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Abstract

This paper extends methods for nonlinear regression analysis that have
been developed for the analysis of clustered data. Its novelty lies in its
dual incorporation of random cluster effects and structural error in the
measurement of the explanatory variables. Moments up to second order
are assumed to have been specified for the latter to enable a.generalised
estimating equations approach to be used for fitting and testing nonlin-
ear models linking response to these explanatory variables and random
effects. Taylor expansion methods are used and a difficulty with earlier
approaches overcome. Finally we describe an application of this method-
ology to indicate how it can be used. That application concerns the degree
of association of hospital admissions for acute respiratory health problems
and air pollution.

1 Introduction and Summary

In this paper we suggest a method of accounting for structural mea-
surement errors in nonlinear regression analysis of clustered data.
The novelty of the method lies in our simultaneous incorporation
of random measurement errors and random cluster effects. In the
process of developing that method we refine a method of Lindstrom
"The research reported in this paper was supported by a contract from Health Canada and

a grant from the Natural Science and Engineering Research Council of Canada.
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and Bates (1990) as adapted in Burnett and Krewski (1994, here-
after BK-94). We begin by describing how the need for such a
method arises. Then we summarise the results of this paper.
Regression methods are commonly used in analysing clustered

data. Statistical epidemiology provides examples such as the study
of Burnett et al (1994, hereafter BET) who examine series of daily
counts of hospital admissions for respiratory morbidity. Each se-
ries forms a cluster associated with one of a number of hospitals in
southern Ontario. Their study concerns the effect of air pollution
on respiratory health.
Data may be clustered to avoid the confounding of factors. For

example in the just-cited study the number of daily hospital admis-
sions and the level of air pollution will simultaneously increase with
population size. Thus the un clustered data would indicate strong
association between hospital admissions and air pollution. To avoid
the confounding of the factors of pollution and population size, one
might well disaggregate the count data by subregional clusters and
analyse the time varying pollution and admission levels cluster-by-
cluster to control for population size.
BET take exactly that approach. In their regression analysis of

association between admission and pollution levels, they form (Y, X)
pairs through natural temporal linkages, Y being daily admissions
and X, lagged average daily concentration of air pollutants. Their
study seeks to determine if 'blips' of short duration in Y tend to
follow those in X. A positive finding gives evidence of a causal
linkage between Y and X even with observational data, the short
time-intervals of such blips tending to make confounding with blips
in other factors seem implausible.
However, the approach encounters an obstacle: the X's needed

for their analysis have not been measured in all clusters. This ob-
stacle may be expected in any study involving a dataset formed
by joining others compiled for a variety of different purposes. This
obstacle forces BET to use as surrogates for their unmeasured X's
others obtained from often distant ambient pollution monitors.
We regard X as random (having a distribution conditional on the

values of the surrogates). Thus we face an errors-in-variables prob-
lemof the structural rather than functional type. [Even in the latter
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case, Pierce et al (1992) argue that X should be formally treated
as random Their paper is but one from an extensive literature on
structural measurement error that we cannot feasibly review in de-
tail. Fuller (1987) does survey that literature in his comprehensive
work on the theory of measurement error. More recent work (see
Carroll, Ruppert and Stefanski 1995 for a review) has addressed
that theory for nonlinear regression.]
Intuition suggests the use of the cluster means of the X-distributions

instead of surrogates like those in BET to impute the unmeasured
X's. However, while this approach may reduce the bias expected
from structural measurement error, it does not get around the prob-
lem (see Zidek 1996) introduced in nonlinear regression by lack of
precision in an imputation procedure like that decribed above. If
ignored, that difficulty would call inferential findings into question.
Zidek (1996) discusses some of the deleterious effects of measure-

ment errors. In a report of particular relevance here, Zidek et al
(1994) consider a nonlinear regression analysis with two factors, one
causative, the other not, but associated with the first. The variables
representing these factors are measured with error. If the relative
size of this error for the first compared to the second is large, the
first may be found non-significant and the second significant, even
when their association is only moderate.
We will not discuss here methods for finding the X -distribution

