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ABSTRACT

This paper presents two approximations for the problem of Bayes linear estimation of continuous

vector-valued stochastic processes. The problem of interpolating time series is treated as a particular

application. Expressions for errors of approximations are obtained. In particular, our general conditions

for zero error lead to a characterization of a generalized ARC!) process.
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1. INTRODUCTION

In this paper we derive a modification of a Bayesian locally weighted regression

method proposed by Weerahandi and Zidek (1988; hereafter WZ ) and show that the

result is approximately the same as the result which would be obtained by anyone of

a large family of Bayesian linear smoothing methods. These results are found in Sec-

tion 3 where a continuous vector-valued process S is supposed to be observed with

noise at n scalar valued sampling points to yield a data vector, Y in a n-fold cartesian

product space whose components are finite dimensional inner product spaces. The sta-

tistical objective is taken to be either interpolation or extrapolation so that the object of

inference is 13 = S (t). For simplicity only interpolation will be considered here, the

extension to extrapolation being essentially formalistic. Section 3 includes a precise

expression for the error incurred in the heuristic practice (c.f. Muller, 1987) of basing

interpolation on a data window enclosing 'to Requiring this error to be zero leads to a

characterization of a generalized AR(I) process. Bounds are obtained in Section 3 for

the error incurred in using the derived modification of the WZ smoother on just the

data in a window at 't instead of a Bayes linear smoother from the general family

alluded to above. Finally, in Section 3 it is shown how the procedure based on just

the data in the window may be extended to the entire data set and "abound on the size

of the resulting error is obtained. This has the practical advantage of overcoming the

need to specify a window width.

Throughout this paper, Bayes linear estimator will always mean the best linear

estimator with respect to quadratic loss. If the prior means of 13 and Y are specified

and hence zero (as we may assume without loss of generality to simplify our analysis),

then the Bayes linear estimator of 13 based on Y is

L1
13y=u~yY , (1.1)

where in general Uuv ~f'uv r-1, the covariance between U and V, Fuv- is defined as

the unique linear transformation for which E(u,U)(v,U)=(u,f'uvv) for all matrices u,v

having the dimensions of those of the random matrices U and V (cf. Eaton (1983, p

74)) and F = Fyy. Here and in the sequel, Fyy is assumed to have full rank and hence
be invertible.

The Bayesian approach adopted here is more appealing to us than the frequentist

approach on principle. As well it has the advantage of bringing in time series and

Kriging quite naturally. Moreover, it provides a natural route towards the construction

of credibility sets for 13. In developing confidence bands even in the frequency theory
of splines, it is the Bayesian highway which has been followed (Wahba (1983). How-

ever, we recognize that the specification of the r 's may present practical problems of
model development with the attendant risks of misspecifying the models. Our approxi-

mations simplify the task of modeling. We will evaluate the errors incurred in these
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these approximations and establish some qualitative conditions which might suggest

their adoption without determining the r's completely.

Section 2 is a technical prelude to Section 3 in which we treat a more general

problem than that described above. The generalization is that suggested by Sacks and

Ylvisaker (1978). Suppose Yj:1xq , i=1, ...,n are observable response vectors for

which

Yj = Ili + Ni, I=1, ...,n, (1.2)

where the Ni: lxq are unobservable, uncorrelated vectors of noise Sacks and

Ylvisaker (1978), for the case q=l, propose an approximately linear model,

Ili = Ai~ + ri, i=l, ...,n , (1.3)

where ~: p xq and the rj are fixed but unspecified constants. Inference is about A~,

where A:s xp is specified. Their estimators are of the form cY, where

Y = (yf, ... ,Y~l. In a frequentist setting they find the optimum c, which minimizes

the mean squared error of estimation, in the case where I ri I<M, with M, specified and

s=1. In the case s>1, they were only able to achieve some useful bounds. Very

recently, Sacks, Welch, Mitchell and Wynn (1989) published a general review of the J.- \1"'-

Sacks- Ylvisaker and related theory and the reader is directed to the bibliography given

with that review.

Sacks and Ylvisaker (1978) note that even in the frequency setting, their proposed -Y-

optimal linear estimators tends to rely most heavily on the Y/s for which M, is small.

There is an obvious Bayesian counterpart determined by the degree of association

between ~ and the individual Y/s. In a sense to be made precise in Section 2, we

may, after suitably permuting the subscript labels of the Yi's, partition Y as

Y = ·(pT ,RTl into those Yj's which are proximate to ~ (the rows of P) and those

remote from ~ (the rows of R). A natural approximation to ~y is then

~p = a~pP . (l.4)

If the number of rows of Y retained in P is large (near n), this approximation will be

very good. Surprisingly there are cases like that given in the application of Section 3

where ~y = ~p even when P consists of just two Y/s.

This approximation is of fundamental importance in statistics and is implicitly

made when selecting the responses to be observed. These will be chosen heuristically

on the basis of their relevance to the issue under study, in our case to the estimation of

~. In intervention analysis, for example, responses in the spatial or temporal proximity

of where the intervention is to occur will be made and, for budgetary and other rea-

sons, more remote responses will not even be taken. Robustness is a second reason

why remote observations might be excluded from the study. While these observations

would be of limited value in estimating ~, their inclusion invites the possibility of a

detremental impact on ~y of a big response error. Another source of potential error is
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in the additionalmodeling required to accommodate these remote responses and the

resulting possibility of model misspecification.

The second approximation presented in Section 2 is more technical and embraces

ideas of Weerahandi and Zidek (1988). To specify the r's it is natural to explore the

model in equations (1.2) and (1.3) which relate Y and /3,

Y = A /3+ E , (1.5)

where E = R + N and x = (xf ,..., x!l for x = A, E, R, N. If we assume, as we may

without loss of generality, that /3 and E are uncorrelated, it follows that A = I' y~ r~~

and c~rEE~r y.~~ryy - ry~r~~r~y (see Eaton (1983, p 88)). It may be possible in

some cases like that of Section 3 to find simple approximations A o~A - ~(A) and

Co = C + ~(C), without finding A and C explicitly, with some a prior assurance that

~(A) and ~(C) will be small. It then follows that approximately

r~y::::r~~Ao (1.6)

and

ryy::::Aor~~b + Co . (1.7)

Here F~~ is the a priori covariance matrix of /3. Some components of r~~may be
allowed to approach infinity when our prior knowledge is vague. Additional levels in a

hierarchical prior model may need to be added to incorporate uncertainty about ele-

ments of p as in Weerahandi and Zidek (1986, 1990). We will not address the prob-
lem of specifying I"~~ in general but will do so in the special case considered in Sec-

tion 3.

The approximation in Section 3 combines those described above. We consider a

continuous multivariate time series and Yi = Y(tJ = (Y1CtJ, ... ,YqCtJ) ,i = 1,...,n,

where the ti's are not necessarily equally spaced. And /3=Y('t)=(Y 1(r), ...,Yq('t)). So as

long as the autocorrelation between yet) and Y('t)=/3 is decreasing as I t-"tl increases,

P may be taken to be those Y's for which I ti-'tl is small. This gives rise to the first

approximation while the second is obtained by a first order Taylor expansion of the

yeti) around ti='t. Details are given in Section 3. Our method and its limitations are

discussed in Section 4. To complete the paper a small scale simulation study is given

in Section 5.

2. APPROXIMATELYBAYES LINEAR ESTIMATION

Preliminaries. Our approximation theory will be developed in a general con-

text where </3,Y> e B xY and Band Y are real, finite dimensional inner product

spaces with inner products, ("-)B and (-;)y, respectively. Thus BxY is a real, finite
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dimensional inner product space with inner product (-'-)B + (-,-)y_ Much of the theory

.underlying the developments of this section is presented by Eaton (1983) and by Stone

(1987) to which the interested reader is referred for more detail. A brief sketch will

now be presented for completeness.

In general, let L(W,U) denote the space of all linear transformations of W into

U where (W,(-,-)w) and (U,(-,-)u) are finite dimensional inner product spaces. If {wi

} and { Uj } , respectively, are orthonormal bases for W and U, then {wiD Uj} is

an orthonormal basis for L(W,U) where, in general, wDu denotes the exterior pro-

duct of W and U defined by (wDu)v = (w,v)wu e Ufor every w,v e W and u e U.
Thus any A e L(W,U) has a unique matrix representation, A = LLaijWiDwj- Furth-

ermore, W and U induce an inner product, <-,->wu, on L(W,U) given by

<A ,B>wu = LLaijbij when A and B are given by their matrix representation. In other

words, <A,B>wu = tr[A][Bf where [A] and [B] are the matrices representing A and

B, respectively. This determines a norm on L(W,U) : IIA Ilwu = <A,A>~u.

