

The answer commonly adopted in statistical epidemiology con-
sists of synthesising the cluster-based analyees to gain that power.



If data from different clusters were independent, even naive reason-
img shows that a pattern of inidividually non-significast but positive
correlations, are sigaificant in the aggregate. More refined reasoning
using as intrinscally Bayesian approach assigns random effects to
clusters. The data remaia conditionally independent given these ef-
focts. But their usconditiosal distribstion integrates the data into a
single overall analysis. That analyis preserves the cluster-strocture
and thereby avoids the problem of confounding described earlier.
Breslow and Clayton (1993) unify and review various approaches of
the sort we have just described,

In summary, the possibility of confounding factors may force an
investigator to cluster response data in observational studies and
do conditional analyses within clusters. However in some clusters,
data on explanatory variables may not be available, leading to struc
tural measurement error. Such ezror needs to be incorporated into
inferential analysis to increase the plausibility of the investigatoes
coaclusbons. Fiaally, to gain the power needed to detect subtle asso
Galicas common (o the clusters, randoen effects can be introdeced
to enable information to flow between clusters.

Whkile the resulting sub-strocture seems inevitable it comes at
& high cost: high levels of uacertainty about the models we need
to build on it to perform conveational inference, That sncertainty
could overwhelm asy gaine we may have achioved through the cre-
atiom of the mab-strecture, The generalised estimaticg equations
technique offers a way around this difficulty (of Zeger 1655; Liang
and Zoger 1986; Zeger and Liang 1956; Zeger and Karien 1991; Zegesr,
Liang and Albert 1988). The investigator need caly specify moments
-pwmmdotdatbmbypmngmbunmwwdm

and reducing the levels of uncertainty infused through
modelling. The techniqoe whose justification comes from the large
sample paradigm, yields estimaates of the parameters reflecting the
assochation under investigation and associated tests.

Our particular generalised estimating equations techniquee is an
adaption and refisement of that of BK-94 and Buroett, Ross, and
Krewski (1993). That snethodology builds on the woek of Lindstrom
and Bates (1990) which in turn depends oa that of Laird and Ware
(1982). [n Sectiva 2 we develop approximations to the first and



second order moments needed for our graeralised estimating equa-
Lions technique in Section 3, Sinor our methodology extands that of
BK-9§, we can readily adapt their resslts for inforesce about model
parametess in Section 3, We assume parametens of the covasiate
distribution known in this paper and comment on Lhal assamption
in Section 5.

The illestrative examplo in Section 4 derives from a re-analysis
of the hospital admissions data studied in BET and BK-9{. Owur
analysis diffors from its earlier counterparts in & number of ways,
notably: (i) pollutant Jevels are interpolated using the methodology
of Le and Zidek (1092) as extended in papers cited above; (ii) un-
certainty in the interpolated pollution levels is incorporated into the
model through the methodology developed in this paper,

2 Moment Structure for Errors-in-Covariates
Models

Let Y demote the vector of observable respoases for all & clusters
and T time-points and Y, the subvector of observations

ing to the k-th cluster. We furtber denote by Y, the observation for
the kth cluster ca time-point £,

Lot X! denote the covariate-vector corresponding to Yi,. We
indude in X} both the covariates observed with error and those
without. We assumse fisst and second moments knowsn: E(Xy) =
20; Cov (X, Xis) = Guye,. We sel 10 2010, any elements of
Guny, corresponding 1o covariates cbaerved without error. [n our
theory we assame Gy, = 0 when {; # 1,

The covariates and respomses are related through E(Yie | a0, X)) =
Cae and

Cov (Y, Yo | 80, Xin, . Xisy) = G0 dinsy

where &, = 1 or 0 according as u = v or not. We have let ¢ be
an unknown scalar dispersion parameter. Finally, (o = {(a] Xu). {
being positive and thrice continucusly differentiable. We also toquize
that { be Jog convex. That Iatter requirement insures that 0 <
Clu) 420" (u)e 4 {"(u)e® for all u, v, & fact noeded Lo invure below the



positive definiteness of the approximate uncoaditional covariance
matrix we adopt,

We assume the coeflicient voctor ay [some of whose elements can
be non-random| bas meaa o, and covariance matrix D. Elements of
the latter corresponding to sca-random co-ordinates of o, are zero,

The estimating equations approach requires just the first two
moments of the response variable distributions. Nevertheless we are
forced to approximate these two moments through Taylor expan.
wons of the mean response functicas to make second order moments
compuatable.

