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L INTRODUCTION

In this paper we derive & modificasion of a Bayesian locally weighoed regression
method proposed by Weerahandi and Zidek (1988; hereafier WZ ) and show that the
result is approximasely the same as the resalt which would be obtined by say coc of
a large family of Bayesian lincar smoothing methods, These results are found in Sec-
tgon 3 where a contimeous vector-valoed process S Is supposed 10 be observed with
notse st & scalar valued sampling points 10 yiedd a data vecsor, Y in a n-fold carsesian
product space whose componeass are fiake dimensicnal inner geoduct spaces. The aa-
tistical objective is taken 10 be elther interpolation o extrapolation so hat the object of
inference & B = S(1). For sisnplicity only inlcrpolation will be considered bere, the
cucnsion o cxtrapolation being essentially formalistic.  Section 3 inclodes a precise
expression for @e error incurred in the beuristic practice (¢.f. Muller, 1957) of basing
interpolation oo a data window esclosing © Reguiring this emror 30 be zero leads 10 a
characrerizatics of a generalized AR(1) process, Bounds are odasined in Scction 3 foe
the crror incsered in wsing the devived modification of the WZ smoother on just the
data in & window a1 ¢ instead of 3 Bayes lincar smoother from the general family
albeded to above. Fimally, in Section 3 it is shown how the procedare based oo just
the data in the window may be extended 10 the entre data set and 2 bound on the size
of the resulting emror is obuined. This has the practical advastage of overcoming the
eced 10 specify 3 window widdh,

Throughout this paper, Bayes linear estimacor will always mean the best linear
estinlor with tespect 80 quadeasic Joss, If the prioe means of B aad ¥ are specified
and bence zero (as we may assume without Joss of generality so simplify owr analysis),
then the Bayes lincar estimator of B based on ¥ s

Drfaarr . (L1

where in general uwgl'wl"‘. the covariance between U and V, Ty, is defined as

the emigoe lincar transformation for which E(u,U Ny U )s(u I nv) for all masrices uv
having the dimensions of those of the mandom matrices U and V' (cf. Eaoa (1983, p
74)) 2nd T" = ")y, Here and i the sequel, I'yy & assumed 10 have full rank and hence
be invertible.

The Bayesian approach adopted bere is moes appealing 10 us than the frequentict
approach on principle. As well it has the advantage of bringing in time series and
Kriging quite naterally, Moeeover, it provides & nataral route sowands the comatruction
of credibilicy sets for . In developing confidence bands even in the frequency theory
of splines, it is the Bayesian highway which has been followed (Wahba (1983), How-
over, we recogeize that the specification of the I' 's may presest practical problems of
model development with the aneadant risks of misspecifying the moadels. Our approxi-
mations simplify the task of modeling. We will cvaluase the erroes incurred in these
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these approximations and establish some qualitative conditions which might sugpess
their adoption without desermining the I™s completely.

Section 2 is a vechaical prelude w Section 3 in which we weat 2 maore general
problem than that described above. The pencralization is that suggesied by Sacks and
Yivissker (19785). Suppose ¥:lxg ,iw=l,. & ac obsrvable response westors for
which

Yi=p+N;, Iel..n, (1L.2)

where the N;: I1xg are unobservable, uncorrelated wvectors of nolse . Sacks and
Yivisaker (1978), for the case g1, propose an appeoximasely linear maoded,

[+ .A.'b"’j o =l (.3

where B: pxg and the 7; are fixed but unspecified coanstants. Inference is abour AP,
where Auxp §s specified. Their estimmiors are of the form ¥, where
Y =], ....¥TY. In a froquentist setting they find the optimmem ¢, which minimizes
the mean squared crror of estimation, in the case where | 7,1 <M, with M, specified and
=1, In the case 1>], they were ocaly able to achicve some wacful bounds, Very
recencly, Sacks, Welch, Mitchell and Wynn (1989) poblished a general review of the
Sacks-Yivisaker and related theory and the reader is direcied o the bibliography given
with that review.

Sacks and Yiviszker (1975) sote that eves in the frequency setting, their proposed
optirmal BEncar estimators sends 1o rely mast beavily on the ¥;'s for which M, s small.
There is an obvicus Bayesian counterpant detennined by the degree of assocsation
berweea P and the Iadividzal ¥)'s. Ia & sease w be made precise in Secticn 2, we
may. after suitably permuting the subscript labels of the Y,'s. partiwion ¥ as
Y = (PTRTY imo those Y,"s which are proximare 10 i (the rows of ) and those
remore from B (the rows of R). A matural approximation 0 Py is thea

Pp = P, (1.4)

If the number of rows of ¥ retained in P is large (near &), this approximation will be
very pood. Surprisingly there are cases like that given in the application of Section 3
where By = fip even whea * consists of just two ¥, 's.

This approximation is of fundamensal imporsance in statistics and is implicity
made when selecting the resposses to be observed. These will be chosen heuristically
oa the basis of their redevance 10 e issoe wader study, in our case 10 the estimation of
B In intervention asalysis, for example, responses in the spatial or temporal proximity
of where the intervention is 10 occur will be made and, for badgetry 1ad odher rea-
sons, mare remote resposses will not even be taken. Robustness is a second reason
why remote observations might be excluded from the sady, While ese cbservations
would be of lamited valee in extimating P, their inclusion invites the possinility of a
desromental impact on By of a big respomse cmroe, Asoter souece of potestial error is
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in the additional modeling roguired 10 accommaxiate these remole respomses and the
resulting possibelity of madel misspecification.

The second approximation presemed In Secrion 2 &s mare technical and embraces
iexs of Weersbandi and Zidek (1988), To specify the T's it is natural w0 explore the
model in equations (1.2) sad (1.3) which relase ¥ and B,

YeoAB+E, (1.5)

where E w R o N and x = (] .., 21V foe x w A, E. R, N. If we assame, ax we may
without Joss of generality, ®at § and £ are uncorrelated, it follows that A = I'yy '3l

sed CO ey 3% yy - TysT il (sco Exton (1983, p $8)). It may be possible in
some cases like thae of Secticn 3 to find simple approximasions A4 — AlA) and

Co=C + AIC), without finding A and C explicitly, with some 2 prior assurance tha
AMA) and A(C) will be omall. It then follows that approximasely

Tar=Tapfe (1.6)
and

Fyy=AL A + Co . (1.7)

Here I'gy is the a prior covasiance matrix of P Some componeats of [y may be
allowed 10 approach infinity when our prior kmowledge is vague. Additonal levels in a
hierarchical price model may need 10 be added %0 imcorporase uncertainty aboct cle-
ments of B as in Weerahaedi and Zidek (1986, 1990), We will not address the prob-
lem of specifying [pg in general bot will do so in the special case considered in Sec-
tioa 3,

The appeoximation in Section 3 combunces those described above. We consider a
continuous  multvariate time series and ¥, = Vi) = (V00000000 J = Lon,
where the 1,'s are not necessarily equally spaced. And PaY(g)=(¥ (1), Y (7). So as
long as the autocarrelation between Y(2) and Y(t)=P is decreasing as | 1-1! increases,
P may be mken o be those Y's for which -t Is small  This gives rise 10 the firs
approximation while the second is obtained by a first ceder Taylor expansion of the
¥Y{y) aroend 1,=t. Details are given in Section 3. Our method a=d its limitations are
discussed in Section 4. To complete the paper a small xale ssmulaon stody is given
in Section 5.

2. APPROXIMATELY BAYES LINEAR ESTIMATION

Preliminaries. Our approximation theory will be developed in 2 genenl con-
text where <BY>EBxY and B and ¥ are real, fimite dimeasional inner peoduct
spaces with inner products, ()g and (+ )y, respectively. Thus BxY is a real, finle
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d&mensional inner product space with inmer product (. )y + (o). Much of the theory
underlying B developments of this section is presented by Eaton (1983) and by Sione
(1987) 10 which the interesied reader is referred for more detall. A bricf skeich will
oow be presenced for completeness

In pencral, let L(W U) desote B¢ space of all Bncar transformations of W into
U where (W 00 hy) and (U ')y) are finite dimensional inner product spaces, If { w,
) and ( w; } . respectively, are cethonomal bases for W and U, thea [ wly, } is
an orthoncemal basis for L(W.U) where , in general, wlu denctes the exserior pro-
duct of w and u defined by (WlJu)v = (wy )it € Ufor every wy EW and w E U,
Thus any A € L(W,U) has a unique maix reprosentation, A = ¥ ¥a,w,lw;. Fenh.
emore, W and U induce an inmer product, <., >gy. on L(W.U) given by
<A B yy = T30,y when A sad B are givea by thetr matnix representazion, In oeher
words, <A B>y = r{A)B) where (A] and [F) are the matrices represessing A and
B, respectively, This determines a norm oo LIWU) @ | |A ] |y = <A A3y,

In this paper a different moem will be esed because of our interest in quantities
like the magnitude of ¢ defined below = oguation (2.1) relative 10 | |R || 4. The nons

is given by 1Al gy = Sup [llAwllu : ||w||.$l} and it determines the uniform

operatoe sopology for L(W.U) (cf. Taylor and Lay 1980, p 189).