In this paper a different norm will be used because of our interest in quantities

like the magnitude of e defined below in equation (2_1) relative to IIR IIR- The norm

is given by IA Iwu = Sup {I 1AW 11 u : 11 W 11 w';;1) and it determines the uniform

operator topology for L(W,U) (cf. Taylor and Lay 1980, p 189)_

If W=U and T e L(W,W) is self adjoint, there exists an orthonormal basis {wi

} for W such that T = Di (WiD wi) for real scalars, Ai, called the eigenvalues of T.

Then T-1 = LAi1CWiDwi) defines the inverse of T if Ai:;t:Ofor all i, And if T is non-

negative definite, i.e., Ai~O for all i, TVl =Dt2CwiDwJ. These facts imply that if

A e L(W,U), IA Iwu is the square root of the largest eigenvalue of the self adjoint,

nonnegative definite transformation ATA e L(W,W) (cf. Eaton, 1983, exercise 29, p

67)_ Recall that <A,A>ww = tr[Af[A] so IIA Ilww is the square root of the sum of

the eigenvalues of AT A. Halmos (1974, p178) shows that for every A e L(W,W),

IA Iww = Sup (y ,Ax )w/ 11 y 11 w 11 x 11 w, a useful result since in this paper, A is often a

covariance matrix or the difference of a pair of covariance matrices. Halmos (1974, pp.

182-183) also shows that IAn - AI ww ---70 as n ---700 if and only if

I (y ,Anx)W - (y ,Ax)wl ---7 0 for all x and y. We note finally that IATI ww=1 A Iww

Cibid, p 179).

In the sequel Y will be partitioned as Y=PxR for certain linear subspaces, P and

R, with associated inner products, C"')p and C''')R, respectively, and then we can write

y = <p,r> for every y £ Y where p £ P and r £ R. Also Y = <P,R> where P and R

correspond to the quantities introduced in Section 1. Finally we assume

C-,')y = C-,-)p + C-")R' Partition ryy as

r - [rpp rPR 1
yy - r

RP
r
RR
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(see Eaton, 1983, p 87).

The First Approximation. The approximation is obtained by discarding the

data subvector, R, with resulting inferential error

E = By - Bp ,

where By and Bp are as defmed in equations (1.1) and (l.4), respectively.

THEOREM 1. Let a~R'p = rM.p rR~p and r~R'p = r~R - r~RriprRP' Then

E = a~RpR , (2.1)

r~.y- r~.p = -a~R.prR~'p , (2.2)

* * *T -1a~R'p = Do. [rR'p~ + a Di» ] , (2.3)

where

*a = aRP.~ap~ - aR~ ,

aRP'~ = rRP.~rp~~

rR'p~ = rR'~ - rRP.~rp~~rlp,~ ,

and

D [r-1 T r-1 ]-1
= ~~+ ap~ p.~ap~ .

PROOF. The Bartlett decomposition of I'yy is

r = [I 0] [rpp 0] [I 11T] ,
yy 11 I 0 rR .p 0 I

where 11 = rRPrp~ and I denotes the identity transformation. This is easily verified by

successive applications of the identity which defines the partitions of transformations

like that of ryy, introduced above

!l [APP APR] !lAy _ A A <pr> _ <App p + ApR r, ARP P + ARR r>. (2.4)
- RP RR -

It is easily verified, by repeated use of (2.4), that

r-1 = [I -11
T1 [riP 0 1 [I -11]

yy 0 I 0 r-1 0 I '
RP

Now partition I'~y as er~P , r ~R)' defined in an obvious way by the it operates on y.

Then it is easily verified that

By = Bp + a~R·pR
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which proves the result in equation (2.1).

Now r~_y~ r~~- r~yrriry~. Again using Bartlett's decomposition and the

rules of operation of the various partitioned transformations we obtain

a~yry~ = a~prp~ + a~R-pr~R-p

which proves the assertion in equation (2.2).

To obtain equation (2.3), we begin with

r RR = rR-~+ aR~r~~rk~,

rRP= rRP-~+ aR~r~~ap~ ,

and

rpp = rp_~+ ap~r~~ap~,

all of which are true by defmition. Thus

r-1 r-1 r-1 r-1 [r-1 T r-1 ]-1 T r-1PP = p-~ - p_~ap~ p_~ap~ ~~+ ap~ p_~ap~ ap~ p_~

whose proof is formally identical to that of Lindley and Smith (1972) for the

corresponding matrix identity. It follows that

r T r-1 D T r-1~~ap~ PP= ap~ p.~

and

rp~ap~r~~ = rp~~ap~

These results may be used to simplify

rR-p = rR-~- rRP.~rp~rkp.~ - TRP.~rp~ap~r~~ak~ - aR~r~~ap~rp~rkp.~

+ aR~[r~~- r ~~ap~rpJ,ap~r ~~]ak~

to

rR-p =rR.p~+a*Da*T.

Similarly,

T"' - I' T r T r-1rT
J. ~R-P- ~~aR~- ~~ap~ PP RR

so

r~R'p =o« .
Equation (2.3) now follows. 11

Recall that r~.y is the covariance transformation of ~ - ~y and so it represents

the residual uncertainty in ~ after predicting it from Y. If ~p were used in place of ~y,

the residual uncertainty in ~ would increase, or at least not decrease, since P carries
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less information about ~ than Y. Equation (2.2) shows the resulting difference in the

uncertainty about ~, namely a~R'p TR~.p.

Now observe that T~R'P represents the covariance between ~ and

(R - aRPP )~R ·P. This is because the covariance transformation representing the

covariance between ~ and R'P is the unique transformation for which

(b,r~(R,pl)B==E(b'~)B(r ,R,P)R

for all b and r. But

E(b,f»)B(r,R 'P)R = E(b,f»)B(r ,R)R - E(b,p)B(r,aRpP)R

and

E(b,p)B(r,aRpP) == E(b,f))B(aIpr,P)p

==(b.r~paIpr)B

for all b and r. From this, the conclusion follows: r~(R.P) = F~R'P' SOwe see that the
magnitude of e depends on the degree of association between P and the R residuals

after (linearly) fitting P. In fact £=0 is equivalent to F~R'P = O. This leads to the next

theorem which gives intuitive conditions under which £=0. By " f3 and R are condi-

tionally uncorrelated given P" we will mean Cov[(b'~)B,(r ,R)p I P=p] == 0 for all

b, p, and r.

THEOREM 2. If (i), Y is normally distributed and (ii), P and R are conditionally

independent given P, then f)y = f)p, i.e. £=0.

PROOF. The conclusion holds if and only if r~R'p = 0 and this is true if and only if
E(b,f))B(r,R-P)R=O as pointed out in the preceding discussion. But this last quantity is

just

EE[(b,p)B(r,R-aRpP)R1P] = E[ E[(b,f))B1P] E[(r,R)RIP]-

E[(b'~)BIP](r,aRPP)R ],

since ~ and R are conditionally uncorrelated given P. Now by definition

E[(r,R)R I P]=(r,E(RIP)R and, since Y is normally distributed, E(RIP)=aRPP

(cf. Eaton 1983, p1l6). The conclusion of the theorem is an immediate consequence

of this observation. 11

Other conditions under which £=0 are given in the more specialized situation of

Section 3. The conclusions of Theorem 2 and its relative in Section 3 are excessively

strong in that £=0 whereas ~p would be considered a satisfactory approximation as

long as e were merely small in some sense. But unless r~R'p = 0, i.e. £=0, £ could be

arbitrarily large depending on R. A more natural measure of the quality of the
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approximation would therefore seem to be the magnitude of E relative to that of R,

//R //R' and this leads to Ia~R.pl RB as an index of the quality of the approximation.

Of course unless a~R'p were completely specified and R observed, in which case

it would be pointless to seek an approximation to ~y, neither e nor the index defined

in the last paragraph of its quality could be evaluated. Theorem 1 is intended to

characterize precisely the errors which result from ignoring R in predicting 13and it is

applied in the next section to determine when they would be negligible. By providing

additional insight into the nature of these approximation errors, Theorems 1, 2, and

their relative in Section 3 may help to refine the heuristics involved in deciding how to

partition Y effectively and when to drop R.

Since in some cases, R will not even be observed when P is, it seems desirable

to have some measure of 13p's performance which exploits the information in P. This

leads us to the following result.

THEOREM 3. The Bayesian linear predictor of E based on P is

Ep = a~R.paRPP

and the covariance of E - Ep is

rE·p = a~R·prR~-p (2.5)

PROOF. This is straightforward and omitted for brevity. "

The results in equations (2.2) and (2.5) may be combined to give an insightful

re-expression of equation (2.2):

r~_p = r~_y + rE-p .