but the value of our method is enhanced by the progress that has
been made in finding that distribution when X represents certain
kinds of air pollutants with Gaussian distributions (after suitable
transformation). (Le and Zidek 1992; Brown, Le and Zidek 1994; Le,
Sun and Zidek 1994; Sun 1994; Sun 1995; Sun, Le, Zidek and Bur-
nett 1995). Diggle et al (1995) obtain results for the non-Gaussian
case and Diggle et al (1996) demonstrate this methodology in an
application.
With or without measurement error, the cluster-based analysis

may lack the power needed to find a small positive association be-
tween 'blips' within clusters. How can we gain the power needed to
find them?
The answer commonly adopted in statistical epidemiology con-

sists of synthesising the cluster-based analyses to gain that power.
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If data from different clusters were independent, even naive reason-
ing shows that a pattern of inidividually non-significant but positive
correlations, are significant in the aggregate. More refined reasoning
using an intrinsically Bayesian approach assigns random effects to
clusters. The data remain conditionally independent given these ef-
fects. But their unconditional distribution integrates the data into a
single overall analysis. That analyis preserves the cluster-structure
and thereby avoids the problem of confounding described earlier.
Breslow and Clayton (1993) unify and review various approaches of
the sort we have just described.
In summary, the possibility of confounding factors may force an

investigator to cluster response data in observational studies and
do conditional analyses within clusters. However in some clusters,
data on explanatory variables may not be available, leading to struc-
tural measurement error. Such error needs to be incorporated into
inferential analysis to increase the plausibility of the investigators
conclusions. Finally, to gain the power needed to detect subtle asso-
ciations common to the clusters, random effects can be introduced
to enable information to flow between clusters.
While the resulting sub-structure seems inevitable it comes at

a high cost: high levels of uncertainty about the models we need
to build on it to perform conventional inference. That uncertainty
could overwhelm any gains we may have achieved through the cre-
ation of the sub-structure. The generalised estimating equations
technique offers a way around this difficulty (cf Zeger 1688; Liang
and Zeger 1986; Zeger and Liang 1986; Zeger and Karim 1991; Zeger,
Liang and Albert 1988). The investigator need only specify moments
up to second order thereby gaining robustness against model mis-
specification and reducing the levels of uncertainty infused through
modelling. The technique whose justification comes from the large
sample paradigm, yields estimates of the parameters reflecting the
association under investigation and associated tests.
Our particular generalised estimating equations technique is an

adaption and refinement of that of BK-94 and Burnett, Ross, and
Krewski (1993). That methodology builds on the work of Lindstrom
and Bates (1990) which in turn depends on that of Laird and Ware
(1982). In Section 2 we develop approximations to the first and
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second order moments needed for our generalised estimating equa-
tions technique in Section 3. Since our methodology extends that of
BK-94, we can readily adapt their results for inference about model
parameters in Section 3. We assume parameters of the covariate
distribution known in this paper and comment on that assumption
in Section 5.
The illustrative example in Section 4 derives from a re-analysis

of the hospital admissions data studied in BET and BK-94. Our
analysis differs from its earlier counterparts in a number of ways,
notably: (i) pollutant levels are interpolated using the methodology
of Le and Zidek (1992) as extended in papers cited above; (ii) un-
certainty in the interpolated pollution levels is incorporated into the
model through the methodology developed in this paper.