If Woll and T € L(W W) is self adjoim, there exists an orthoscemal hasis { w;
} for W osuch that T = S, (wiw,) for real scalary, A, called the cigesvalues of T
Then T8 = 35w w,) defines the inverse of 7 if A,»0 for all i. And if T is non-
negative definite, ie., A20 for all i, TV2 = 2.7 %(w/w,), These facts imply ar if
AELWU) 1Al gy is e squage rooe of the larpest cigenvalue of the self adjoint,
mosoegative definite tansformation ATA € L(W.W) (cf. Earon, 1983, exercise 29, p
67). Recall Dt <A Ay « r[A)7[A] 50 |]A || ww is the square root of the sum of
the cigenvalues of ATA, Halmos (1974, p178) shows that for every A € L(W.W),
1Ay = Sap(y AOw] |5 | lw] x| | . 2 useful result siace in this paper, A is often a
covarianco matrix or the difference of a pair of covariance matrices. Halmos (1974, pp.
182-183) also shows that A ~Algw =0 38 n—e if and oaly if
Iy Aty = (r Ayl >0 for all x and y. We moce finally that |AT] gy st Al gy
(ibid, p 179).

In the sequel ¥ will be partiioned as V=P xR for cormain lincar subspaces, P and
R, with assocised inner products, {-,*)p and (', ')p. respectively, and then we can write
ye<proforevery YEY where p EP and r ER. Also Y = <P R> where £ and R
correspond 10 the quancities moroduwced In Section 1. Finally we assume
oy = ()p + (o)p. Partition Tyy as

Cap Tpp
r"'[ Tar Tap



(see Eaton, 1983, p £7).

The First Approximation, The approvmation is obtxined by discanding the
data subvector, R, with resulting inferential error

e=Py =B,
whete by and B, are as defined in equaticns (1.1) and (1.4), respectively.

THEOREM 1. L&t a"’ - l'”' l‘i', and l"",’ - l‘” - l'"l';}l'”. Then

e=agpplk (2.1)
Car = Tpp = ~cpeslapr . 22)
Qpr s » D" (T pp + ' D], 2.3)

whero

@’ = G gipy =
e = Car g7
Tarn = Tog = Targtryfhra.
a=d

D« (TR + afyl5hapyl™ .

PROOF. The Bartlett decompaosition of Iy &s

1 o] |Fer 0 | |1 1f

= 3 :][o r"] [o :]-

where 1 = 1017} 20d 1 denctes the ideatity eransformation. This is easily verified by
successive applications of the identity which Jdefines the parttions of tassformations
like that of Fyy, introduced above

A
A_va [A:: A”] q;)dd"pt;tn r App p + Apy >, (24)

I is casily verified. by repeated use of (2.4), tha
s 7 [ 2] 6 7).

Now partition Uy a8 (Fgp , Uge). defined in an odvicus way by the it operates on y.
Thes iz ks casily verified tha

By = Pp + 0pg pR
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which proves the result in equation (2.1)
Now Tyy 2 Igp = TyTiilyy Again using Barden's decomposition and the
rules of operstion of the varous partitioned ransformations we obain
CarTys = QT + aa pTpe s
which proves the assertion in eguation (2.2).
To obuain equaton (2.3), we begin with
Tz = Top + applaally .
Cop = Tpp g+ agalpefs
and
Tap = Tpg + apglpgafy .
all of which are wue by definition. Thus
Uk = T3l = Taleogl 7 papgl ) + afal5'yeppl "oyl
whose proof is formally identical to that of Lindicy and Smith (1972) for the
corresponding matrix identity. &t follows that

Foebglh = DafyT7y
and

Trbapplps = FplyopsD .
These resules eay be used 10 ssmplify

Top = Tap = TargTibThp g = T aTpbetpsTagedy - cnglgad U ab Tl p
+ agyilyy - TygafplabappTlafy

o
Fap =Tppp+a'Da’ .
Semilarly,
Taer = Tpgeehy = CypelalodThe
0
Faer = Da'
Equation (2.3) now follows. |

Recall that [yy is the covariance transformation of §§ ~ )y and so it represenss
the residual uncenzinty in B afier predicting it from ¥, If B, were used in place of By,
the residaal uncerainty in P would increase, or & least not decrease, siace P carries
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kess informacon about B than Y. Equation (2.2) shows the resulting difference in the
wacertinty about B, namely Gup plpp s
Now observe that Iy, represents the covariance berween [ and

(R-a”P)fR-P. This is because the covariance transformation representing the
covariance between P and R-P is e saigee transfoemation for which

B appr)pmEd Biglr R-P)y
for all band r. Bu

EMbPigirRPlg =EbPllrRip — E®Piglr epl )p
and
E(d B)glr agpP)m E(b Bglafpr.P)y
-(b.l""abr).

for all & and r, From this, the coaclusion follows: Uy e py = Fgg p. S0 we see that the
magnitude of € depends on the degroe of association between P and the K residuals
after (linearly) fiting P. s fact &0 is equivalest 0 Tpe.p = 0. This lcads to the next
thecwem which gives inmsitive conditices under which gm0l By ™ § and R are condi-
tionally uncarrelated given P~ we will mean Cov[(2.B)g.(r R)p | Pop] =0 for all
b.p.and r,

THEOREM 2. If (i), ¥ is sormally distributed and (1i), B aad R are conditicaally
independent given P, thea By = By, Lo on(),

PROOF. The coaclusica hoids if and oaly if Ty = 0 and this is true if and caly if
E(bPiglr R P)e=0 as pointed out in the preceding Siscussion. But this last quansity is
=

EE[(b,[S)g(r R ~cigpP)g P| = E[ E[(d.B)p! P} Elir R)gl P)-

Elb.Prg! PllraxgoPle 1.

since B and R are condmtionally uncoerciamed given £, Now by definition
ElirR)g | P)=(rERIP))y and, since Y is normally distnbued, E(RIP) = gl
(cf. Emton 1983, pl16). The conchesion of the Beorem is s immediae conscquence
of this ohservasion. i

Oxcher conditions under which &= are given in the mxve specialired situstion of
Section 3. The comclusions of Theorem 2 and s relative s Secticn 3 are excessively
strong in that om0 whereas fp would be considered a satisfactory approxismation s
long as ¢ were merely small in some sense. But unless [pp.p = 0, ic. 20, ¢ could be
wbitranly lage depeading on R. A more natural measure of the quality of the



would therefore seeen to be the magnitude of ¢ relative o that of &,

[ IR || . and s leads 1o 1 cygp p) py s 2 Index of the qualicy of the approximarion.

Of course unless gy p were complotely specified and R obscrved, in which case
it would be pointless 0 seck an approximation 10 iy, nelther € nor the Index defined
in the last paragraph of #ts quality could be evalusted, Theorem | is intended 1o
charactorize peecisely the errors which result from ignoring K in predicting B and it is
applied in the next section o detormine when they would be segligible. By providing
additional insight into the sature of these approximation ermors, Theorems 1, 2, and
their rclative in Section 3 may belp %0 refine the beuristics involved in deciding how 10
parttion ¥ effectively and when to drop R,

Since in some cases, R will not even be observed when P s, #t soerss desirable
to have some measure of [ 's performance which exploits the infoemation in P, This
leads us o the following result

THEOREM 3, The Bayesian linear predictor of ¢ based ca P is
ep = Ggp pOgpP
and the covariance of € - gp is
Cer = age pTppp (2.5)

PROOF. Thas is straightforward and omitted for brevity, 8
The resules in equations (2.2) and (2.5) may be combined 10 give an insightful
re-expression of eguation (2.2)
l’"at'”+l",,.
So the change in residual wncertainty in prodicting § which derives from dropping R is
precisely that in ¢ after its lacar prediction from 2, In other words, B, will be 2 good
approxisnation to fly exactly when ¢ is well explained by P.



The Second Approximation,

A useful expressicn for ayy is now denved, starting with (1.1) and Invoking model
(L35).