So the change in residual uncertainty in predicting 13which derives from dropping R is

precisely that in E after its linear prediction from P. In other words, 13pwill be a good

approximation to f3y exactly when E is well explained by P.
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The Second Approximation.

A useful expression for a~y is now derived, starting with (1.1) and invoking model

(1.5).

LEMMA 1. If E and 13 in equation (1.5) are uncorrelated, then

a~y = [r~~+ AT C-IArl AT C-I , (2.6)

where C ;:;rEE, and

r~.y = (r~~+ AT C-IArl . (2.7)

PROOF. The proof consists in showing that the linear transformation given in equa-

tion (2.6) is identical to that which defines a~y:

a~y = r~~AT[Ar~~T + CrI,

since, by the definition of c, r IT ;:;A I'~~ T + C. This is done using the transforma-
tion identity,

rri = C-I - C-IA[r~~ +ATC-IArIATC-1 , (2.8)

which is based on the same identity as that used to prove equation (2.3) in Theorem l.

Equation (2.7) is an immediate consequence of this last result. 11

Approximations to the model and inferential quantities are to be obtained by

replacing A, C and F ~~ by Aa, Ca and r&~,respectively, where Ca and r&~are self-

adjoint, positive definite transformations. This will induce approximation errors in the

various objects of analysis. We will everywhere in the sequel use "0" as a sub- or

superscript to indicate an induced approximant so, for example, 13? will denote that of

13y. Approximation errors in objects, H, will be represented by

Cl
Cl(H) = H - Ha .

If follows that

Cl(r~.~)= !l(r~~) + !l(A TC-1A) .

The next lemma is useful for extracting the first order terms in the approximation

errors considered in this report.

LEMMA 2 (a). Suppose that G and H are invertible transformations with associated

strong operator norm, 1'1, that G is invertible, and that 1HG-11 s 1. Then I + HO-1

in invertible, and
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00

(G + Hrl = G-1 IJHG-ly ,

r=O

and

1(G + Hrll S; 1G-11 DIHG-II '

where, here and in the sequel,

Dx = x (1 - x r1 , 0 S;x S;1 .

(b). Suppose Ho is an approximant to H , both Ho and H being invertible with

1 /).(H-1)H 01 < 1 ,where, here and in the sequel,

/).(0)-=0 - 00

for any such associated pair, Go and G whether or not they are invertible. Then

I - I1(H-1)H 0 is invertible,

00

I1(H) = HOL[-I1(H-
1)HoY ,

r=O

and

1/).(H)I S; 1H 01 (1 + DI~(WI)I IH 01) .

PROOF: Part (a) is an immediate consequence of a standard result (cf. Taylor and

Lay, 1980, Theorem 1.4, p 192) and part (b) follows from (a). 11

Note that if D is a self adjoint and positive definite transformation, 1D 1 is the

largest eigenvalue of A (see Eaton, 1983, p 54). This fact may be helpful in verifying

that 1 /).(H-1)H 01 IT < 1 in some cases.

This next result is an immediate consequence of Lemma 2(b) and it is stated

without proof.

LEMMA 3. If IMr~.})r~.yIBB < 1,

00

ri3.~/).(r~.y)= - ~:r/).cri3.~)r~.yy.
r=l

and

r~.ly,1(BY) = [r~.~/).cr~.Y)Ab'Col + ,1(AT C-1)]Y.11

The leading terms in the expansions of Lemma 3 may be used in a sensitivity

. analysis. Of more interest than the expansions perhaps, are bounds on the magnitude

of the approximation errors. In any case, it is necessary to determine how errors made
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in approximating the building blocks of the model in equation (1.5) affect inferential

procedures. The proof of the following lemma is straightforward and omitted.

LEMMA 4.

~(ATC-l) = Ab~(C-l) + ~T(A)C-l ,

and

~(ATC-lA) = Ab~(C-l)A + ~T(A)C-lA + AbCOl~(A) .

Moreover, if I~(C)COl IIT ~ 1 ,
00

~(C-l) = COlL [-~(C)COl Y ,
r=l

The sensitivities to moderate approximation errors of the objects of central

interest in this paper are indicated by the results of the next theorem.

THEOREM 4. To first order, the following approximate equations 'obtain:

r~.~~[r~.y] = -p

and

r~.~~[13y]= pATC-l + MATe-I],

where

p = ~[r~.~]r~.y ,

~[r~.~] = ~[r~~] + ~[ATC-lA]

and to first order,

~[ATC-l] = ~T[A]C-l- ATC-l~[C]C-l

while

~(AT C-1A) = ~T[A]C-lA - AT C-lMC]C-1A + AT C-l~[A] .

PROOF. These results are obtained directly form Lemma 4 JI

We would note in passing that errors made in approximating the data model, that

is those in A and C enter the analysis only through AT C-1 and AT C-1A. Moreover,

to first order they are given exactly the same weight as those entering the prior model

through r~~.

The following notation will be helpful in developing bounds on the errors of

approximation:
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Erf}y = 18(r~.\r) IBB I rg.y IBB

EC = 1.1(C) Iyy I-COl Iyy,

EA = 1.1(A) IByl IAa IBY .

THEOREM s. Suppose eel for E = Ec, Er. Then

I 8(r ~.y)1BB ::::;I r~}1 BBOEr~.y ,

11.1(~y) IIBI IIYllyl r~.yIBBIAOIYBICOllyy

::::;O£ + EA + EC + EA EC ,
r~_y

(2.9)

Er~.y ::::;I .11T~~]IBB + I .1[A TC-IA] IBB I rs-r IBB

and

I ~[ATC-IA] IBB s IAal fBI Call YY(OEc(l + EA) + EA (1 + EA)(l + 0Ec) + EA) .

PROOF. Recall that in general, for any

ITI + T21::::;1TII + IT21, IT1T21::::;1TIll T21, and ITTI

low immediately from Lemmas 2,3, and 4.11

We should remark that the denominator on the left hand side of equation (2.9) is

a surrogate for the more natural choice II13p liB which could not be used because of

insurmountable technical difficulties. The approximants A a and Ca can be replaced by

A and C, respectively, after inserting an appropriate multiplicative factor. But there is

little difference between these alternative forms for the left hand side of that equation

and our choice is simpler for technical reasons.

For the application of the next section, the force of this last result lies in it impli-

cation that the appropriately normalized versions of the approximation errors .1[r~.y]

and ~(~y) approach zero as the various E 's approach zero. The bounds enable rates

of convergence to be established as well.

transformations, T 1 and T2,

= I Til. Thus the conclusions fol-

3. INTERPOLATING CONTINUOUS PROCESSES

Let {S (t) : t £ T}, be a stochastic process on T, a subinterva1 of (-00,00), which

is to be observed with additive, mean zero noise at not necessarily equi-spaced sam-

pling points, t = tl;··,tn. Thus Y = <Y(tl);",Y(tn» where yeti) = S(tJ +N(ti) for

all i. For each t, S (t ),N (t) £ S, a finite dimensional inner product space with inner

product (-,-). It is supposed that ~=S et) where for simplicity tk < 1: ::::;tk+1, but our

results could easily be extended to include extrapolation where 1: < t 1 or 1: > tn• As in
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Section 2 it is assumed that the specified means process has been removed so S (t) has

expectation 0 for all t.

In this section an approximation to the Bayes linear interpolator of [3, which is

itself a Bayes linear procedure, will be found by applying the approximations

developed in the last section. The first approximation is made when Y is replaced by

P, the observable consisting of those S (ti) for which I t, - 't I is small. Then an order

o Taylor approximation is made to approximate a~p under the assumption of con-

tinuity to get a8p. Finally, the first approximation method in Section 2 is reapplied to

obtain a&y, an approximate Bayes linear interpolator of [3 based on Y.

Throughout this section it is assumed that S is continuous according to the fol-

lowing definition.

DEFINITION 1. {S (t) : t £ T} will be called continuous at t = to if

E I IS (t)-S (to) 111 ~ 0 as t ~ to.

Define res ,t) on TxT by

r(s,t) = lS (s)S (t) ;

this transformation will be called the covariance kernel of S.

Our analysis uses an extension of a well known result of classical time series that

the continuity of S and its covariance kernel are equivalent when the continuity of 1is

appropriately defined.

DEFINITION 2. r will be called continuous at (s ,u) if Ir (t ,v) - 1(s ,u) I ~ 0 when

Ct ,v) ~ (s ,u) where, here and in the sequel, 1·1 will denote the strong operator norm
on L CS .S'). 1will be called continuous if it is continuous at all Cs ,u).