2 Moment Structure for Errors-in-Covariates
Models

Let Y denote the vector of observable responses for all K clusters
and T time-points and Y k, the subvector of observations correspond-
ing to the k-th cluster. We further denote by Ykt the observation for
the k-th cluster on time-point t.
Let Xk~) denote the covariate-vector corresponding to Ykt. We

include in Xk~)both the covariates observed with error and those
without. We assume first and second moments known: E (Xkt) =
Zkt; COy (Xktl' XktJ = Gkt1t2. We set to zero, any elements of
Gktlt2 corresponding to covariates observed without error. In our
theory we assume Gktlt2 = 0 when tl =1= t2·
The covariates and responses are related through E(Ykt I aj,, Xkt) =

(kt and

COy (Yktl ,Ykt2 I ak,x., ,x., ) = c/J(ktl Otlt2 ,

where ouv = 1 or 0 according as u = v or not. We have let c/J be
an unknown scalar dispersion parameter. Finally, (kt = ((afXkt), (

being positive and thrice continuously differentiable. We also require
that ( be log convex. That latter requirement insures that 0 <
(( u) +2('(u)v +("(U )v2 for all u, v, a fact needed to insure below the
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positive definiteness of the approximate unconditional covariance
matrix we adopt.
We assume the coefficient vector ak [some of whose elements can

be non-random] has mean CXk and covariance matrix D. Elements of
the latter corresponding to non-random co-ordinates of CXk are zero.
The estimating equations approach requires just the first two

moments of the response variable distributions. Nevertheless we are
forced to approximate these two moments through Taylor expan-
sions of the mean response functions to make second order moments
computable.
To simplify exposition we use in both stochastic and nonstochas-

tic equations, R: to mean "approximately equal to" after dropping
terms of order higher than two. For added simplicity we temporar-
ily fix and drop the subscript k so that X = Ykti' Xi = Xkt;, G12 =
Gktlt2 and so on. We return to our original notation when we sum-
marise our results below.
To obtain moments of Y with respect to the random covariates

but conditional on a, we expand (i = (kti in a Taylor series with
respect to Xi about z, and retain only terms up to second order.
The result:

(i R: ((aTzi)+('(aTzi)aT(Xi-zi)

+ ~(" (aT Zi) aT (Xi - Zi) (Xi - zif a.

From this expansion we get

E(Yi I a) R: ((aTZi) + ~(" (aTzi) aTGiia. (1)

By retaining just the terms up to second order we get from the
expansion given above for (i and

COY (Yi, Y2 I a) = 812rPE (Yi I a) + COY ((t, (2 I a)
the result

Cov(Yi,Y2/ a) R: A12(a), (2)

where A12(a) =012rPE(Yi I a) + (' (aTzl) (' (aTz2) aTG12a.
Equations (1) and (2) give us models for the first and second

conditional moments of the response. These models incorporate our

6



uncertainty about the covariates measured with error. Motivated
by the applications we make of these models (illustrated in Section
4), we simplify the conditional expectation model by adapting the
approach of Lindstrom and Bates (1990) as modified by BK-94. In
our adaptation of that approach we retain only terms up to second
order in the Taylor expansion of the expectation about a point a =
ak = O:ok = 0:0 specified in the next section. The result:

E (Yi I a) Ri 1]i(a), (3)

where

1]i(a) = (( a~ Zi) + Zi (a - ao)
+ ~(II (a~ Zi) [zT (a - ao) (a - ao)T z,
+ a~Giiao]

and z, = (' (ar Zi) zr
Observe that the log convexity of ( insures that 1]. > O. In turn

this makes All > 0 when we approximate it by substituting 1]1for
E(Yi I a) in Equation 5 below.
We may now use our approximations for the conditional mo-

ments to get approximations for the unconditional moments of the
responses. For the expectation we obtain

E (Yi) Ri /-li(O:o), (4)

where

/-li(ao) ( (o:~Zi) + Zi (0: - 0:0)

+ ~(II (O:~Zi) {zf[n + (0: - 0:0)] (0: - O:of Zi]
+ a~Giiao}.