LEMMA L If £ and B in equation (1.5) are uncorrelated, then
agy = [[§ + ATC'AT ATC! (2.6)

where C = Fge, and
Fgr=(F3d + ATCA)Y (amn

PROOF. The proof consists in showing that the lincar cransformation given la equa.
tion (2.6) &s idenrical o that which deflacs ayy:

gy = FaATIAT AT + CTY,
since, by the definition of C, Fyy = ATpgA” + C. This is dome using the transforma-
tion identity,
I = € <« CTATE « ATC A AT C 2.8
which is based ca the same identity as that used % prove eguation (2.3) in Theorem 1.
Equation (2.7) &s an immediate consequeace of this lasz resalt. |
Approximations 10 the model and inferential quastitics are 10 be obtained by
replacing A, C -dl"“by/\..comdl'f’mﬂwly. where C.mdl'&mself-
adjoint, positive definite trassfoemations. This will induce sppraximation erroes in the
various objects of analysis. We will everywhere in the saquel use 07 as a sub- or
superscript 1o ladicae an indoced appronimant so, for example, BY will desoee thar of
Py. Approximation errors in objects, Ho will be represented by
Ay S b - hy,

If follows that
AlTY) = MIG)) + MATCA) .

The next lemuma is useful for extracting the first onder terms in the approximaion
errors considered in this report.

LEMMA 2 (a). Suppose that G and H are mvershie cransfoamations with assocised
strong operator nore, -1, that G is invertible, and that 14G 'l < 1. Then ! + G}
in inverthle, aad
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G+ MYy ' =G EHG T,
el

and
G + HY 1618 e,
where, bere and in the sequel,
8, =x(l -x)',0sxs1.

(b). Seppose My Is an approximant w0 # |, both M, and H belag laverible with
1AMy <1 , where, here and in the sequel.

AG =G - Gy
foe any soch associated paiz, G, sad G whether o not they are Esvertible. Then
I — MW “"\Hy is imvertible,

MH) = no'_Z:ot-un-'mr ,

PROOF: Pant (a) is an immediate comsequence of a standard result (cf. Taylor and
Lay, 1980, Thcorem 1.4, p 192) and pan (b) follows from (2), §

Note that if D is a self adjoint and positive definite transformation, 1D is the
largest cigenvalue of A (see Eaton, 1983, p 54). This facz may be helpfid in verifying
that | AW yy < | in some cases.

This next result is an immediate consequence of Lemma 2(b) and It Is stned
without proof,

LEMMA 3 1 1AEY )yl oy < 1,
kAl y) = = Z'l-*“‘ih"nl’ .

Tphady) = (NG ICE + aATC hir

The leading terms in the expansions of Lemma 3 may be used in a sensitivity
analysis. Of more interest than the expansions pechaps, are bounds on the magnivade
of the approxamation errors. Ia any case, it is nevessary 10 determsioe how crrors madc
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in approximating the building blocks of the model in equasion (1.5) affect inferencal
procedures. The proof of the followiag lemma Is straightforwand and omined,

LEMMA 4.
AATC ) = ALAICY) + ATAXC
and
MATCA) = ATACTIA + AT A + AJCT Ar)
Moreover, if |AICICE |yr 51,

AICY) = C5' T 1-MOXC5'Y .
il

The sensiivities to moderate approximation emors of the objects of central
intcrest in this paper are indicated by the results of the pext theorem,

THEOREM 4. To firs order, the following approdimate equations obtain:

Ryalgr) = =p

aud
Tp¥alBy) = pATC! + AATC),

where

p=allghilyy .

AlTpY] = A[T3{l + NATC'A)
and o first onder,
mfc-ll - A'IA]C"' a3 A'C"NC]C"

while

MATC'A) = ATIAICTA - ATCAICICTA + ATCAIA] .

PROOF. These results are obtaised Erecdy foms Lenusa 4 §

We would note in passing that errors made in approximating the data model, that
is those in A aad C enter the analysis only through ATC™ and ATC'A. Moreover,
to first order they are given exacdy the same weight as thase emering the prior model
throsgh Fpy

The following mosation will be helpfal in developing bounds on the emroes of
approximazion:
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er,, = 1805 g | By loe
e = | MC) |y 1 C5* Iyy.
€ = |&A) |gr 7 | Ag ey -

THEOREM 8§, Suppose ¢<1 for ¢ = & ¢p. Then
IMTarlas <1 T5Y aedy
HAB) 1/ TIY Ut Tar'aalAd 12! 'l py 2.9
sﬁ.,u TR Tl I
er,, S1ATG ga + 1 BIATCA) 4o 1 Tyl g
and
I AIATC AN g S 141 9l CiM (B (1 +2) + 8, (1 + ) + 8,0 +2,) .

PROOF. Recall tar In  geseral, for asy oansformaticns, 7, and T,
IT, + TASIT,| 1Ty, IT\THST T, and IT]| =1T,1, Thus the coaclusions fol-
low immediasely from Lemmas 2, 3, aad 4.1

We should remark that the denominasor on the left haad side of oguation (29) is
a surrogate for the moee matural chaice | |Pp [l which could not be wsed because of
insurmountable technical difficulties. The approximants Ay and Cy can be replaced by
A and C, respectively, afier inserting an approgriase multiplicative facsor, But there is
listle diffcrence between these aliernative foems for the Jeft hand side of Bat oguation
and our choice is simpler for technical reasons,

For the application of the next section, the foece of this lase resuly Bes in it impli-
caticn that the appropriately normalized versions of the approximation errors Al )
and Alfy) approach rero as the varsous £ s spproach zero, The bounds enable rates
of comvergence o be established as well.

3. INTERPOLATING CONTINUOUS PROCESSES

Let {S(r):r €T ), be a stochastic process on 7', a subinmerval of (), which
is 80 be olwerved with addifive, mcan 2ero noise at st necensanily equi-spacad sam-
pling points, ¢ = 1,2, Thus ¥ = <¥ (2,), Y (1 )> where Y (1)) = S(r) + N (1) for
all i. Forexh o, SULN()ES, a finite dmensional tamer product space with inner
product (). It is supposed that B=S (1) where for simplicity £ < TS 4, . but our
results could easily be extended to include extrapolation where t < o0 T> 0, Asin



1Y

Section 2 it is assumed that the specifiod means process das beea removed so S (r) has
expectation 0 for all 7.

In this section an approximation % the Bayes lnear imserpolatoe of §, which is
itselfl & Bayes limesr pencedure, will be found by applylng e approxismtions
develdoped in the last secton. The first approximation is made when ¥ is replaced by
P, the cbservable consistiag of tose 5 (1)) for which |2 ~ t| s s=all. Then an ceder

0 Taylor approximagion is made to approximate Gy under the assumpoon of coa-
sneity 10 get afy. Finally, the first approximacion method in Section 2 is reapplied 10
obeain @fy. an approximate Bayes linear interpolator of B based on Y.

Teroughout this section it is assumed that S is continuoms according o the fol-
lowing definitiom

DEFINITION L {S({z) : 7 € T} will be called continnous at 1 = 1y if
EIISE)=SG13 <0 a1 t <1,

Define I'(s 1) oo TxT by
TF(a2)» !‘m,ﬂ,,;

this transformation will be called the covanance kemel of §.

Our analysss gses aa extension of a well known result of classical tme series thatl
the continuity of § and its covariance kemel are equivalest when the contisssty of T is
approgriately defined,

DEFINITION 2. I' will be called continvous a¢ (s.%) if [I'(ev) - Tis.u)| — 0 when
(rv) =» (s x) where, here and in the seqeel, || will denote the strong operssor norm
on L(S.S). [ will be called contiasous if it is continooss a¢ all (5 u).

The proof, below, of our counterpart of the classical result is similar to that of
Grenander (1981, Theorem 1, p 38), who treats the case where § is a complex valued

process.

THEOREM 6. § is costinuous ca T if and only if I'(s £) is jointly continuous & (£.2)
at every point (uu) € TxT, in which case I is continuous on ['xI",

PROOF. First suppose I is cootinboes & (ux) Now for every
(12), E(S(s) Sths = < 1.'(1,0) > o (Exmon, 1953, p 93), Thes
E|IS(E)-S0) || =<1, AT g,
where
AT =T @) -Tlru)=Fiwn)+Tlun) .
But if w, is any basis for §, then foc centain coefficients, ¥,



able

AF = TFy, wlwj, <1AT > g5 = X, = (. (AT .