The proof, below, of our counterpart of the classical result is similar to that of

Grenander (1981, Theorem 1, p 38), who treats the case where S is a complex valued

process.

THEOREM 6. S is continuous on T if and only if T'(s ,t) is jointly continuous in (s ,t)

at every point (u,u) £ TxT, in which case 1is continuous on F'x F.

PROOF. First suppose 1 is continuous at (u,u). Now for every

(s ,t), E (S (s), S (t»s = < I ,1(s ,t) > ss (Eaton, 1983, p 93). Thus

E IIS(t)-S(u) Ili= <I, ~r >ss,

where

~r = l(t,t)-l(t,u)-r(u,t)+r(u,u) .

But if wi is any basis for S, then for certain coefficients, 'Yij
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z r = LL'Yij WiDwj, < I,~r > ss = L'Yii =L (Wi,(~nWJs .

By the assumed continuity of r (see Definition 2), (Wi,(~nWi)S -7 ° for each i as

t ~ u which proves S is continuous at u for all u e T and the theorem itself in one

direction. Now conversely suppose S is continuous on T. Observe that

* ~D = (y,r(t,v)x)s - (y,r(s,u)x)s

= (y,r(t,v)x)s - (y,r(s,v)x)s + (y,r(s,v)x)s - (y,r(s,u)x)s

= E (y,S (t)-S (s»s (x,S (v»s + E (y,S (s»s (x,S (v)-S (u»s ,

by the definition of the covariance kernel. It follows that

ID* I ~ [E (y,S (t)-S (s»lrh[E (x,S (v»lrh+[E (y,S (s))l]'h[E (x,S (v)-S (u»j]'h.

But

E(y,S(t)-S(s»l ~ IIyI11 E 1IS(t)-S(s)1 11,

E (x,S (v)-S (u»l ~ Ilx III EllS (v)-S (u) 111

and

[E(x,S(v»l],h = [E {(x,S (v)-S (U»s + (x,S (u»sf]'h

:5 [E (x,S (v)-S (u»l],h + [E (x,S (u»l]'h ,

the last inequality deriving from that of Minkowski. Thus ID* I ~ ° as (t, v) ~ (s ,u)

for every x,y £ S and for every fixed pair, (s ,u). But this implies ( Halmos, 1974, pp

182-183) that F is continuous on T x T in the sense of Definition 2.

The proof is completed by noting that the continuity of I' on the diagonal of

T xT implies that of S on T and this in turn implies that I" is continuous everywhere

on T x T by the result of the last paragraph. 11

The process {S (t) : t E T} will be called wide sense stationary (WSS) if

T'(s,») = res-t)o In that case as (u)s (v) ~ F'(z ,v) 11(v,v) = r(u-v)11(0). If S is

WSS, it will be called a first order autoregressive process, if for all

u ~ 0, I" (u) = yexp (- uR o)"{ where 'Y~ rh (0) is a self adjoint, positive definite

transformation and Ro is a fixed transformation; in general exp(A) ~ l:Arlr! is a

r=O

linear transformation on W when A e L (W,W) and [exp(A)f = exp(AT).

Observe that if t < u,

(x,r(t-u)y)s= E(x,S(t))s (y,S(u))s = (y,r(u-t)x)s = (x,rT(u-t)y)s

so that I"(t - u) = rT (u - t). Thus for u < 0, F(a) = rT (-u). Therefore, if S is a first

order autoregressive process, we must have
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feu) = y[exp(uRo)fy, ·u<O

i.e.

feu) =y[exp(-luIRb)]Y, u<O.

LEMMA 5. Suppose S is WSS. Then the following statements are equivalent:

(i) S is continuous on T and Set) is uncorrelated with S(v) - as (v)s(u) S(u) for every

t::;;u::;;v,t,u,vET;

(ii) S (t) is a first order autoregressive process; and

(iii) S is continuous on T and S(v) is uncorrelated with SCt) - as (t)S(u) S(u) for

every t ::;;u ::;;v, , t .u,v, ET.

PROOF. It is fust shown that (i) implies (ii). Since S is continuous on T, r is con-
tinuous (Theorem 8). By Definition 2, this implies the elements of any matrix

representation of F, s':!y [r] are continuous. We also have from (i) that for every

xl, X2 E S, 0 = E (XI'S (v )-as (v)S (u~(u))S (X2,s (t))s

= (XI,r(v-t)X2)S - (aI(v)S(u) Xl,r(u-t)X2)S

= (Xl,[r(v-t) - as(v)S(uT(U-t)]X2)S .

Thus,

rev -t) == rev -u)r-1(0)['(u -t),

for every t s; u ::;;v, t,u,V ET. Let l3(u) = y-1r(u)y-l.
equivalently,

(3.1)

Then equation (3.1) is,

a(x+y) = a(x)a(y) , 0::;; x ::;;y < Ta

where To = max{v-t : v,t ET}. In terms of the matrix representation of a, [a], this

is

[a (x+y)] = [a(x)] raCY)] (3.2)

which is Polya's matrix equation. Since [a] is continuous in the neighborhood of 0,

equation (3.2) has the solution

[a(u)] = exp(-u[RoD ,u > 0

for some constant matrix, [Ra] (c. F. Bellman, 1965, Theorem 4, p 173). Thus,

a(u) = exp(-uRa) ,u 2! 0

for the linear transformation Ra determined by the matrix [Ra]. [Ra] depends on the

basis chosen to obtain the matrix representation of a so R 0 is not unique but it is not

required to be and (ii) now follows.
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The same sort of reasoning shows that (iii) implies (ii). To complete the proof,

it is trivial to show that (ii) implies both (z ) and (tii). "

Let 8 be any sufficiently large number that

MI5 = {j : 1 tj - 't 1 s 8} (3.3)

is not empty and such that () is attained for some 1 tj - 't I. 1M 151 == m will denote the

number of elements in Mo and the sampling times corresponding to these elements

will be ordered as lp < ... < lp while those corresponding to the elements of the com-
I m

plement of MI5 are tR < ... < t« . Finally, let tm = (tp , "', tp), Pi = S (tp.),
1 n-ln 1 m I

Rj = S (tR)' P = < P l' "', Pm>' and R = < R 1, "', Rn-m>. More will be said about

the choice of 8 and m in the sequel. Partition Y = < Y (tl), "', Y (tn) > as

Y = < P,R > . Corresponding to this partition, partition Y as Y = P xR where P and

R denote, respectively, the ranges of P and R. Then the Bayes linear interpolator of

~ = S ('t), tk < 't :::;tk+l based on P is that given in equation (l.4).

Theorem 1 concludes that

11 f3y - f3p lis ~ 1CX~R.p 1RS 11 R 11 R

so that the error in approximating f3y by f3p is governed by 1 CX~R.p IRS' Theorem 2

gives general conditions under which this error is identically zero. We now give other

more specialized conditions under which the same result obtains.

Lemma 5 gives conditions under which there is no approximation error in reduc-

ing the data from Y to P.

THEOREM 7. Suppose S is a first order autoregressive process as defined above and

that P = <Y(tk)' Y(tk+l» while R = <Y(tl),"', Y(tk-l», when tk:::; 't:::; tk+1' Then

cx~R.p = 0 , i.e. ~y == ~p.

(n-2)

PROOF. Recall that CXRP minimizes E IIR-aP II~ = L E (IRi -ap)p 1 - ap)p 2111
i=1

as a function of a. But Lemma 5 implies that if i :::;k -1, ap) = CXRiPI and ap) = 0

are optimal while if i > k -1, ap) = 0 and ap) = CXRiP2 are optimal, from which CXRP

is obtained. Reapplying Lemma 5, we deduce that ~=S (t) and R -cxRpP are uncorre-

lated, i.e. CX~R'P = O. "

The one step autoregressive (AR(1)) model can only obtain when uncertainties

about its governing hyperparameters are ignored by conditioning on them; uncondition-

ally, the process cannot be AR(1). But even conditional on its hyperparameters, the

AR(l) model can only be an approximate representation of the analyst's prior views.

Therefore, a procedure which relies solely on P 1 and P 2 to interpolate S et) seems

likely to be nonrobust. Instead it seems preferable to take P = <Y (tp ), ''', Y etp »
. I m

where,m>2 is permitted. An approximation to f3p will be obtained below when S is
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any member of a family of underlying processes for which S is differentiable in the

sense of the next defmition. But to make ~p a reasonable approximation of ~y, we

need to assume a~R.p is "small" when m, the dimension of P, is sufficiently large as a

alternative to the srronger assumption that S is AR(I). This makes precise, the impli-

cit assumption underlying any interpolater which uses only the data in a "window"

enclosing the point of interest. At the same time we expand the domain of our work

over that provided by the AR(1) model.