To simplify exposition we use in both stochastic and noastochas
tic equations, % to mean “approximately equal to” after dropping
terms of order higher than two. For added simplicity we temporar-
ily fix aod deop the subscript & oo that ¥ = ¥ Xy = X, Gy =
Giy,s, and so on. We return to our original sctation when we sum-

marise our results below.

To obtain moments of Y with respect to the random covariates
but conditicaal on a, we expand § » (i, in a Taylor series with
respect to X, about 2, and retain only terms up Lo second oeder.
The result:

G o= C(aTm) + ¢ (a7) T (X~ )
+ ;c’ (a72) a7 (Xi = %) (X, = 2)"a.
From this expansion we get
E(Y|a) = (a"2) + %(" (a7%) a"Ga. (1)
By retalning just the terms up to seccad ceder we get from the
expazsion given above foe {; and
Cov(Y, Y| a) = &;0E (Y: | a) + Cov ({;,{; | a)

the resalt
Cov (¥4, Y: | a) = Aysfa), (2)

where Aua(a) = §eE (Y | a) + ¢ (aT5) ¢ (a72) aTGpsan
Equations (1) and (2) give s models for the first and second
conditional moments of the respomse. These models incorpocate our

e



uncertainty about the covasiates measured with error, Motivated
by the applications we make of these models (illustrated in Section
4), we smplily the conditional expectation model by adapting the
approach of Lindstrom and Bates (1990) as modified by BK-94. In
omr adaptation of that approach we retain only terms up to second
oeder in the Taylor expansion of the expectation about a point o =
G4 = Q.4 = o, specified in the next section. The result:

E(Y | a) = p\(a), (3)
where
we) = ((o)n)+Z(a-0,)
& 50" (o7 w) o7 (8 - ) (0 - 07
+ OIG.'.O.,

le-cﬁ&‘L‘?'
Observe log convexity of { insures that 5, > 0. In turmn
this makes Ay > 0 whea we approximate it by substituting o, for
E(Y; | n) in Equation 5 below.

We may now wse our approximations for the conditional mo-
ments Lo get appeoximations for the usconditional moments of the
respoases. For the expectation we obtain

E(Y) = pfa.), (1)
where
plan) = {(ofz) +2Zi(a~a,)
+ .:-,C'(af&) (27D + (a -~ au)j(a ~ a.)" 2]

+alGuo,).

To get the unconditional repoase covariancos we use the approxima-
tione:

E(Cov(Y, Y5 la)) = Aufay)

T



and

Elm(a),mla)] = t. Di{.

These last two approximations together give us our approximation
to the uncoaditional covariance,

Cov (¥, V) = Xyle) {5)
where
Tifla) = Awfa,) + 2,D2].

Note that the positivity of p(a,) assures that of Efo,) obtained
from this Equation 5.
In vector-matrix form using our original notation we now have:
E(Ye|m) &= (nue (o), - mup(ne))” = min);
Cov(Yi|na) = diag(Aue(ma)- o, Aueper(0a)) = Ag(an):
E(Ys) = (pun(@a),-. -, Maer(0))" = pafea);
Cov(Ys) = Auan)+ 2.DZ] = Tilau),

whete 27 w (zh.,zlr)

3 Fitting the Errors-in-Covariates Model

To being our resalts into Bne with those of BK-9 as well as Lind-
strom and Bates (1990), we let ay = 5+ b, and for duster-specific
analyss (Subsection 3.1), aue = 5 + by, the {by]} baving expecta-
tices {0). The estimates {by) would be the current values obtained
in the interative estismation of the {b,]. We regard these estimates
as fixed for our errors in-covariates model thereby obtainiag a mo-
et Mrectuse which formally rescmbles that of BK-94. Thes after
observing the {Y, = yi} and associated covariates, we may employ
the methods of BK-94 with minor modifications. Subsequently in
Subsection 3.2 we let o,y = 4.



3.1 Cluster Specific Model

Foe our model, the parameters we newd Lo estimate ace by, 7, D,
and ¢. We interpret § as the change in the response that would be
observed al a “typical® cluster resslting from a change in the co-
variate levels. Zeger, Liang and Albert (1988) (Aereafter referred to
as ZLA-88) call a model with such an interpretation subject-specific,
The {by) show bow the response rates differ amoag the individual
clusters and we will therefore call this model chaster-specific” instead.