By the assumed comtinuity of I (sec Defisition 2), (w (AW )s == 0 for cach ¢ as
r =» u which proves § Is continoous at « for all w € 7' 2and the thearem leself in coc
direction. Now coaversely suppose § is continuous oa T. Observe that

D* A o X vy = (a0
=y ewie)s = O FGavisg + rFavixg = T lux)g
= E(r S-S ) xS W + E .S ()5 (x5 (V) =S ()

by the definiticn of the covarissce kernel. It follows that
|D*| S [F (v S )=S (T E (x5 (v INIHE (v S GITIE (2.5 (v)=S (1™
But
EGSE-SEN < |Ir11E EHS -S54,
EGS=SGON < IR EISw)-Sw)]|d

[E xS = [E {5 (v)=S(u))g + .5 ()i FT*
S [E S-S0 + (£ Stgrt .
the last inequality deriving from Bar of Minkowski, Thus |D°| — 0 as (2.v) = (r.0)

for every x .y £ § and for every fixed pair, (ru). But this implies { Halmos, 1974, pp
182.183) that I is continuous oa T xT in the sense of Definiticn 2.

The proof is completsed by soting that the continuity of I' on the dagonal of
T xT wmplies that of § on T and this in tumn implics that I is continoous everywhere
on ' xT by the result of the last paragraph. ¥

The precess {S():eeT) will be called wide scase stationary (WSS) if
Fis )= Mg =1). lnumcaeag‘.nmfru.v) i vw) = Flasv) 900, IF S is
WSS, it will be called a first order actorogressive process, if for all
w20, T(u) = yexp(-ak)y where v2I*(0) is a self adjoint, posive definite

transformation and Ry is 2 fixed transformation; in general exp(A) > TA%r! &s 2
rod
linear transformation on W when A € L (W.W) and [exp(A)) = exptAT).
Observe that if § < w,
T r-uly)e= ES@))g (0.5 )y = (v (e =2de)g = 00TV (e =r)y)g

so that (¢ —u) = IM(w-2). Thus for u <0, Nu) = T(-u). Therefore, if § is a first
Order SUIOISEIESSIve Process, we mast hine
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) = ylexpaR )™y, w<0d
ie.
Fw) = ylexp(=|u |RD)y u <0,
LEMMA & Soppoac S is WSS, Then the following staterments are ogeivalent:

(£) § is continuous on T and § (1) is uncorrelated with $(v) = @y o 0,y () for every
ISusSv,ruveT;

(i) S(r) is a first order amoregressive process; aad

(i) S is contimoons on T and S(v) is eacorrelated with § (1) = @g ey S (%) for
everyt SwsSv,  tuv,ET.

PROOF. N s first shown thas (() implies (4). Since S is cootnuoes ca T, I is con-
tiscous (Theorem 8). By Definition 2, this Enplies the clements of any masix
repecsentation of T, say (17 are continuous.  We also have froes (£) tha for every

Xy X388, 0w E(x; S(V) =000 (¥))y (2.5 ())g
e T L U3 PR (" SRR I o ("R P
- u;-[r(V -‘) = a’(ku;(‘ -‘)]‘2)’ -

Thaus,

Fv=e) m Ty =) O —1), 3.0
for every tSusv, tuvET. Let P =y 'Twry'. Then equasion (3.1) is,
equivalently,

alx4y) =ax)aly) . 02 sy <T,

where To = max{v=s:v2 ET) In serms of the masrix regresentation of a, [a], this
is

[a Ceey)) = alx)] (aly)) 3.2

which & Polya’s mawrix egquaton. Siace {a)] is continuous in the neighborhood of O,
equation (3.2) has Be solution

[a(u)] = expl~w[Rel) .4 >0
for some constant mazrix, (R4} (C. F. Bellman, 1965, Theorom 4, p 173). Thus,
@) = expl=uitg) 220

for the lincar mansformation R, Setemyined by the mawrix (Kl [Rg] depends ca the
basis chosen o obtain the mamix represcatation of @ so R, is not unique bee it is not
required to be and (i) now follows.
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The same soct of reasoming shows that (M) Enplics (f). To complete the proof,
it is trivial vo show that (i) implics both (1) and (). N

Lot 8 be any sufficicntly lasge sember that

Myw{j:|t~2| 58} (3.3)

is 20t empty aad such that 8 is amined foe swoeme |7, =t | M| = m will denose the
number of cloments in M, and the sampling times coeresponding o these clements
will be ordered as rp, < - < 1 while those commespoading to the clements of the coe.
plement of My are ¢ty <<ty . Finally, let £ = (p,  tp h FP=Slp)
Ry=S(pp)P=<Py ~ Py> odR=<Ry R, >. More will be said about
the choice of 8§ sad m in e sequel Pamitica Y w <Y~ Yi,> &
¥ =< PR > . Coresponding 1o this pastition, partition ¥ as ¥ = P xR where F and
R denote, respectively, the ranges of P and R, Then the Bayes lincar imserpolasor of
B=S(t) 1 <tsy,, based on P is that given i equation (1.4).

Theorem 1 concludes Sat
[Py =Bplls S logplas| IRz
so that the error in approximating By by Bp is governed by |age plas. Theorem 2
gives general conditions under which this emor i ideacically zero. 'We now give otder
more specislized conditicns under which the same reault obtsing,
Lemma S gives conditions under which there is no approxismation crror in rodec-
ing the daca from ¥ 0 P

THEOREM 7, Suppose S is a first onder astocsgressive peocess as defined above and
that P -<Y(“). Y('..‘)> while R -<y(‘.x"'. Y("'l,>' uhes “ StSt..,. Then

%r.o.t&”"-p’.

s -
PROOF. Recall that agp minimizes £ |[R-aP | |f = ¥ E¢|R,-a/''P, - /P, 13
iml

2s 2 function of @. Bot Lesema S implies i W i Sk~1, 0 s gy and aff w0
arc optimal while i i > k-1, 0/ = 0 and 0/¥ = @t p, arc optimal, from which app
is obeained. Reapplying Lemma 5, we dedoce that =5 (1) aad R ~ag,f are vacome-
lared, ie. gy p = 0.1

The one step aucoeegressive (AR(1)) model cam only obeain when uncemainties
about its governing hyperparamesers are ignored by conditicaing on them; unconditicn-
ally, the process cannot be AR(1) Bat even conditiosal on its Byperparameters, the
AR(1) model can caly be an appeoximate represeatation of the analyst’s price views,
Therefore, a procedure which relies solely on Py and P, to imerpolase S (t) scemm
Beely 10 be nonrobust.  Instead it seems peeferable o take P o= <Y (5 ), =, ¥ (ip )>
wherem>2 Is permimed. An approxisation © B will de obtained below when § &
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ay member of a family of underlying processes for which § is differcatiable in the
sense of the next definicon.  But 10 make By 2 reasomable approximation of fy, we
need 30 assume Oye » s “small” when m, e Emmension of P, is sufficiently lage a3 a
aliernative 0 the sponger amaumptson that § i AR(1), Thic makes precise, the impli-
<it assumpoion waderlying any isterpolater which uses oaly the data in a "window™
enclosing the point of interest, At the same time we expand the domain of our work
over that provided by the AR(1) saodel,

DEFINITION 3. § will dbe called differentiablc at £ € T i thero exists an clement,
S¢S such tw  E||QUa=S'|I§ =0 as  r-s.  where
Qrs) =S @)=-S(sNe-5)"

Jast as the continuity of 5 aad [ are linked, 50 ar¢ ibeir Jifferentiabilitics, that of
I" being given by the following defimition,

DEFINITION 4, A mapping G : T* = L(5.5) has the mixed derivative, G'!, ar
) er? if 1Q@; - G Nsm)| 20 o (r.v) = (5.u) where
Q=1Gu)~-CGy)~-Cuu)»GUuu)/|[(z~s)v-u)] =nd |-| dencees 1the
appropriale strong opermor norm. G will be said o have 3 mived first derivative if it
bas & mixed firet derivative 3 all (s.4) €T, Other derivagives are defined in an

analogous way.
It is casily shown that the product and addition rules of cakules hold so, foe
example, if
Hsa) = H s )M y(s m),
then
HO%s ) = WO s sy (s ) + W )05 (5 0.

With these definitions we have the followiag heorem whose proof is similar to
that of Grenander (1981, Theorem 1, p. 47).