DEFINITION 3. S will be called differentiable at sET if there exists an element,

S'tS such that EIIQ(t,to)-S'(t)//g-70 as t-7S, where

Q (t,s) = [S (t)-S (s)](t-sr1•

Just as the continuity of S and r are linked, so are their differentiabilities, that of

r being given by the following definition.

DEFINITION 4. A mapping G : T2 -7 L (S,S) has the mixed derivative, Gl1, at

Cs,u) £ T2 if IQ2 - C(l1\s ,u) I -7 0 as (t,v) -7 (s ,u) where

Q2 = [G (t ,v) -G (s ,v )-G (t,u) + G (s ,u )]/[(t -s) (v -u)] and I· I denotes the

appropriate strong operator norm. G will be said to have a mixed first derivative if it

has a mixed first derivative at all (s ,u) E T2. Other derivatives are defined in an

analogous way.

It is easily shown that the product and addition rules of calculus hold so, for

example, if

H(s,u) = H1(s,u)H2(s,u),

then

H(lO)(S ,u) = H flO) (s ,u)H 2 (s ,u) + HI (s ,u)H ~10) (s ,u).

With these definitions we have the following theorem whose proof is similar to

that of Grenander (1981, Theorem 1, p. 47).

THEOREM 8. If S is differentiable on T in the sense of Definition 3, then r(ll)(u,u)

exists at every point, (s ,u) E TxT in the sense of Definition 4.

PROOF. With Q2 given by Definition 4 on replacing G by r,

(X,Q:zY)s = E (x,Q (t,s»s (Y,Q (v,u»s

or

(X,Q2Y)s =E(x,D(t,s) +S'(S»s(y,D(v,u) + S'(u»s ' (3.4)

where D Ch,k) = Q (h,k) - S'Ck) for all (h,k) E SxS and Q as given in Definition 3.

Then the inequality, IE(x,Wl)S(y,W2)sI2~ IIxlll11yIIgEIIW2111 in
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conjunction with equation (3.4) implies that

CX,[Q2 - rS'(s)S'(u)]Y)s ~ 0 asCt,v)~(s,u)

for every x ,Y and this not only proves the theorem but shows, incidentally that

r(ll)cu,u) = rS'(u)S'(u)' 11

Definitions 3 and 4 can be iterated to obtain the definitions of the higher order

derivatives needed in the sequel. In particular the existence of S(2) implies that of

r(22) since S(2) is the first derivative of S(1) whose covariance is

r(ll)(s ,u) = I'S '(s)S '(u); r<22) need not be continuous. Note that the existence of S(2)

implies that of r<kI) for all k ,I ,0 s k, 1 s 2.

Observe that Definitions 2 and 4 entail properties of r which hold only if they
are possessed of every bivariate real valued functions of (s ,u) defined by

hxy (s ,u) = (x .F(s ,u)Y)s, (x ,y) £ sxS. Thus, for example, the existence of r<1O)(s ,u)
implies that of hgO) (s ,u) :

lim [hxy (t ,u) - hxy (s ,u )Y(t -s) = (x ,r(lO)(s,u)y)s .
t~f).

Recall that ("')p = C·,)sm = C,,) + ...+ C"), the m-fold sum of the inner products

on S. Furthermore, the transformation ap~ EL (B,P) with B = S and P = S'" can be
partitioned with ai =as(tp.)s('t) for simplicity, as

I

ap~ b = < a1 b, ..., am b »,

Thus

m

(p,ap~b)p = L (Pi,aib)s .
i= 1

The approximation error, ~(ap~), is determined by ~(ai) through (si,~(ai)b)s. If the

process is thought to be continuous a natural approximant to ap~ is that for which

ai = ap = I, so that ~ (aJ = ai - I, the subject of the next lemma. To make clearer

the association between the results obtained below and those of the last section, ap~

and its approximant, a~~,will be denoted by A and Aa, respectively. Similarly, in the

sequel, C and Co will denote rp.~and r~.~,respectively.

LEMMA 6. Assume (i) S is differentiable on T in the sense of Definition 3, (ii) for

any given constant, Ko> 1, 0> 0 is chosen sufficiently small that

[E 11D (t .t) 111]'# s (K 0-1)21 11('t,'t) 1ss

for every t £ ['t-O, 't + 0], where D is as defined in the proof of Theorem 8, and (iii)

M 0 defined in equation (3.3), is not empty. Then

EA=I~(A) IBl'/IAoIBp ~ E1'

where
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o 'f,~ I 1 IEA = m uKo 1 (,t;t) 'ss-

PROOF. By defmition and since the noise process is independent of the S - process,

(Pi,Aib)S = E (Pi'S (tp)s (11(re,re)b,S (re»s .

and (Pi,b)s = E (Pi'S (re»s (11 (re,re)b,S (re»s . Thus,

(Pi,~(Ai)b)s = (tp. -re)E (Pi,D (tp.,re)+S '(re»s(11(re,re)b,S(re»s .. .
The Cauchy-Schwarz inequality implies that

I (Pi,~(Ai)b)s I::; 1tr, -re I hi h

where

h?~E (PiP (tPi,re)+ S '(re»g

and

h2~(11('t,re)b,b)S .

But

h ::;111(r.t) 11s11b 11FS.

At the same time, Minkowski's inequality implies

2 'f, , 2 l/z
hi s [E(PiD (tp,'t»s] + [E(Pi'S ('t»s ]ss ., .

and hence

hi ::; ([E 11D (tpi,'t) 1Ig)'f, + I reIl) ('t,re)IIs} Ilpd Is .

which by hypothesis (ii) implies

hi s Ko III ('t,'t) Its Ilpi lis·

It follows that

(Pi,~(AJb)s ::; Ko Itp; - 't II r-1('t,'t) Its Ilpi lis lib I IFs.

Thus

(P,~(A)b)p :::;;Koll1('t,'t) Its lib lis Lltp; - 'tll IpiI Is·

which implies

(p,t<.(A)b)p :::;;moKol r-1(re,re)Its lib lis lip lip·

It is easily shown that IAo I :::;;m'f, by, for example, choosing a basis for S and max-

imizing (p ,A ob )ps using Lagrange multipliers. The conclusion follows. 11
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We turn now to the analysis of the residual covariance transformation, Fp .~

which plays the role of C of Section 2. To simplify the statement of the next result,

the following notation will be adopted for k,I=O, 1,"', i=1, ..·, n :

r<kl) = r<H) (r,«) ,

I"u» = r<kl) - r<kO) r1 r(OI)

l1i = ti - 1:.

Note that r<0l) = r<lO)T.

Our approximation, Co' to C will be defined as a partitioned transformation

through (p,Coq)p =L L (Pi,C~'pj qj)S for allp,q e P, where
ij £Mo

CO - L + 'l1 + rp.p. - r.r. 'IP.p. »r.r,
I, ) I, ) I. } J, J

(3.5)

where

'l1 =11 F'IP.P} r», 11·0
I, I )

SPi,Pj = Il1pi I Il1pj I (111Pi 1+ Il1pj I) O"Pi'pj ,

I1p.p. = I1pl1p.exp[-(ll1p.1 + Il1p.1 Yl1o] ,
I ) I) J )

~ > ° is a specified constant, Lp.p. = O"p.p. = 0, i -::;!:. j, and Lpp.,O"p.p. are positive
I, J " ) I, I I, I

defmite transformations in L (S ,S),i ,j £ Mo. Let Lpp ,1lpp, andspp denote the matrices

corresponding to the partition components defined in equation (3.5).

ASSUMPTION 1. r(kl) exists and is continuous for all k,l :::;;3.

ASSUMPTION 2. EO <1 where

Eo = m 82 max (I rn·o Issll10 + 81 O"p.p. Iss) I Lplp. Iss .
I, I " 1

i e Mo

Let

G (s,U) = T(s ,«) - r(s,'t)r1(1:,1:)rT (u,1:) . (3.6)

Now if g :T2 ~ L (S ,S) is continuous at (s ,u), then so is I g I, where I, I denotes
the appropriate operator norm, since

11g (t,v) I-I g (s,u) 11 :::;;I g (t,v)-g (s,u) I

Assumption 1 implies therefore that

Kc == Sup I G(r,3-r)(s ,u) Iss ' (3.7)

is finite where the supremum is over all (s ,u) £ ['t - 8,.t + 8]2 and r = 0, 1, 2, 3.