To estimate the random effects {b,}, we iteratively solve an e

timating equation using the Fisher scoring algorithm. As noted in
the last sectioa, some of the coordinates of these random effect vec-

tors and all correspoading elements of D will be identically zero,
To simplify exposition, we augment D with diagonal elements as
necessary to make it poasingular. Recall that Z,, is the gradient of
q.(u)winhmpoeuon.wduuduuwﬁ«’-ﬁ-anndt.
the corresponding vector, We Jet Ay = Au(8 4 5,) be cur carrent es-
timate of Cov(Y, | 8y) The appropriate estisnating equations then
become
We = ZIAD (ya = m(3+ b)) =Dy = 0.

To use the scoring algorithm we need the matrix obtained as the
expectation of the (row) gradsent with respect to by of the (column)
vector Wy, The result;

A = ~2FA22, -D-L.
To get the mext by, say b we would then solve,
Ab] = Ab,-W,.
Using the well known matrix identity, (P + QTRQ)™" = P! -
P'QT(R™ + QP'QT)'QP~* we get after some simplification
b = DZ[L'h, (6)
where fy = ¥, -Q.(ﬂ-iﬁ.)i-z.&.
Now reset to 0, the diagonal elements added 1o make D nonsie-

gular. We see that equation (6) retarns & 0 for each of the clements
of the random effects vector actually corresponding to fixed effects,



To estimale the hyperparameters, which to this point have been
taken as fixed, we must turn to the marginal distribution of the
{ Y4} evaluated at their realisations Lo get the quasi-log-likelibood

X
Q=3 (| 5| +Ei"n), (1)

whese ry = yi = pal(3 + by) [t gives us the geseralized estimating
equations seoded for estimating the hyperparameters. Those
estimating equations for 5 are readily found to be

LY

Z*z!::'h = 0,

=l
where X, is the T x p mateix of derivatives of gy with respect to
A. We can solve these equations iteratively by the Fiaker scoring
algorithem. the leading term i X, is just Z,. The updated estimate
of 8, say §* would be gives by

B = 84N, gx.r.-'».. (8)

where H, = (2‘,{_, X{E:'i.)-l and parammetors on the right hand
sides of these equations are ovaluated at their current values.

We adopt these updating equations as well as the BA-9{ iterative
extimators for D and ¢ given by:

DeD4+D (x-‘ éz{s;' (rar] = &) E;'&) D; (9

¢ = KT f; ((E:'n), (10)
awl

the right side of thewe equations being evaluated at the current pa-
rameter estimates in both cascs, These oquations may be oblained
by using the EM algorithm to maximise the quasi-log-likelibood in
Equation 7 which, being formally that of a nocinal distribution, ad-
mits the use of the approach of Laird and Ware (1982), To set up



the algorithm we formally represest the respoases by a linear model,
Yie = ptae + 2004 4 Uy & 64,

where the {by}, {Ui) and {e) are mutually independent asd
sormally distributed with 0 means and vaniasces/covariances ) =
Cenby), Var(Un) « [{'(afi 2] ol Ganow and Ver{ew) m dpulo.),
respectively. For the M-step we sappose we have observed the {by)
:x:)thdudduh say (cac). Then we would have satural estimates

and ¢:

D = K"f:hb.’;
=l

X T
¢ = (KT)" 3 ) (en) i (0a).

bl P
Since the {by} and {¢]) are not observed we need the E-step to cal-
culate the conditional expectations of the {byb] } and the (e )¢S
given the (Y ). The iterative estiznate for D obtaiza directly from
this caleulation using standard distribeation theory for the maltivasi.
ate mormal. That for ¢ does not stem directly from the analagous
caloslation which gives instead,

$ = «xrr'f,z':( {5'n)

(SR
XN 7
+ #{KT) E gxr L

for a certain matrix M*, The second term in this last expression has
expectation 0 so the first is “unbiased’ for ¢ leading to the iterative
estimator stated in Equation 10.

Estimation of the parameters for the cluster specific model pro-
coeds by iterating Equations (6)-(10) until the maximum relative
change in each of the componcnts of § is less thas a specified toler-
ance. Alternatively we conld coatizee until we sen negligible rclative
change in the quasi-log-likelihood.