THEOREM 8. If § is differentiabie on T in the sense of Definion 3, then V(4 )
cxists at every point, (£.x) € TxT in the sease of Definition 4,

PROOF. Wit 0, givea by Deflnicion 4 oo replacing G by I',
(2 = E(x,Q (1)) r 2 (v 4))g

L =EGDUS)+SG)srD(va)+ ST, (34)

where DA k)= Q (ki) - S(k) for all (A L)€ SxS sad Q a5 given in Definition 3,
Then the inequality, |EGxW)sOWogl*s [Ix|if [y 13E]IW11E in



conjunction with equation (3.4) implies that
(e JQ; = Teyneqanly s ~» 0D as(tvi—is.u)

for every xy and this ao¢ caly proves the theorem but shows, cidestally tat
M) = Fygysay

Definigons 3 and 4 can be kerased 1o cbtaia the definiticns of the higher ceder
derivatives needed in the sequel [n particular the existence of §°° implics that of
M gince SP is the firt derivative of SV whose covarance is
M) = Fgqatey ¢ T need not be continuous. Note that the existence of $%
implies that of " forall k0% k.1 52

Observe that Definitions 2 and 4 entail properties of ' which hold oaly if they
are possessed of every bivariate real wvalued functions of (s.u) deflned by
By (s.00) = (2, Llsu)y)s, (xy) € SxS. Thes, for example, the existence of IM'P(s )
implies that of Y (s.x) :

lien [, (r.0) = Ay (s u)HUE =2) T )y
Recall that (+)p = (odge = () + L + () the m-fold sum of the inner produces
ca 5. Furthermore, the transfoemation ey € L(BP) with B « S and P « 5% caa be
parstioned with o, =g, 5 K simplicity, s
Gp.b l<(l' b. "'oc‘ b>-
Thus

(p1pgh)p = ‘i, by -

The approxisnation erroe, Apg), is desermined by & () trough (5,000 W)g. 1f the
process is thought to be continoous a natural sppronimant 1o Gpy b thar for which
@ = af =/, w that A(a,) = & -/, the subjest of the next lemma. To make clearer
the association between the results obtained delow and those of the kst section, Gpy
and its approximane, afy, will be dencted by A and A, respectively. Similarly, in the
sequel, C and Cy will denote Fp y and TRy, respectively.

LEMMA 6. Assume (i) § is differeatiable ca T in the sense of Definition 3, (1) foe
any given consunt, K> 1, 8 > 0 s chosen sefficlendly small tha
[ENID0 ]| 1§1* s Ke-17] FHe0 g

for every 1 € [t-5,¢ + 8], where D is as defined in the proof of Theorem 8, and (iii)
M 5 defized in equation (3.3), is not empey. Then

€= [AA) | 0o/ Al ar S &5
where
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€] = m*8K,] I (%9) |gs.

PROOF. By definition and siace the noise process Is independent of the S - process,
(piAib)s = E (oS ()i 00,5 (D)

and (o b = E(p, S (D)) (ITH{r0b S ())s . Thes,
ELAADE)g = Up <OF (D (25, 0)+5 (D)s (T (20055 (R))g .

The Cauchiy-Schwarz inoquality implies thas
[P 8A)B)s | S| 1p—2| Al

where
hﬁfz (p, Ditp.0) + S0
o
A b )
But

hs | en|&l o)
At the same timme, Minkowski's inequalicy implies
b SLE@D (p N1 + [Eip, S (004 1y .
and hence
b S {[EFIDap 0 | |1 + ITC9 i) Ipil s
which by Bypochesis (k) rmplies
b < Kol e | & e ) s
It follows tha
@ ANIb)s S Koltp, =% || T | & el s 110 1 e

Thus
A s Kol T 0 g 151 X1t = sl im ] 15
which implies
(PAA)D)p = m8&| Tz l&|1ols | p] e

It is casily shown that [Ay] m * by, for example, choosing a basis for § and max-
imizing (p Agb)pg using Lagrange multipliers. The conclusion follows. 1



We tam now 0 the asalysis of e residual covarance tansformaticn, I, 4
which plays the role of C of Section 2. To smphify ®e statemnent of the next ressl,
e following notation will be adopeed for &,/ =0, 1~ =1 & :

™0 = M'¥1) ,
Fy.0 = T = 0D 1 [0
A=py-%
Note that [V¥) & (VT
Owr spproxization, Co, 10 € will be defised = a partisioned wransformation

through (2,C o )p '%‘. T MChp q forallp g € P, where
£N,

Clp, =L p *pp, * Cop, (3.5)
where
Wor =8 The
Lor, = 180 1 180, 101 A0, 1+ 185 1)0p,p, .
Aoy, = 8 Bp apl-(|8p, | + | 8p, 1 Y .

& >0 is a specified constant, Zp p = Opp =010/, wad Ly p Opp wre positive
definite ransformations in LIS S)iJ € My, Let Xpp Npp andl,p denote the matrices
corresponding 1o the partition components defined in equatica (1.5).

ASSUMPTION 1, 1™ exists and is contingous for ol £,/ 5 3,

ASSUMPTION 2. g, <! where

l'o"'"&:?’("‘lloln/‘\o‘“or«r. L) 550 lss -
T M

Let
Giru) = Cig ) = Cis, o el (v . (3.6)
Now if 27% < L(5.5) is continuoss 81 (s,4), then %0 & [ ¢ |, where || denotes
e appropriale operator norm, since
et =lata|| £ |z20x)-gsx)].
Assumption 1 implies therefore that
Ke = Sup | G¥ (s ) |gs (a7

is finise where the supremum s over all Gu) €t =8 c+ 8Fand s = 0,1, 2, 3
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LEMMA 7. If Assurspticas | and 2 hold then
e = [MC) | pp| €5 Jpp Sed
where with the constant Ko defined in equation (3.7),
el @ 2m & Ke + | Ty |se/dy + max] 0p p |ss)max| oilp |ss(1 + 8)
5, mx(1-x)'0sx<l, and & is gives in Assumption 2.

PROOF, By definision
P.Cqlpp =E@ P Plplal By
= TE (0P, By (0, P, By
and it is straightforward thea o show that
PCqlp = ZX 0L rd0s
where for all 1),
Cop, =Gltp2p)+ Lpp,

and G is defined in equation (3.6). Our assumptions imply that G/ exists and is con-
tinooas at (€.9), for &,/ =0, 1, 2, 3. Thus the real valoed function,

hlraw)m by, (s0) = (G iruy)s .
has the same contineous derivatives by the definition of differentiation and hence it
has a Taylor series expassion. [t follows that

p | l L3 k - ] >
@)= T gr T ] anr e e 204 1y

AA) o (p;.G"""’q,), .
GVA*) G(M-')(g'g) x

1 3 [5)ar s
T 2 HET A e

for some t, T for whih |t/-t|=[a,]|<8 |g/-t|S]ap] and
AR )is u) = (p,-.G('-‘"’(sa)qj) Now it is wsraightforward 10 show that
Gire) » G m G r2) and hesce thar the Taylor expansion for & reduces 10

/G 2, 2p 09,08 = Ap Ap, W 4 rpp .
where
A = (o1 eqy s



since by definition,
G =Ty,
Define Rpp, and MCp ), respectively, by
Rpp, = Gliptp) = 8p dp Ty (3.8
and
MCpp) = C’J,-C’,,.

Thea "P‘.‘?fﬂlhl » "P),l ‘&“’I“S"QJ"’"“’“’“‘PA and q, where
K¢ is given in cquation (3.7), It is casily verified that

MCpp)=8p 8 Tys0-55p, .

where for expository convenience £p p Ny p + {p » 1 and { being defined in equa-
tioa { 3.5). Since in general, 0 5 1 = expl=x) S x for all x 2 0 it follows shat

[ACrp ) les S 180 | A 1CHAp | + 185 IXIT 0 lssB0+ |95 |53) -
Thes

| (i MCp p )45 | S 28 Ke + | Tysolss@o+ 19pp, lss) I pi H1s 119 | s
and

[ @AY | £ 28K + | Fyyglee/do + max|Opp [ )EX o st | s
Since
X lelisllg s smilpllsllalle.
we conclude that
[AC) |pp 5 2mE(Ke + | Tyy0l 594y + max| cp g |15)
Next define Rpp by
Glptp)=Chp +Rop .0, J EMy.

>From equations (3.5) and (3.5) we obtais | (2, 82 g0 | S K| o) 5|l | |5 &, ems-

formly in | |p; |15 2ad | [g; |]s-
Now referring o the objects defined in equations (1.5), for every p.g € P, with
Hellp=1lalls =1

@ Erp bl = TXI00Er 5, 550,408
SEXI e sl g s | 280, Z5 00, lss
Sl"l..!?l ., 55| Z6lp Iss.



|00 lss S Tals <& |opp s -
Thus
| EopEsblor St (39)

with ¢, defined in Assumption 2. By that assumgeion, the quantity oa the left of ine-
quality (3.9) is Jess than 1. By Lenusa 2(2),

1C5" lop S | X5h ppt1 + &) .
Since | Epb |pp = max | Eplp, |55, the conclusion is obeained. I
We may now obtain bouads foe the local approxissation erroes.

THEOREM 9. Supposc the hypotheses of lemmas 6 aad 7 hold [t
er= | (T8 Iss | Tpp |53, Then
[80pp) lss 7 ITpe lss < 8y, -

and

M) s T Tpp Lss [Aalps 16" Lpr) 5 89 il el vefel,
where tglndls are defined in Lemmas 6 and 7, respectively, and

of,, = op + memax]| o3’ 08, (1 » e) + €f(1 + )1 + 50 + ).