To get the unconditional reponse covariances we use the approxima-
tions:

E (Cov(Yi, 12 I a)) Ri A12(0:0)
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and

E[711 (a), 712( a)] ~ ZlDZf.
These last two approximations together give us our approximation
to the unconditional covariance,

COy (Yi, 12) ~ E12(ao) (5)

where
A AT

E12(ao) = A12(ao) + ZlDZ2•
Note that the positivity of !Ji( ao) assures that of E( ao) obtained
from this Equation 5.
In vector-matrix form using our original notation we now have:

E (Yk I ak)
COy (Yk I ak)

E(Yk)

COy (Yk)

~ (71ktl (ak), ... , 7lktT(ak))T = 7lk(ak)i
~ diag (Aktltl (ak), ... , AktTtT(ak)) - Ak(ak)i

~ (!Jktl(aok), ... ,!JktT(aok)l = !Jk(aok)i
A AT

~ Ak(aok) + ZkDZk = ~k(aok),

AT (AT AT )where Zk = Zktl"'" ZktT .

3 Fitting the Errors-in-Covariates Model

To bring our results into line with those of BK-94 as well as Lind-
strom and Bates (1990), we let ak = (3 + bk and for cluster-specific
analysis (Subsection 3.1), aka = (3 + bk, the {bk} having expecta-
tions {o}. The estimates {bd would be the current values obtained
in the interative estimation of the {bj }. We regard these estimates
as fixed for our errors-in-covariates model thereby obtaining a mo-
ment structure which formally resembles that of BK-94. Thus after
observing the {Y k = yd and associated covariates, we may employ
the methods of BK-94 with minor modifications. Subsequently in
Subsection 3.2 we let aok = (3.

8



3.1 Cluster Specific Model

For our model, the parameters we need to estimate are bk, (3, D,
and cP. We interpret (3 as the change in the response that would be
observed at a "typical" cluster resulting from a change in the eo-
variate levels. Zeger, Liang and Albert (1988) (hereafter referred to
as ZLA-88) call a model with such an interpretation subject-specific.
The {bd show how the response rates differ among the individual
clusters and we will therefore call this model cluster-specific' instead.
To estimate the random effects {bk}, we iteratively solve an es-

timating equation using the Fisher scoring algorithm. As noted in
the last section, some of the coordinates of these random effect vec-
tors and all corresponding elements of D will be identically zero.
To simplify exposition, we augment D with diagonal elements as
necessary to make it nonsingular. Recall that z; is the gradient of
"1kt(ak) with respect to ak evaluated at ak = (3 + i; = Qka and z,
the corresponding vector. We let Ak = Ak((3 + bk) be our current es-
timate of COV(Yk I ak) The appropriate estimating equations then
become

Wk = zfA;;l (Yk - "1k((3 + bk)) - D-1bk = O.

To use the scoring algorithm we need the matrix obtained as the
expectation of the (row) gradient with respect to bk of the (column)
vector Wk. The result:

A = -Zf'Ak1Zk - D-1.
To get the next bk1 say bk we would then solve,

Abk = Abk - Wk.

Using the well known matrix identity, (P + QTRQ)-l = p-l -
P-lQT(R-1 + QP-lQT)-lQP-l we get after some simplification

bA• DZAT~-l-
k = kDk rk, (6)

where rk = Yk - 1Jk(!3 + bk) + Zkbk.
Now reset to 0, the diagonal elements added to make D nonsin-

gular. We see that equation (6) returns a 0 for each of the elements
of the random effects vector actually corresponding to fixed effects.
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To estimate the hyperparameters, which to this point have been
taken as fixed, we must turn to the marginal distribution of the
{Y k} evaluated at their realisations to get the quasi-log-likelihood

K

Q =L (In I Ek I +rIEk"lrk) ,
" k::;;l

(7)

where rk = Yk - I'-k((3 + bk) It gives us the generalized estimating
equations needed for estimating the hyperparameters. Those
estimating equations for (3 are readily found to be

K
" AT -1L...JXkEk rk = 0,
k::;;l

where x, is the T x p matrix of derivatives of I'-k with respect to
(3. We can solve these equations iteratively by the Fisher scoring
algorithm. the leading term in x, is just Zk. The updated estimate
of (3, say /r would be given by