3.2 Population Average Model

Often an analysis focuses on the average effect over all dusters; thes
our marginal expectation model becomes

E(YulXu) = ¢ (8 Xu). (1)

Here 8° represents the ‘population-average regression parameter
where in the cluster-specific model of the bt Subsection, § was
the regression parameter for a ‘typical” chaster, The coefficients in
our populatica average model determine the expected change in the
namber of responses for the entire population dee to a change in
the mean levels of the covasiates. Hence this model has been called
s popalation-average model (ZLA-88),

The intorpretation of such nonlinear models requires care. Sup-
pac-ecleurntbu('(ﬂ"xu)-((m. Then we see
that the population average impact of X, equals ot a Lypical
cluster (where by = 0). However, as soted ia BX-2¢, 5° ¢4 8 in
general,

Obmerve that 3%'s cocedinates depend oa the degroe of hetero-
geneity in the response rates amoag the clusters (through the inte-
gration with respect to the distribution of by ). If that beterogoneity
is not explicitly modelled, the covariance structure of the uncon-
ditional Yy is not analytically defined, However, by evaluating the
covariance matrix of the cluster-specific model at by = 0, for all clus-
ters, we obtain below a plausible ‘working covariance’ for the pop-
ulaticn average model. We substitute [ for D in that covariance to
emphasize the distinction between them and the differeace in their
interpretation in these different contexts. Owr overall objective now
becomes the maximisation of the quasi-Jog-likelibood as objective
function with the working covariance matrix so-determined.

We will in the sequel lot §* = 8 and (* = ( with Ettle risk of
confusion and gales in expository simplicity, Moreover we boerow
results from the last sabsection by viewing (11) as & degrnerate
rasndom effects model with by = 0 and beace D = 0. Thus we have

EWYirl = vie = pn) = (87 a10) 4 M5 500} G
To state the objective function and wocking covariance explicitly



"N = (m..---.mg)r:
B = Ya—W

M, = [(‘(3’:..):..,.....('(6’:..,):..,]';
Vie w ron o (5700 2] Ganta

V. had “’(Wnﬂ'lm');
W. - VQ*”lr'wht'

The last of these equations gives the working covariance. Observe
that it can feemally be obtained by positing a random effects model
like that considered in Scction 2 (and setting a = a, = § in the
Taylor expansion appraximations developed there). In partbculas,
we can formally represent the responses usiag the linear model:

Yoo = vag + Muyby + Uy + €y, (12)

where the My, denotes the t-th row of M, while {b,}, {Uy} and
{ea) are mutually iadependent and normally distributed with 0
means and variances/covariasces ' « Coulby),

Var(Us) = [{(87 287 Gund

and Var{ey) = riy,, respectively.
To maximise the quasi-log-likelibood

P 3 (la] Wil 4 Wi's). (13)
(]

we can invoke the representation of the responses gives in Equa
tian 12 and formally appeal to the results of Sulwection 3.1. We
thereby oblain the recursive relaticns noeded for iteratively fitting
the proposed working covariance matrix

This observation cmphasises the benefits we (followiag BK-9§)
gala in linking the population-average (or marginal) model to the
clusters specific model. While the interpretation of parameters in
the resulting model differs from that of the clester-specific model,
the analysis procends along the same nes, We solve the estimating

13



equatioas [teratively by the Fisher scoeiag algoeithn. The spdated
estimate of 3, say 0° would be given by

= f+A fj UsWi's,, (14)
bl

where U, = Vo and A = (D, UTU;'ML) ™, all quantities
being evaluated at current parameters estimates. To estimate I’ we
get from the last subsection,

P =r+r (K" f: MIW? (ses] — Wi) w:'u.) T, (15)
(L3}

whare the right Band side of the equation is evaluated at the carrent
parsmoter estinsates, Eatimating r roquires

g
$ow (KT Y Y Wil (16)
=] tm)
As in Subsection 3.1 iteration of these estimates continues ust] the
estimmated regrosacn coofficents converge or changes in the quasi-
log-likelihood became negligible.

4 Applying the Theory

In this section we show how the methods described above can be
used by briefly describiag the study which led to their developenest.
That study of Zidek ot al (1996) used daily series of bospital admis.
sion counts in Ontasio due Lo respiratory problema for the years 1983
through 1988, In the carller work of BET axd ON-9§ admissions
were clasified by hospital. Recognising that pollution eflects would
be confounded with populaticn size the anthors of those stodies in-
troduced hospital size isto the analysls to control for popalation

wizo,

Recognisiag that popelation size might not be fully accounted for
in this way, it seomed desirable Lo check the eeiginal findings of the
studies cited above by controlling for population size moee dicectly.
That led to the investigation deacribed in this section, a resnalysis of

14



the data with admissions classified by the census sabdivision (CSD)
in which the patient resided (Zidek ot al 1006).

The approach taken in that study, led to the analysis of a series
of daily admission comnts for each of the 733 CSDs (clusters). The
subserios comprised of the moaths May throagh Augest in each of
the six yoears were extracted for modelling since prioe work (¢ f. 8K
9{) indicated that the strongest correlation between pollution and
admissions occurred during those months.