PROOF. This conclesion is an immediate consequence of Theorem § and the preced-
ing analysis. ¥

To simplify the application of our proposed approximale isserpolaton/umoother we
will mow extend the spproximasion B 1o Bf and show that the resulting ermor
ABH =P -PBF s " small " under cenain circummtances. To this end Jet
afy € L(FS.Y) be the obvicws extension of affy = Ay, ie.

afgh = <b,-b>EY

for every b £ 5. By the definition of afp. it follows that for the i th partition, 12 ;.
ofl'f,.wmcdz

Thy=Th -
To obtain T'}.5 we extend the approximation for Tl 5 = C given in equation (3.5), in
the obvious way so, for example. the i~f th componest of T85 4 is
Rre=8es o
With this notation, we may state
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ASSUMPTION S gy < 1, 1 =1, 2, 3 where
€ = & olas TPk | ppmax |(Egp + Nep) " las
A=min |4 | .
& = Fmax |Z5k |§5(| 0y olss + 8 max |opp s [(EE5)1 521 + &)
and
€y = K&/ Aexp(-28 + AYAN Ty ol TRk | ow |OER e
where 8, i defined in Lemma 7 foe all x.

THEOREM 10. If § £ A, < A assumgprions 2 and 3 imply

HABHI 1 IR in S 10 |55 10" |52 | T80 e (3.10)
and
MR sl alEsla” 151 TR )" Lan (3.11)
where D and @’ are deflned i Theorens 1 and
[2]gs = LEERR I |esld + &) . (3.12)
[ |ga S (n = m)* + mUBaexpl~(8 + QYA T olss | Taplap(l + 8,) . B313)
and

10857 |2 S WA~ |ogh [aetl + &) . (3.14)

PROOF, It is exsily shows hat if G and /1 are any self adjoiat rasaformation with G
positive and M nonnegative definise, the (G + H)'!| € |G| = the approprise
stroag operasor norm.  Thus

10|53 s |ltafy (TR ()l s
It s shown [n the proof of Lemesa 7 that
IMep o < &|F50lge + Fmax|opp o
and also that
[(Mpe + Sop)Eiblpp S &
where by Assergoion 2, £9<1 . S0 by Lemma 2(a)
039 =53} - ST E - ST
wbmt;,-n”+c,,. Thus

(g (TR ey = Hy = H G \HY



where
Hy = (afg) Sialy |
Hy=(afpT53) .
and
Gy = Bp - S Tib
It follows thas
[afT 0B 0 el = W' - HG W T
But it is casily scen thas
1H3lpg s m max|E5) | g
and dat
1Glpr % [T 0les « O max|ops sl + &)
Coesequesly

|HG W | 582
and by Assumption 3, g<1. So
[((eRe) (R Rl || 47 |1+ 8)
where
HY' =1 G
Inequality (3.12) now follows
Now

la" 1se S lodslor + [Thpploe IR0 1pp|adylSP .

Bt it is easily shown char |afplge = (2 — m)* and that |afylsp < m™. Furthenmoce,
i the prool of Lenuna 7, it is shown thas

1030 o % 155k ep (1 + &) .
Fnally, sizce the function x exp{=x], x Z 0 has 2 uwnigee saximal value at x = 1,
ITRe-alon = |Nar lon
< 84 expl - B+ AYAJIT 1 0lss

Ioequality (3.13 ) obuains,
To complete the prood, observe that

Tt =g pu -6)',



where
Rl v Ay PV A PV
©
1G Len = 1Mer | Fn | Z50 Lor 102k | 2e -
Bue
IMar lpe % Baexpl = (5 + &YA%) 05
|58 |pp » max|Eshy | oy
and
|5 lap s W "max |07 |ss -
Thes
|G lan %8y
and

|50 2" | % BA7 |03k | a1 + &)
which gives inoguality (3.14), Inequalities (3.10) and (3.11) are immediste conse-
quences of Theorem 1 and the proof is complete, §

We now summanze our results. Suppose the proposed first oeder Taylor appeoxi-
eation has been adopeed together with the covariance approvimanos in equation (3.5)
and its extension described jusz above Theorem 100 ASS sssuevgdons 1, 2 and 3
together with the condition § S Ag € A where A, is the saling parameser in the covari-
aece approvimation ( see (3.5) ) sad A is the smallest value of |5 =t |, (€ M§.
Then

1By =BFlias S 1By = Ballos = [1Bs = BEllas + 1IBE - Bl lps .
ead
oy = 18ylss S IWpy = Tprlss * [Fpr = Tholss « [T = Tylss.

Uniform bounds for the first, second, and thind terms, respectively, oo the right hand
sides of cach of these oguations are obaained from Theoeems |, S and 9.

4. DISCUSSION

The analysis of Sectica 3 leads 1 & modification of the Bayes linear smoother
proposed by Woerahandi and Zidek (1988; hereafier, WZ for simplicity). The residual
covariaace of the data wizh respect 10 the parameter of inferential intceest, P is gives
locally by equation (3.5) and cxsended in the discession following Theoeem 9. The
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sotting of Section 3 is more speclalized thas thar of WZ who include any availablk
derivatives in their structural madel for the dats. On the oer hand, their smoother is

restricted t0 the ¢ase of walar valved processes.

To descnde the moditied Bayes lnear smoother, suppone for caponilory simpli-
city, that
Y(r) is a scalar valued peocess. Where only contingsty is asseened, WZ use the struc-
e, YR)=P+E, where BuS(t), E=E@T), and E is the noise plus the
recainder from the 2ero-th ceder Taylor expassion of S(r) about £ « ¢,

The Taylor remainder woold be small when r=t. Given daa, ¥ = (¥, -« - .Y,),
where Y, = Y(2,), and a2 prior distribution on B, a0 esttmator of i is exsily odesined
once [y s has been spocified, if P and the vecwor of residuals, E,, i =1, - » ame
uncorrelated as assumed by WZ

Our asalysis Jeads us o conclude that the [y 4 of WZ, while sppeopriate in cer-
taim cases may be unsatisfacvory in general since it does not incorporese the correlation
amoag the E, = E(1,.7), a poeentially imporeant component of the model when the van-
ance of the noise is small. Our analysis points 10 20 sppeopriate modification of 'y
and shows that the resalting Bayes linear estimasor of B based ca the data, P, in a
window about T, approximases well, every member of a large class of Bayes hoear
estimaioes acting in the same window,

This last result supposes, however, that the prior distributions for members of this
class have the same value of Iy, Le first term in the expansion of their [y ',
where

Mo = EISY0) - aSiaF,

and @, gives the best linear peedicior of $%'z) based on S(1). Ia e case of a
weakly statiomary S - process, Ty, o i just the variance of S''X%); this will be zero if
sd oaly if one belicves the process is Jocally comstant, in fact 2e00, &t r =t The
implication of this belief woald then be that the residuals from the Taylor expansion
and hence the £, are uncoerelased (20 first arder). The implications of this observation
for our modification of the WZ smoother will be described precisely beiow, Qualica-
tively, it means that [y g is "small™ inteitively speaking: so that the data comresponding
10 the £; near T are heavily weigheed in any of the Bayes lisear smoothers shasiag this
lack of first order comrelacion, as well as in the modified WZ approximase o these
smoothers; move remote data are noe “pulled in® as they would be when the first order
correlation KON Were NOnIETo.

When § is thought 1o have more than three derivatives, higher order s in the
residual comrelation soructure can be obaained and these depend on high order analo-
gues of I'j, o These quantities appear 1o joiatly index the “corviness™ of § in somne
way, but we do ot fully understand Sheir role even in the simple casc under discus-
sion where § is scalar valued.
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To examine the maodificd WZ smoother in more detail we assume that the sodse
process has coastant variasce o foc all i, X, = of and hat @, = o forx = P, R (
soe equation (3.5) and the discussion immediately following Thcorem 9 for the deflni.
Gon of these objocta). With these ssmplifications, it & readily shown that

B = (g™ + Tw, 1 TwY) (4.1)
which 1 2 locally weighted moving average with weights which capture the effects of
the bandwidth oc “window™ parameter, 09/, the noise paramcter, 0F, and 30 on. To be
precise,

w, = 11 = L Aexp(~14,/AQVA,,
where

G = (XA expl~1 A /AVA, J¥5] o + TATexp(-218, VAN,
A, 3 Oﬁ» + M&JA,l ’.
4 =1 -1, md & >0 Is a parameter which is 10 be chosen by the analyst. A large
valos of &, means that the comelation of the residuals from the Taylor remainder will
tend 1O persast over a broader ramge.