- 21 -

LEMMA 7. If Assumptions 1 and 2 hold then

tc == ILl(C) Ipp ICOl Ipp ~ eS

where with the constant Kc defined in equation (3.7),

tg == 2m 6\Kc + 1111'0 IssILlo + max I (Jp.p. Iss)max I (Jp.lp.lss( 1 + 6£) ,
~. I I, I 0

6x == x(1 - X)-l,O $x <1, and to is given in Assumption 2.

PROOF. By defmition

(p,Cq)pp = E (p P> ~)p (q P: ~)p

= LLB (Pi ,Pi . /3)s (qj,Pj' /3)s

and it is straightforward then to show that

(p,Cq)p = 'L'L(Pi,CPi'pjqj)s

where for all i,j,

Cp.p. = C(tp.,tp.) + Lpp.
I, ) I) I, )

and G is defined in equation (3.6). Our assumptions imply that C(ld) exists and is con-

tinuous at (r.t), for k, I = 0, 1, 2, 3. Thus the real valued function,

h (s ,u) == hxy (s ,u) == (x ,C (s ,u)y)s ,

has the same continuous derivatives by the definition of differentiation and hence it

has a Taylor series expansion. It follows that

(Pi'C (tpi,tp)qj)s = ± :, ± [~)(Llp/ (Llp)k-r h(r,k-r) + rpiPj ,

k=O . r=O

where

h(r,k-r) = (p. c(r,k-r)q.)
P } S ,

c(r,k-r) = c(r,k-r)('t;t) ,

r = ~ ~ [3) Llr Ll3-r h(r.3-r)('t~ 't~)
P;Pj 3' L... r 'Pi 'Pi I , j ,

. r=O

for some <, 'tj for which I 'tt -'t I $ I t3.PiI ~ 6, I 'tj* -'t I ~ I Llpj I and

h(r,k-r)(s ,u) = (Pi ,c(r,k-r)(s ,u)qj)' Now it is straightforward to show that

C('t,'t) == C(lO)('t,'t) == C(Ol)('t,'t) and hence that the Taylor expansion for h reduces to

(Pi,G (tp,tp)qj')s = t3.p.~p. hell) + rrr. ,
1 J ') I )

where

hell) = (Pi,1ll'0q)S
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since by definition,

G(ll)('t;t) = rll.O .

Define Rpp. and !:l(Cp.p,), respectively, by
I ) " )

Rp.p. = G (tp.,tp.) - !:lp. !:lp. r11'0
I J I J I J

(3.8)

and

!:l(Cp.p.) = Cp.p.-cfl.p.·
" ) I, J " )

Then I (Pi,RpiPjqj)s I == I re.r, I ~ Kc 11Pi lis 11qj lis 83 uniformly in Pi and qj where

Kc is given in equation (3.7). It is easily verified that

!:l(Cp.p,) = !:lp.!:lp.rll.O - 'L;.p. ,
" ) I J " )

where for expository convenience 'L;.p. = 11p.p.+ ~p.p. 11 and ~ being defined in equa-
" ) " J L, )

tion ( 3.5). Since in general, 0 :::;1 - exp(-x) :::;x for all x ~ 0 it follows that

I !:l(Cpi,p) Iss s I !:lPi 11 !:lPj I (I !:lPi I + I !:lPj 1)(1rll·O Iss/!:lo + I (JPi,PjIss) .

Thus

1(Pi,!:l(CPi,P)qj)S 1 s 283 (Kc + 1rll·O Iss/!:lo + 1(JPi,PjIss) Ilpi lis II qj lis,

and

I (p,!:l(C)q)p I :::;283 (Kc + I ru·o Iss/!:lo + maxi (JPi,PiIss)LL Ilpi lis 11qj l ls

Since

LL /lPi lis 11qj IIs:::;m lip lip IIq lip,

we conclude that

I !:l(C) Ipp :::;2m 8\Kc + I rll,o Iss/!:lo + max I (Jp.p·lss)
I, 1

Next define R;.p. by
1 J

G (tp.,tp.) = cfl.p. + R;.p. , i, j e Mo.
I J " J J. )

>From equations (3.5) and (3.8) we obtain I (Pi ,R;iPjq)S I :::;K Ilpi II s 11q) 11s (53, uni-

formly in /lPi 11s and 11qj 11s-
Now referring to the objects defined in equations (3.5), for every p, q £ P, with

lip lip = I1 q lip = 1

(p,"L;p"Lppq)p = LL/Pi,'L;i'pj'LPj~Pjqj)s

:::;LLllpi lis Ilq) lis 1L;i'pjLp}Pj Iss

~ m ~~x 1 'L;iP.lss 1 'Lp~p.lss·
I,} , J J, )
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But,

I L;:p Iss s 021 ['11.0 Iss + 03 I<e.r, Iss .
I, ) I, J

Thus

p:;p Lpp Ipp ::;Eo ' (3.9)

with Eo defined in Assumption 2. By that assumption, the quantity on the left of ine-

quality (3.9) is less than 1. By Lemma 2(a),

I COl Ipp =:; I Lip Ipp(l + o£{) .

Since I Lp], Ipp = max I Lplp. Iss, the conclusion is obtained. 11
r, ,

We may now obtain bounds for the local approximation errors.

THEOREM 9. Suppose the hypotheses of Lemmas 6 and 7 hold. Let

£r = I (['8prl Iss I ['p.p Iss· Then

1 L\(rAp) Iss / 1 rAp Iss :s; o£o ,
t' t' r~.p

and

1I L1(~p) I Iss/[ I rp.p Iss IAa Ips I COl Ipp] :s;O£P~.P+ £~ + £8 + £~ £8 '

where £~ and £8 are defined in Lemmas 6 and 7, respectively, and

£P~.P= £r + m max I (JPi~Pi IssU'£o (1 + £~) + £~ (1 + £~)(l + o£g) + £~] .

PROOF. This conclusion is an immediate consequence of Theorem 5 and the preced-

ing analysis. 11

To simplify the application of our proposed approximate interpolator/smoother we

will now extend the approximation ~~ to ~~ and show that the resulting error

L1(~?) = ~?- ~~ is " small 11 under certain circumstances. To this end let

a~p ! L(FS ,Y) be the obvious extension of a~p =: Aa, i.e.

a?pb = <b,"',b> £ Y

for every b ! S. By the definition of a~p, it follows that for the i th partition, r~iP'

of r~p, we must take

ro - rORiP - pp.

To obtain r~.pwe extend the approximation for r~.p=: Co given in equation (3.5), in
the obvious way so, for example, the i-j th component of rt>.p is

r~p..A = L1Rpll1.o .
, J P 1 )

With this notation, we may state
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ASSUMPTION 3. Ei < 1, i = 1,2, 3 where

El = ~2Irll·0Iss Irp], Ippmax 1 <LRjRi + TlRjR)-llss '

~ = min IL1R;1 '

E2= 8~ax 1Lp}pi 11surl1·0lss + 8 max lap;Pj Iss] 1[~(Lp})rllss(l + 8£0)

and

£3= Ih(&'L1)exp[-2(o + ~YL1o] Ir11.olgs Irpp Ipp laRk Ipp ,

where ~>x is dermed in Lemma 7 for all x.

THEOREM 10. If 8 ~ ~ ~ ~ assumptions 2 and 3 imply

11~(~?)lls/IIR IIR s ID Iss la* ISR l(rlpr1lRR (3.10)

and

1L1(rg.y) Iss$1L1lgs I a* IgR I (rlp)-lIRR

where D and a* are defined in Theorem 1 and

(3.11)

ID Iss ~ I [~(Lp;~)rllss(1 + Of) , (3.12)

la* ISR $ (n - mY/' + ml~8~exp[-(8 + ~YL1o] Irl1·olss Irpp Ipp(1 + 0£o), (3.13)

and

l(rlp)-lIRR s Ih~-3IaRk IRR(l + 8£3)· (3.14)

PROOF. It is easily shown that if G and H are any self adjoint transformation with G

positive and H nonnegative definite, the I(C + H)-l I $ IC-ll in the appropriate

strong operator norm. Thus

ID Iss $ I [(a~~l(r~.~rl(a~~)rllss

It is shown in the proof of Lemma 7 that

ITlpp Ipp $ 82Ir11.0Iss + 03maxIap;p; Iss

and also that

I(Tlpp + Spp )Lpp Ipp $ EO

where by Assumption 2, Eo<l. So by Lemma 2(a)

/T'O )-1 ",,-1 ""-1,,,,* (~[ ",,* ""-1],),,,,-1
\~ p.~ = L.pp - L.ppL.pp kJ - L.ppL.pp -rr .