The asalysis sought the average effect of changes in the mean
levels of pollution taken over all CSDs and beace used a population-
average approach in the terminology of Subsection 3.2

Daily hospital admissions series in Ontario exhibit seasonal vari-
ation a8 well as day-of-the-week effects, Given the need to adjsst for
Unowe factor and the goal of catimating population average efacts,
the expected adimsision count Y, gives the pallution Jevels Xy, were
modelled by:

E(Ye by Xa) = ((87Xu)
= m&m(ﬂfx&)v

my being s multiplier accounting for the effects of seasonality (tread),
day-of the woek, and the population skze of the CSD. The first two
eflocts were estimated froem the data peior to fitting the model (see
BK-94 for detalls). The populatica counts were cblained from the
1086 Census, Hence, my, entered the model as & known constant.
The conditional covariance of Yi, was determined as in Section 2.
The ofects of four pollutants, SO, Oy, SO; asd NO; were inves-
tigated thmugh their spatial interpolants. The climatic variables,
maximum daily temperature and average daily husnidity were in-
terpolated into the analywis as well. All the explanatory variables
wore log-transformed (Lo improve the normal approximation of their
joint distribution) and thon passed through a high-pass filter so that
caly ‘blips’ remained in each series. AR(1) residuals were then ex-
tracted feom the raault 1o gain an approximately indopendeat series
oa which the spatial interpolator could be applied. The AR(1) step
was inverted co Lhe iaterpolated sesies to get & spatial prodiclor for
the high frequency interpalated explanatory veclor sexies, cae for

vach cluster,

1



The re-analysis found imprecision ia the impated clester meass to
be effectively negligble. Regressbon coefficients were unchanged (to
two significant figures) by the incorporation of the residual covark
ance of spatial prediction erroe. That is the role of spatial prediction
turned out to be imited to bias correction.

Data were analysed on a summer-by-sammer basis, so that changes
in pollution effects over time could be assessed. In this way the
analysis tried to assess the *model uncertainty™ where standard er.
rors merely reflect model-specific parameter uncertainty. Any de
ﬁoudointhnoddmldbemwcdfocby.djmu
in fitted parameters. That in turn would lead to unstable parame-
ter estimates, ‘tracking’ the deficiency of the model over summers.
The sammer-to-summer variability in these cstimates could grossly
domisate the vaniability estimated from the standard errors. In that
case, the latter would if adopted wncritically yield » false sense of
reliability in the model fit and ensuing substantive findings.

Partitioning the analysis as described above does lead to reduc
tion in the apparent significance of any tests which might be per.
formed. However, if the parameter estimates turn ot to be fairly
stable they can be combimed albeit in a mildly suboptimal way to
obtain overall conclusions and substantial power.

In fact, the study found the regression coeficient estimates to be
generally stable from year to-year and they were combined to get
single overall tests of significance for the association of the various
explanatory factoes with hospital admission counts.

Ie sumamary, the study coafirmed in a qualitative way, the carlier
findings of BET, that increased levels of ozone and sulfate, suitably
lagged, are associated with increases in the numbers of hospital ad-
missions for respiratory moebidity. Foe the most part, these findings
appear Lo be reproducible (o yeas-to-year in a stable fashion. Pos-
sible rexidual confounding of population size with pallution effects
after accousting for hospital size in catchanest arens sovins negligs-
ble. Effects due to meteocological factoes (daily temperatuce asnd
hemidity) seem relatively small and not coafounded with those due
to pollutasts. Finally, usmeasered pollutant levels can be interpo-
lated suflciently accurately that for the parpose of the regressicn
analysis, that imprecision can be ignoced in inferences made,



5 Concluding Remarks

We have chosen the generalised estimating approach as a vehicle
for our methodology pending the development of credible models
for convenstional inference. Our view of the inferential problem is
Bayesian bowever; we do not believe the random effects substructure
can be justified on any other grounds.

In the model given here, the parameters of the covariate distri-
bation are amumed known although ia practice they will be osti.
mates, Our theory fails to incorporate additional uncertainty stem-
ming from the resulting estimation erroe. In principle we could
include model structure repeesentiag that uncertaloty and such im.
provement might be worthwhile in futare work. However we believe
that source of uncertainty to be negligible in our applications of the
theory.

The assumption underlying the generalised estimating equations
method, of conditional independence for data from differcnt clusters
may aot be realistic. [t would not be realistic for example when these
clusters represent contiguous sampling domains such as geographical
subregions. We intend to incorporate between cluster dependence
in developing alternatives to that method.
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