Observe that whea [,0=0, { =0 so tat w; = A]' = (0f + 214, %)
which Jeads 10 a simple locally weighted moving average. This emphasizes the com-
parative complexity of the smoother when My 4 = 0.

In the extreme case, when O is comparatively lasge, w; = o', If ia addition,
price knowledge about B &s vague aad hence. (Ify)" =0, thes not surprisingly,
[ = ¥, the sample average. Here the WZ smoother is essentially the moving average.

At the other extreme, whea G = 0, soise is 2o existent. 1n this case, if T=r, for
some |, It Is readily seen that Bf = ¥, so that B switches from being a smoother %o
being an interpolator as would be expected on imteitive grounds.

It is obwious that BY shrinks soward 0 because the data were centered a priorl. To
return o the satural origia, we should cageess this unoother

BE = [ m{t) = Xwimir) ]+ Tw'Y; .

where wi = ( (TR + Tw; )'w; It should Be eomphasized Bt the process mean
must have boen specified, in any case.

The analysis in Section 3 shows that the modified WZ smoother approximates
well, cach of the members of 3 class of Bayes Lacar smoochers when the observations
are sufficiently dense arownd the point at which smoothing is %0 be carried cut.  But
its pocential meric to a Bayesian investigator can be assessed quire independemly of
any merit which may be acvibod as a result of the amalysis of Section 3. That is the
spirit in which the methods of Weerahandi and Zidek (1986, 1938) were proposed. If,
however, the observations are deemed 10 have boen made 0 2 Comtinuout peocess,
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coberence dictates that this featare of the process be embraced as we have tried 1 do
bere,

The assumption that the process is wide sense stationary with uncocrelated residu-
als has the dramatic lmplications shown in Leousa 5 and Theoremn 7. All the meas
sements may be discanded except the two (or coe i the case of forecasting) made &
e times (time) adjacest 00 T may be discanded without any approximation error in
going from ¥V dowa 10 P, Moreover, the resulting Bayes lincar smoother is very sim-
ple, in fact, that origimally developed in classical time series, The first order spline is
obtained as a limiting case. There woukd seem %0 be mo point o using the zeroth order
Taylor approximation in this case, but if one did, the local residual covarance seruc.
re would e a block diagonal matrix, the blocks comespoading %0 the ¢'s below aad
shove t, respectively. The clements in the dagonal Blocks would be cose 10 zoro,
awzy the diagonal and the [~/ th elemments near the diagosal would be approxisnartely a
constant maltiple of mén({l ;~1 Jr,~tl } as is easily shown by expanding the elements
of the covarisace transformation of the AR(1) process. We have not investigated the
qualicy of thar approximaton.

The obwices nonrobestness of the procedere derived from the AR(1) process in
the last paragraph 10 recording errors and model misspecificason leads o e main
body of work in Section 3. If a continuous process &s also dafferentiable, a possibiisty
which would be hard % rule out on the hasis of a pricel kaowledpe, then as the
analysis of Section 3 ( Lemuma §, in particular) shows, $e local residuals from fitting
Si1) wo PaS(x), for the 2°s near t, are comrelated and the Bayes linear smoother will
depend on more than merely the one or two measurements at points nearest t. The
resedts of Sectica 3 show that the proposed approximation will be pood if the observa.
toa polnts, 1, near T are sufficiendy dense and § &s thrice differentiable or rather, if
the slightly stronger condition that TC-) be continucus holds. This justification for the
use of the appeoximation s analogoes % that provided by large sample optimality for
the use of classical procedures in samrpies of madenate size. The hyperparascten
would need to be specified. 10 determine precisely how dense the observation points J
woulkl need 10 be. Usually the needed hyperparameter valoes would be difficult w
assess. In fact, if Shey could be determined, there would be no point %0 the proposed
approximation; the Bayes lincar procedure itself would presumably be thea available.
The point of the amalysis is %0 show that foe a fairly large class of Bayes lincar
smoothers, our proposed procedure will serve as an approximation whose error dismin-
ishes in a precisely dewermined manner as the dama's observanon grow increasingly
dense,

A desirable feature of our approximation is @at i is not fully autoeatic;  does
allow prior information sbowt S(r) at ret o be incorpormed and this woeld be very
important especially when the data are sparse. A fully astoemanic, so-<<alled “objective”
procedure could be a a considerable disadvantage under these circamstances.
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By pasting wgether appeoximations for age pR and g we odeais an appeoxi-
mation, B, based ca all of ¥ thereby climinating the meed. in practice, 10 decide what
of ¥ w put in cach of P and R. But the distinction is fundamental importance i
establishing the ascerted quality of Bf.

If § & supposed 10 be &Gfferentiable, say p times, thea it would seem natural o
incorporate these derivatives into the approcissation dala segression model expicitly wo
reduce the corrclation in the residuals, This can be done directly if the values of
S9Ng), J=l...n can bo observed without noise for all i by mking Yir) as
(S™N_.SPNr)L The theoey developed in this paper is sulficiently general 10 encom-
pass this case directly, Theorem 7 will spply if the newly defined Y is aa AR(]) pro-
cess. Alternatively if foe this sew ¥, T is Bought to exist, a zeroth onder Taylor
approximation might be used inseead.

Alternatively when §'s derivatives cansoe be observed, SV, j=1...p caa neverthe-
less be incorporated through higher order Taylor expansions. This approach is taken by
Weernhandi and Zidek (1986, 1988, 1990) and will not be discussod further here.

Although the discrete case where the 1, are equi-spaced Is not discussed dere, It
should be copdasized that the proposed approximasion ¢an be wsed there as well, pro-
vided that the process which generases the discrese data may be viewed as a2 least con.
tinuous.

The proposed method is, roughly speaking. & Baycsian coumerpast o the locally
weighted method of Cleveland (1979) and 2 Jocally constamt version of LOWIESS
which is locally lincar (although here the weights are fixed). It sum, locally weighted
regression methods are equivalent in a contain sense 1o kermel smoothing methods
{(Mulicr, 1987). But unlike automatic methods such as the kemel and Jocally weigheed

regression methods, the proposed procedsre. does allow prior knowledge about B25(%)

% be input very simply.

The context of Section 2 is moch moee general than that of Section 3 although,
the results presented i the former are regarded as technical preliminaries to those of
the laster. The exzensica invalved In golng from Section 3 w Section 2 is esseasially
that recopmized by Sacks and Yivisaker (1978) which has given way 1o the study of
semi-parameter models (c.f. Heckman, 1988).

Section 2 peesents two general appraximations %o Bayes bncar proceduses. The
effect of the first, which results from not collecting or discarding certain data, is stated
in Theorem § where the approximagion emor is specified. Since this error depends ca
hyperparameters which could not usually be specified, this theorem is mainly descrip-
tve. It says that if a subvector, R, of the data vecior, Y, Is discarded so that only P is
left, the erroe will be “large” if the rexiduals, PP, and R-P are highly corrolased. The
resadt &5 A precise index of what is usually as endefinad product of aa Beuristic pro-
cess. The Theorem Jdoes Jead 1o Theorems 2 and 6 which may assist and refine this
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heuristic process since they yseld ideal conditions under which there is no approxima-
toe error.

The second and more techmical approximation of Sectica 2 and it application in
Secticn 3, derive from deliberate or accadental, misspecificazions of the basic moded
hyperparamcters. Our bounds oa the resultng inferential eerors hold caly for hyper.
parameter misspecification erors of small or moderase size as in Section 2, Nodking
can be said in general about the impact of gross erroes which are ignoced. The lowest
order terms in Lemema 3 reveal the sensitivity of the Bayes lincar rule o ssspecifica-
ticas of the hyperparameters and these are given in Theorem 4. Furthermore, Theorem
5 gives upper bouads on the size of the emors in By and [y induced by moderase
misspecifications of hyperparameters like Iy,

As is well known, i the posterior disridution of B gives ¥ were nonmal lts poste.
rior mean, pg y, which is often takes 30 be the Bayes estimacor of B, is linear in ¥,
and the postenor covanance, [y, is the marrix of residual errors of estimation. More-
over, under the hypothesized normal posterior distribution, this paper woeld yicld
approximation crror bounds for estimators of atributes derived from Jlg y aad Ty,
like quantiles in the univariace case, However, we have not investigated the normal
ponserior in detxil, pastly because of our conviction that it will seldoen cdaain is peac.
tice bocause of uncertinty aboul parameters in the moemal covariance which must be
“marginalized out™ 50 oberin the posterior distribution of P givea V. This marginal dis-
aibation, on which the analysis of this paper is based, will not typically be normal and
e Bayes estimator of B will sot thes be lincar In ¥, In this paper we investigme
Bayes lincar estimuatoey even though may not be giodally Bayesian, becasse of thewr
simplicity and consoquent peneral appeal,

It should be emphasized that the topology on which our analysis are based gives
rise 10 an exwremely severe test of the modification of the WZ procedare in that coe-
vergence of poiat estamators 10 be uniforns in & certaia sense.  This seems desirable in
some respocts aad the topology is comvenicat in that it allows us %0 trest the conver-
gence of operators and point estimasoes simultancously. Bt extromely strong require-
ments must be met in ceder o obaain the coaclusions of our theorems giving bounds
on the erroes of approximatioes. This can be seen very clearly ks Theorem 10 where
the conditions csseatially demand that R and P must be well separased 10 dasure tha
the bounds obtain ( altermately, Ogp must be extremely large). In fature woek, the

effect of choosing weaker topologies will be explored.