KA ",A 1(3* = (3+ H, L...J XkE; rk,
k::;;l

(8)

where Hk = (Ef::;;l XIEk"1Xk) -1 and parameters on the right hand
sides of these equations are evaluated at their current values.
We adopt these updating equations as well as the BK-94 iterative

estimators for D and </> given by:

D = D +D (rl t,Z;E,' (r,r; - E,)E,lZ,) D; (9)

</>
K

</>(KT)-1 L (rIE;1rk) ,
k::;;1

(10)

the right side of these equations being evaluated at the current pa-
rameter estimates in both cases. These equations may be obtained
by using the EM algorithm to maximise the quasi-log-likelihood in
Equation 7 which, being formally that of a normal distribution, ad-
mits the use of the approach of Laird and Ware (1982). To set up
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the algorithm we formally represent the responses by a linear model,
ATYkt = J-lkt + Z,I;tbk + U,I;t + €kt,

where the {bk}, {Ukt} and {€kd are mutually independent and
normally distributed with 0 means and variances/covariances D =
COV(bk), Var(Ukt) = [(/(a~kZkt)J2a~kGkttaok and Var(Ekt) = q;fLkt(aok),
respectively. For the M-step we suppose we have observed the {bk}
and the residuals say {€kt}. Then we would have natural estimates
of D and <jJ:

D
K

K-1" h hT.z: k k'
k=l

K T
~ = (KT)-l L:L:(€kt?fLk"/(aok)'

k=lt=l

Since the {bk} and {€kt} are not observed we need the E-step to cal-
culate the conditional expectations of the {bkbf} and the (€kt)2(j;/
given the {Ykt}. The iterative estimate for D obtains directly from
this calculation using standard distribution theory for the multivari-
ate normal. That for <jJ does not stem directly from the analagous
calculation which gives instead,

K T
~ = q;(KT)-l L L (rfEk"lrk)

k=lt=l
K T

+ q;(KT)-1 L I]I - Ek"lrkrflM*,
k=lt=l

for a certain matrix M*. The second term in this last expression has
expectation 0 so the first is 'unbiased' for <jJ leading to the iterative
estimator stated in Equation 10.
Estimation of the parameters for the cluster specific model pro-

ceeds by iterating Equations (6)-(10) until the maximum relative
change in each of the components of f3 is less than a specified toler-
ance. Alternatively we could continue until we see negligible relative
change in the quasi-log-likelihood.
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3.2 Population Average Model

Often an analysis focuses on the average effect over all clusters; then
our marginal expectation model becomes

E (Ykt I Xkt) = (* (J3*TXkt) . (11)

Here J3* represents the 'population-average regression parameter'
where in the cluster-specific model of the last Subsection, J3 was
the regression parameter for a 'typical' cluster. The coefficients in
our population average model determine the expected change in the
number of responses for the entire population due to a change in
the mean levels of the covariates. Hence this model has been called
a population-average model (ZLA-88).
The interpretation of such nonlinear models requires care. Sup-

pose we select J3* so that (* (J3*TXkt) = ( (J3TXkt). Then we see
that the population average impact of Xkt equals that at a typical
cluster (where bk = 0). However, as noted in BK-94, 13* =1= J3 in
general.
Observe that J3*'s coordinates depend on the degree of hetero-

geneity in the response rates among the clusters (through the inte-
gration with respect to the distribution of bk). If that heterogeneity
is not explicitly modelled, the covariance structure of the uncon-
ditional Y k is not analytically defined. However, by evaluating the
covariance matrixlof the cluster-specific model at bk = 0, for all clus-
ters, we obtain below a plausible 'working covariance' for the pop-
ulation average model. We substitute r for D in that covariance to
emphasize the dis!tinction between them and the difference in their
interpretation in these different contexts. Our overall objective now
becomes the maximisation of the quasi-log-likelihood as objective
function with the working covariance matrix so-determined.
We will in the sequel let 13* = 13 and (* = ( with little risk of

confusion and gains in expository simplicity. Moreover we borrow
results from the last subsection by viewing (11) as a degenerate
random effects model with bk = 0 and hence D = O. Thus we have

E[Ykt] ~ Vkt = J-Lkt(f3) = ((J3T Zkt) + ~(II(f3T Zkt)f3TGkttf3.