,=0

where L;p = Tlpp + Spp. Thus

(a~~l(r~.~rla~~ = H1- H2C1HI
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where

H (0 )T~-l 0
1 = ap~ "'ppap~,

H2 = (a~~lLp~ ,

and

ee

Cl = L;p L[ - L;pLpfty .
r=O

It follows that

[(a~~l (r~.~rl(a~~)rl= HI
1 [I - H2GIH~HIl r' .

But it is easily seen that

IH21ps :::;m'j.maxlL.Pi~iIss

and that

ICdpp ~ [82 II'no Iss + 83maxI crPiPi Iss](1 + 8£0)'

Consequently

IH2GIH~H11Iss :::;E2

and by Assumption 3, ~< 1. So

1[(a~~l(r~.~rl(a~~)rllss:::;IHlllss(1 + 0c)'

where

HIl = [12 (L.pi1»r1 .

Inequality (3.12) now follows

Now

la*lsR:::; la~~lsR + Ir~p.~lpRI(r~·~)-llppla~~ISP.

But it is easily shown that la2~lsR = (n - m)'/. and that la~~lsp :::;m'': Furthermore,

in the proof of Lemma 7, it is shown that

l(r~.~)-llpp:::; lL.pj,lpp(l + of{) .

Finally, since the function x exp[-x] , x :2 0 has a unique maximal value at x :;::1,

Ir~p.~lpR = 11lRPIPR

~ o~exp[ - (0+~y~o] Irll·olss .
Inequality (3.13 ) obtains.

To complete the proof, observe that

(r~p.~rl = (rl~rl(l - Grl ,
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where

G = rEp.~cr~.~rl(rEp.~l crl~rl

so

IG IRR ~ I11RP IfiR ILp~ Ipp ISRk IRR.

But

I11RP IPR s O.0.exp[- (0 + .0.y.0.0]Irll·olss ,

ILp], Ipp = maxlLpi~i Iss ,

and

Isp], IRR s Ih,0. -3max I(JRi~i Iss .

Thus

IG IRR s £3

and

Icr~p'l3rllpR ~ 1/~-31(JRk IRR(1 + °E3) ,

which gives inequality (3.14). Inequalities (3.10) and (3.11) are immediate conse-

quences of Theorem 1 and the proof is complete. 11

We now summarize our results. Suppose the proposed first order Taylor approxi-

mation has been adopted together with the covariance approximation in equation (3.5)

and its extension described just above Theorem 10. Add assumptions 1, 2 and 3

together with the condition 8 ::;.0.0::; .0.where .0.0is the scaling parameter in the covari-

ance approximation ( see (3.5) ) and .0. is the smallest value of ItRi - 't I, i E Mg.
Then

IIJ3y - J3~llps s IIJ3y - J3pllps + IIJ3p - J3~llps + 11J3~- J3~llps,

and

Ir~.y - rg.ylss ~ Ir~.y - r~.p Iss + Ir!3'p - rg.p Iss + Irg.p - rg.ylss.

Uniform bounds for the first, second, and third terms, respectively, on the right hand

sides of each of these equations are obtained from Theorems 1, 8 and 9 .

4. DISCUSSION

The analysis of Section 3 leads to a modification of the Bayes linear smoother

proposed by Weerahandi and Zidek (1988; hereafter, WZ for simplicity). The residual

covariance of the data with respect to the parameter of inferential interest, J3 is given

locally by equation (3.5) and extended in the discussion following Theorem 9. The
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setting of Section 3 is more specialized than that of WZ who include any available

derivatives in their structural model for the data. On the other hand, their smoother is

restricted to the case of scalar valued processes.

To describe the modified Bayes linear smoother, suppose for expository simpli-

city, that

yet) is a scalar valued process. Where only continuity is assumed, WZ use the struc-

tural, yet) = 13 + E, where 13 = S(1:), E = E(t,1:), and E is the noise plus the

remainder from the zero-th order Taylor expansion of Set) about t = 1:.

The Taylor remainder would be small when r=t. Given data, Y = (Yl> ... 'yn),

where Yi = yeti)' and a prior distribution on 13, an estimator of ~ is easily obtained

once F Y-13 has been specified, if 13 and the vector of residuals, Ei, i = 1, .. - ,n are

uncorrelated as assumed by WZ.

Our analysis leads us to conclude that the F Y-13 of WZ, while appropriate in cer-

tain cases may be unsatisfactory in general since it does not incorporate the correlation

among the E, = ECti,1:), a potentially important component of the model when the vari-

ance of the noise is small. Our analysis points to an appropriate modification of F Y-13

and shows that the resulting Bayes linear estimator of ~ based on the data, P, in a

window about 1:, approximates well, every member of a large class of Bayes linear

estimators acting in the same window.

This last result supposes, however, that the prior distributions for members of this

class have the same value of r11-0, i.e. first term in the expansion of their TP-I3's,

where

r11-0 = E[S(1)(1:) - ulOS(1:)]2 ,

and UlO gives the best linear predictor of S(1)(1:) based on S (1:). In the case of a

weakly stationary S - process, r11-0 is just the variance of S(1)(1:); this will be zero if
and only if one believes the process is locally constant, in fact zero, at t = 1:. The

implication of this belief would then be that the residuals from the Taylor expansion

and hence the E, are uncorrelated (to first order). The implications of this observation

for our modification of the WZ smoother will be described precisely below. Qualita-

tively, it means that rp.~ is "small" intuitively speaking; so that the data corresponding

to the ti near 1: are heavily weighted in any of the Bayes linear smoothers sharing this

lack of first order correlation, as well as in the modified WZ approximant to these

smoothers; more remote data are not "pulled in" as they would be when the first order

correlation terms were nonzero.

When S is thought to have more than three derivatives, higher order terms in the

residual correlation structure can be obtained and these depend on high order analo-

gues of rll.O' These quantities appear to jointly index the "curviness" of S in some

way, but we do not fully understand their role even in the simple case under discus-

sion where S is scalar valued.
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To examine the modified WZ smoother in more detail we assume that the noise

process has constant variance so for all i, Lxixi = cr~ and that (JXiXi = (Jar for x = P, R (

see equation (3.5) and the discussion immediately following Theorem 9 for the defini-

tion of these objects). With these simplifications, it is readily shown that

/3? = ( (r8~)-1 + LWi rl( LWiYi ) (4.1)

which is a locally weighted moving average with weights which capture the effects of

the bandwidth or "window" parameter, crw2, the noise parameter, crR, and so on. To be

precise,

Wi = [1 - ~c~iexp(-I ~il/~)YAi.

where

~c = [~jexp(-I ~jl/~oYAj][Yll.o + LLlJexp(-21 Lljl/~)Ajlrl,

Aj = cr~ + 2crWlLlj1
3
,

Llj = tj - 't, and Llo> 0 is a parameter which is to be chosen by the analyst. A large

value of Llomeans that the correlation of the residuals from the Taylor remainder will

tend to persist over a broader range.

Observe that when rl1.0 = 0, ~c = 0 so that wi = Ail = (crR + 21Llil3cra,rl

which leads to a simple locally weighted moving average. This emphasizes the com-

parative complexity of the smoother when r 11.0;;j:. O.

In the extreme case, when crR is comparatively large, wi ::::cril If in addition,

prior ~owledge about /3 is vague and hence, (r8~)-1 = 0, then not surprisingly,

/3? = Y, the sample average. Here the WZ smoother is essentially the moving average.

At the other extreme, when crR = 0, noise is non existent. In this case, if «=t, for

some i , it is readily seen that /3? = Yi so that /3? switches from being a smoother to

being an interpolator as would be expected on intuitive grounds.

It is obvious that /3? shrinks toward 0 because the data were centered a priori. To

return to the natural origin, we should express this smoother

Aa *" *fJY = [m('t) - LWi m(tJ ] + k.Jwi Yi '

where wt = ( (r&~)-l + LWi r1Wi' It should be emphasized that the process mean

must have been specified, in any case.

The analysis in Section 3 shows that the modified WZ smoother approximates

well, each of the members of a class of Bayes linear smoothers when the observations

are sufficiently dense around the point at which smoothing is to be carried out. But

its potential merit to a Bayesian investigator can be assessed quite independently of

any merit which may be ascribed as a result of the analysis of Section 3. That is the

spirit in which the methods of Weerahandi and Zidek (1986, 1988) were proposed. If,

however, the observations are deemed to have been made on a continuous process,
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coherence dictates that this feature of the process be embraced as we have tried to do

here.