5. SIMULATION

To obtain a numerical assessment of the pesformasce of the WZ appraximation
and the exact Bayes lincar estimator we have camied out a limited simulation stody

with a purticular salar valued process. For simplicity, suppose
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S@) = &% = 72 (8.1)
is observed at t = (£, . . . ,1,) with scermally distributed nolse

Nit) =~ N (5.2)

foe all 1. Suppose Z ~ N{0,5%) 5o thar the process has 2ero mean. It follows from the
moment generating function of the nonmal distribution that

Coviga) = Pl o [em’ - l] X (5.3)

The observed process is Y(2) = S(1) + N(¢2). For the purpose of the simulation all the
paramesers of those processes are specified below,
Let T be a point of iaference. The odpective of the simulation s 1 observe bow
e cxact Bayes lincar ewtimasce and the WZ appeaximasion converge 1o the true valoe
of P=S(1) as the density of sampling points around ¢ increases. The exact Bayes Bocar
estimator given by (1.3) can be compesed as
By = Npeilss + 0°1,)°'Y

where Y = (Y(1,), .. .. Y b S = (Sqrgh . .. . 5(2,)) and the covariance masrices are
comnpesed using (5.3), The WZ appeoximation B can be easily computed usiag (4.1).

Since § is a scale parameser for £, it was fixed az 1. A reasoaably Espersed sam-
ple of the S process is obtained by first generating 10 equally spaced values over the
[0,1] imerval, The points of inference, €, were ¢chosen © be 25, S0 and 105, The
density of data points around ¢=25 is increased in two sieps by doubling & twice: the
density of sampling points around .50 and 1.05 were not increased o enable us 10 see
how the increased density at a remote sampliag point can affect the WZ smoodher.
Specifically, the § process was generaed at

1,0 1,2,..1.0), byt _A.2+(t/10)), and

=ty L2141 22+(2/10)) ,

rospectively. A larpe noise geaerated from (5.2) with 0=0.25 is added w0 each of the
unobservable S values, Shown in Table | is a particular set of data generated when
=10 and Ze- X8 Notice that the noise is large escugh 10 mask the monotoaicity in §
values.

- PLACE TABLE | ABOUT HERE --
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For each value of t the sivelation is repeased wich five Z valoes, namely with
Z=—58 80,~19.-43, and 1.14 gencrated from the N(0,1) dissibation, The values of
B(2) for these values of Z and for ©=.25, .5 and 1,05 are shown in Table 2. Shown in
the smne table are the exact Bayes lnear estmates, By, aad the WZ apprercmanion,
BY. In computing the Jamer using (4.1), A, and @y were each set at .S The values of
Ay | |? =Ty = FEy) are also displayed for each valee of t and (, where
Ipysnd I'fy serve %0 messure the reliability of the exact Bayes lincar estimator and

the WZ approximacion respectively.

- PLACE TABLE 2 ABOUT HERE -

It can be observed that the exact Bayes lincar estimator pesrforms faicly well even
for sample sizes as small as 10, Of course in this simulation stady, for the purpose of
odaaining Ensight of what is happessag, we have assumed all Se parasseters of the
vaderlying processes 10 be knoun, In practical spplications this will sot really be the
cave and therefore additional stages of the hierarchical Bayesan specifications will be
regared, Notice that becasse most of the points are remote from $=1.05, the relative
accuracy of the WZ approximaticn is least at this poiat of inference. When the density
of dama aroend =25 Is increased both the exact Bayes linear estimascer and the WZ
approximution wnd o improve asd converpe towards the tue value (.25), The cxace
Bayes lmcar estimase 2t t=1.05 is almost weaffected by mcreased density around
t=.25. On the other hand, the increased density of remote sampling points has the
expected adverse effect on the approximance B for B(1.05). These effects are also
reflecied im | |ATgy || At the poinmt ©=25 this quantity is dramatically reduced
alenast by ten fold at eack doubling of the ssmple size.
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88 | 023 015 046 | 049 038 051 | -134 -1.35 061
080 | 019 013 037 035 028 039 | 059 071 043
.20 | 010 010 -033| 027 026 036  -1.00 -1.02 D44
.43 | 013 012 035|033 020 040 -1.10 -1.15 -049
114 | 030 022 064 | 064 050 070 158 179 083

mate (17) and Exact Bayes Linear Estimates with 1«1
e 25 = 50 =108
AT sy || = 000047 | |JAT. ]|"=.000018 | ||aT,,||*~ 032

Z | p) By BY I Be) By BY | Bls) By  BY
.88 | 023 017 -033 | 049 -039 037 | -1.38 -1.38 046
080 | 019 014 026 | 038 029 027 0% 070 032
29 | 90 Q10 020|027 025 023 100 103 030
.43 | 013 011 021 | 033 027 -024 | 190 116 032
114 | 030 024 047 | 064 0% 0S5t | 188 176 062

ximale and Exact Lingar Estimasas wilth 1=t

su 28 1 v=_ 50 --ws

1150, /11°~ 0000056 _ [|aT, . |[¥~.000028  ||af,,|I%~

Z [ 8y 8y B3 I B vy B7 | Blx) Py ;s, ]

.88 | 023 020 029 049 043 031 | 134 132 036
080 019 014 021 | 036 029 022 0% 070 025
-29 | 010 010 08| Q27 028 07| 100 103 022
.43 | 013 011 Q016 | 033 027 017 | 110 137 023
114 | 030 026 039 | 064 057 042 | 158 174 049




REFERENCES

Cleveland, W. S. (1979). Robust Jocally weighted and smoothing scatter-
plots. Jowrnal of the American Saatistical Asrociation, ‘h 94.82943&

Cleveland, W. S. and Devlin, SJ. (1 Locally weighted regression: an approach o
regression asalysis by ocal fitiag, s 4
Jowrnal of the Ame. Ssatisrical Associanion, §3, 596-610.

Hagrison, J. and Wess, M. (1939)

Heckman, NE. (1988). Minisax eatimates in & semiparametric model. Journal of the
American Ssansical Associarion, 83, 1090-1056. o

Joe, H.. Ma, Wilson, and Zidek, LV, (1986), A Bayesian Slmuncmc unlvm
mmdnodﬁmmadomnmnmmm
# 47, Department of Stasistics, Univensity of British Columbia,

Lindley, D. V. and Smith, AFM. (1972). Bayes Estimates for the Bacar model(with
Discussion)Journal of the Royel Swristical Sociery, B, 34, 141,

Muller, Hans-Geoeg (1987). Wei kcal regression and kemnel methods for non-
parasnetsic curve fisting, Jowrna! of the American Stanissical Association, 82, 231-238

Nychka, D. (1988). Bayesian confidence imtervals for smoothing splines. Jowrnal of
the American Ssaristical Asrociation, £3,1134-1143,

O'Hagen, A. (1978). Curve fitting and zmll design for prediction {(with discussion).
Jowrnal of the Royal Starissical Sociery, B, 40, 52

Sacks, J. and Yivisaker, D, (1978). Lincar estsmation for approxamately lincar models.
Arnals of Sravissics, 6, 1122-1137.

Sacks, J., Welch, W1, Mixhell, T.J,, and H. (1989). Design and analysis of
computer experimesnss. Stavistical Science, 4, 35

Wahba, G. (1983). Bayesian “confidence intervals® for the cross validated smoothing
spline, Journal of the Royal Statistical Society, B, 45, 133-150,

\Veauhndi.s and Zidek, J. V. (1986). Amalyses of mu
and cmpirical Bayesian metric methods. SIMST Rszo.%. t
of Sugsics, University of Codemidia,

Woerabandi. S. aod Zidek, V. (1988) % smoothers for regular
processes, mcqumam 2173

Weerahandi, S. and Zidek, J. V. (1990). Approximare Bayes lncar smoochers for con-
tinuous processes. Submirted