To state the objective function and working covariance explicitly
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let:

lIk = (lIktl"'" lIktT)T ;
Sk = Y» - lIk;

u, = [(' (f3T Zktl) Zktl' ••. , (' (f3T ZktT ) ZktT] T ;

V kt = rv» + [(' (f3T Zkt) j2ZktGkttZkt;
V k = diag (lIktl , ... , lIktT) ;
W, = Vk+MkfM[.

The last of these equations gives the working covariance. Observe
that it can formally be obtained by positing a random effects model
like that considered in Section 2 (and setting a = ao = f3 in the
Taylor expansion approximations developed there). In particular,
we can formally represent the responses using the linear model:

Ykt = lIkt + Mktbk + Ukt + eu, (12)

where the Mkt denotes the t-th row of M, while {bs}, {Ukt} and
{€kt} are mutually independent and normally distributed with 0
means and variances/covariances I' = Cov(bk),

Var(Ukt) = [(/(f3TZkt)]2f3TGkttf3

and V ar( €kt) = TlIkt, respectively.
To maximise the quasi-log-likelihood

n

P = L (In IWk I +S~Wklsk)'
k=l

(13)

we can invoke the representation of the responses given in Equa-
tion 12 and formally appeal to the results of Subsection 3.1. We
thereby obtain the recursive relations needed for iteratively fitting
the proposed working covariance matrix
This observation emphasises the benefits we (following BK-94)

gain in linking the population-average (or marginal) model to the
cluster- specific model. While the interpretation of parameters in
the resulting model differs from that of the cluster-specific model,
the analysis proceeds along the same lines. We solve the estimating
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equations iteratively by the Fisher scoring algorithm. The updated
estimate of f3, say f3* would be given by

K
/3* = f3+A Lu,W,;;lSk'

k=l
(14)

where U, = "Vf31/k and A = (2:f"=lUrU;;lMk)-\ all quantities
being evaluated at current parameters estimates. To estimate I' we
get from the last subsection,

t = r + r (K-1~ MrW,l (s.sr - W.) W;;lM.) r, (15)

where the right hand side of the equation is evaluated at the current
parameter estimates. Estimating T requires

K T
f = T(KT)-l L L srW;;lSk.

k=lt=l

(16)

As in Subsection 3.1 iteration of these estimates continues until the
estimated regression coefficients converge or changes in the quasi-
log-likelihood become negligible. '

4 Applying the Theory

In this section we show how the methods described above can be
used by briefly describing the study which led to their development.
That study of Zidek et al (1996) used daily series of hospital admis-
sion counts in Ontario due to respiratory problems for the years 1983
through 1988. In the earlier work of BET and BK-94 admissions
were classified by hospital. Recognising that pollution effects would
be confounded with population size the authors of those studies in-
troduced hospital size into the analysis to control for population
SIze.
Recognising that population size might not be fully accounted for

in this way, it seemed desirable to check the original findings of the
studies cited above by controlling for population size more directly.
That led to the investigation described in this section, a reanalysis of
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the data with admissions classified by the census subdivision (CSD)
in which the patient resided (Zidek et al 1996).
The approach taken in that study, led to the analysis of a series

of daily admission counts for each of the 733 CSDs (clusters). The
subseries comprised of the months May through August in each of
the six years were extracted for modelling since prior work (c./. BK-
94) indicated that the strongest correlation between pollution and
admissions occurred during those months.
The analysis sought the average effect of changes in the mean

levels of pollution taken over all CSDs and hence used a population-
average approach in the terminology of Subsection 3.2.
Daily hospital admissions series in Ontario exhibit seasonal vari-

ation as well as day-of-the-week effects. Given the need to adjust for
these factor and the goal of estimating population-average effects,
the expected admission count Ykt given the pollution levels Xkt were
modelled by:

E (Ykt I bk, Xkt) = (((3TXkt)
- mkt exp ((3TXkt) ,

mkt being a multiplier accounting for the effects of seasonality (trend),
day-of-the-week, and the population size of the CSD. The first two
effects were estimated from the data prior to fitting the model (see
BK-94 for details). The population counts were obtained from the
1986 Census. Hence, mkt entered the model as a known constant.
The conditional covariance of Ykt was determined as in Section 2.
The effects of four pollutants, S04, 03, S02 and N02 were inves-

tigated through their spatial interpolants, The climatic variables,
maximum daily temperature and average daily humidity were in-
terpolated into the analysis as well. All the explanatory variables
were log-transformed (to improve the normal approximation of their
joint distribution) and then passed through a high-pass filter so that
only 'blips' remained in each series. AR(I) residuals were then ex-
tracted from the result to gain an approximately independent series
on which the spatial interpolator could be applied. The AR(l) step
was inverted on the interpolated series to get a spatial predictor for
the high frequency interpolated explanatory vector series, one for
each cluster.
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The re-analysis found imprecision in the imputed cluster means to
be effectively negligble. Regression coefficients were unchanged (to
two significant figures) by the incorporation of the residual covari-
ance of spatial prediction error. That is the role of spatial prediction
turned out to be limited to bias correction.
Data were analysed on a summer-by-summer basis, so that changes

in pollution effects over time could be assessed. In this way the
analysis tried to assess the "model uncertainty" where standard er-
rors merely reflect model-specific parameter uncertainty. Any de-
ficiencies in the model would be compensated for by adjustments
in fitted parameters. That in turn would lead to unstable parame-
ter estimates, 'tracking' the deficiency of the model over summers.
The summer-to-summer variability in these estimates could grossly
dominate the variability estimated from the standard errors. In that
case, the latter would if adopted uncritically yield a false sense of
reliability in the model fit and ensuing substantive findings.
Partitioning the analysis as described above does lead to reduc-

tion in the apparent significance of any tests which might be per-
formed. However, if the parameter estimates turn out to be fairly
stable they can be combined albeit in a mildly suboptimal way to
obtain overall conclusions and substantial power.
In fact, the study found the regression coefficient estimates to be

generally stable from year-to-year and they were combined to get
single overall tests of significance for the association of the various
explanatory factors with hospital admission counts.
In summary, the study confirmed in a qualitative way, the earlier

findings of BET, that increased levels of ozone and sulfate, suitably
lagged, are associated with increases in the numbers of hospital ad-
missions for respiratory morbidity. For the most part, these findings
appear to be reproducible from year-to-year in a stable fashion. Pos-
sible residual confounding of population size with pollution effects
after accounting for hospital size in catchment areas seems negligi-
ble. Effects due to meteorological factors (daily temperature and
humidity) seem relatively small and not confounded with those due
to pollutants. Finally, unmeasured pollutant levels can be interpo-
lated sufficiently accurately that for the purpose of the regression
analysis, that imprecision can be ignored in inferences made.

./'-

~
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5 Concluding Remarks

We have chosen the generalised estimating approach as a vehicle
for our methodology pending the development of credible models
for conventional inference. Our view of the inferential problem is
Bayesian however; we do not believe the random effects substructure
can be justified on any other grounds.
In the model given here, the parameters of the covariate distri-

bution are assumed known although in practice they will be esti-
mates. Our theory fails to incorporate additional uncertainty stem-
ming from the resulting estimation error. In principle we could
include model structure representing that uncertainty and such im-
provement might be worthwhile in future work. However we believe
that source of uncertainty to be negligible in our applications of the
theory.
The assumption underlying the generalised estimating equations

method, of conditional independence for data from different clusters
may not be realistic. It would not be realistic for example when these
clusters represent contiguous sampling domains such as geographical
subregions. We intend to incorporate between cluster dependence
in developing alternatives to that method. ,
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