The assumption that the process is wide sense stationary with uncorrelated residu-

als has the dramatic implications shown in Lemma 5 and Theorem 7. All the meas-

urements may be discarded except the two (or one in the case of forecasting) made at

the times (time) adjacent to t may be discarded without any approximation error in

going from Y down to P. Moreover, the resulting Bayes linear smoother is very sim-

ple, in fact, that originally developed in classical time series. The first order spline is

obtained as a limiting case. There would seem to be no point to using the zeroth order

Taylor approximation in this case, but if one did, the local residual covariance struc-

ture would be a block diagonal matrix, the blocks corresponding to the ti's below and

above r; respectively. The elements in the diagonal blocks would be close to zero,

away the diagonal and the i-j th elements near the diagonal would be approximately a

constant multiple of min{1ti-tl ,I tj-tl } as is easily shown by expanding the elements

of the covariance transformation of the AR (1) process. We have not investigated the

quality of that approximation.

The obvious nonrobustness of the procedure derived from the AR (1) process in

the last paragraph to recording errors and model misspecification leads to the main

body of work in Section 3. If a continuous process is also differentiable, a possibility

which would be hard to rule out on the basis of a priori knowledge, then as the

analysis of Section 3 ( Lemma 5, in particular) shows, the local residuals from fitting

S(ti) to ~=S(t), for the ti's near t, are correlated and the Bayes linear smoother will

depend on more than merely the one or two measurements at points nearest t. The

results of Section 3 show that the proposed approximation will be good if the observa-

tion points, ti, near t are sufficiently dense and S is thrice differentiable or rather, if

the slightly stronger condition that r(3.3) be continuous holds. This justification for the

use of the approximation is analogous to that provided by large sample optimality for

the use of classical procedures in samples of moderate size. The hyperparameters

would need to be specified, to determine precisely how dense the observation points t,

would need to be. Usually the needed hyperparameter values would be difficult to

assess. In fact, if they could be determined, there would be no point to the proposed

approximation; the Bayes linear procedure itself would presumably be then available.

The point of the analysis is to show that for a fairly large class of Bayes linear

smoothers, our proposed procedure will serve as an approximation whose error dimin-

ishes in a precisely determined manner as the data's observation grow increasingly

dense.

A desirable feature of our approximation is that it is not fully automatic; it does

allow prior information about Set) at t=t to be incorporated and this would be very

important especially when the data are sparse. A fully automatic, so-called "objective"

procedure could be at a considerable disadvantage under these circumstances.
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By pasting together approximations for a~R.pR and a~pP we obtain an approxi-

mation, ~?,based on all of Y thereby eliminating the need, in practice, to decide what

of Y to put in each of P and R. But the distinction is fundamental importance in

establishing the asserted quality of /3~.

If S is supposed to be differentiable, say p times, then it would seem natural to

incorporate these derivatives into the approximation data regression model explicitly to

reduce the correlation in the residuals. This can be done directly if the values of

SV)(ti), j=l, ... ,n can be observed without noise for all i by taking yet) as

(S(O)(t), ... ,S(P)(t». The theory developed in this paper is sufficiently general to encom-

pass this case directly. Theorem 7 will apply if the newly defined Y is an AR (1) pro-

cess. Alternatively if for this new Y, r(3,3) is thought to exist, a zeroth order Taylor

approximation might be used instead.

Alternatively when S's derivatives cannot be observed, s». J=1...,p can neverthe-

less be incorporated through higher order Taylor expansions. This approach is taken by

Weerahandi and Zidek (1986, 1988, 1990) and will not be discussed further here.

Although the discrete case where the ti are equi-spaced is not discussed here, it

should be emphasized that the proposed approximation can be used there as well, pro-

vided that the process which generates the discrete data may be viewed as at least con-

tinuous.

The proposed method is, roughly speaking, a Bayesian counterpart to the locally

weighted method of Cleveland (1979) and a locally constant version of LOWESS

which is locally linear (although here the weights are fixed). It turn, locally weighted

regression methods are equivalent in a certain sense to kernel smoothing methods

(Muller, 1987). But unlike automatic methods such as the kernel and locally weighted

regression methods, the proposed procedure, does allow prior knowledge about ~~S Cc)

to be input very simply.

The context of Section 2 is much more general than that of Section 3 although,

the results presented in the former are regarded as technical preliminaries to those of

the latter. The extension involved in going from Section 3 to Section 2 is essentially

that recognized by Sacks and Ylvisaker (1978) which has given way to the study of

semi-parameter models (c.f. Heckman, 1988).

Section 2 presents two general approximations to Bayes linear procedures. The

effect of the first, which results from not collecting or discarding certain data, is stated

in Theorem 1 where the approximation error is specified. Since this error depends on

hyperparameters which could not usually be specified, this theorem is mainly descrip-

tive. It says that if a subvector, R, of the data vector, Y, is discarded so that only P is

left, the error will be "large" if the residuals, ~.p, and R·P are highly correlated. The

result is a precise index of what is usually an undefined product of an heuristic pro-

cess. The Theorem does lead to Theorems 2 and 6 which may assist and refine this



- 31 -

heuristic process since they yield ideal conditions under which there is no approxima-

tion error.

The second and more technical approximation of Section 2 and its application in

Section 3, derive from deliberate or accidental, misspecifications of the basic model

hyperparameters. Our bounds on the resulting inferential errors hold only for hyper-

parameter misspecification errors of small or moderate size as in Section 2. Nothing

can be said in general about the impact of gross errors which are ignored. The lowest

order terms in Lemma 3 reveal the sensitivity of the Bayes linear rule to misspecifica-

tions of the hyperparameters and these are given in Theorem 4. Furthermore, Theorem

5 gives upper bounds on the size of the errors in ~y and rs-r induced by moderate

misspecifications of hyperparameters like F~~.

As is well known, if the posterior distribution of ~ given Y were normal its poste-

rior mean, 1-l~1r- which is often taken to be the Bayes estimator of 13, is linear in Y;

and the posterior covariance, r~.y, is the matrix of residual errors of estimation. More-
over, under the hypothesized normal posterior distribution, this paper would yield

approximation error bounds for estimators of attributes derived from 1-l~1y and r~.y,
like quantiles in the univariate case. However, we have not investigated the normal

posterior in detail, partly because of our conviction that it will seldom obtain in prac-

tice because of uncertainty about parameters in the normal covariance which must be

"marginalized out" to obtain the posterior distribution of f3 given Y. This marginal dis-
tribution, on which the analysis of this paper is based, will not typically be normal and

the Bayes estimator of f3 will not then be linear in Y. In this paper we investigate

Bayes linear estimators even though may not be globally Bayesian, because of their

simplicity and consequent general appeal.

It should be emphasized that the topology on which our analysis are based gives

rise to an extremely severe test of the modification of the WZ procedure in that con-

vergence of point estimators to be uniform in a certain sense. This seems desirable in

some respects and the topology is convenient in that it allows us to treat the conver-

gence of operators and point estimators simultaneously. But extremely strong require-

ments must be met in order to obtain the conclusions of our theorems giving bounds

on the errors of approximation. This can be seen very clearly in Theorem 10 where

the conditions essentially demand that R and P must be well separated to insure that

the bounds obtain ( alternately, (jRR must be extremely large). In future work, the

effect of choosing weaker topologies will be explored.

5. SIMULATION

To obtain a numerical assessment of the performance of the WZ approximation

and the exact Bayes linear estimator we have carried out a limited simulation study

with a particular scalar valued process. For simplicity, suppose
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S(t)=etZ _e(02t
2
Y2

is observed at t = (t i- ... ,tn) with normally distributed noise

NCt) - N(O,cr2) ,

(5.1)

(5.2)

for all t. Suppose Z - N (0,82) so that the process has zero mean. It follows from the

moment generating function of the normal distribution that

COV(ti,tj) = eo
2
(t?+t/Y2 [eo2titj - 1] . (5.3)

The observed process is yet) = Set) + Net). For the purpose of the simulation all the

parameters of these processes are specified below.

Let 't be a point of inference. The objective of the simulation is to observe how

the exact Bayes linear estimator and the WZ approximation converge to the true value

of ~=S C't) as the density of sampling points around 't increases. The exact Bayes linear

estimator given by (1.3) can be computed as

~y = r~s(rss+ a2/nrly ,

where Y = (Y(t1), ... ,YCtn», S = (S(t1), ... ,SCtn», and the covariance matrices are

computed using (5.3). The WZ approximation ~?can be easily computed using (4.1).

Since 8 is a scale parameter for t, it was fixed at 1. A reasonably dispersed sam-

ple of the S process is obtained by first generating 10 equally spaced values over the

[0,1] interval. The points of inference, 't, were chosen to be .25, .50 and 1.05. The

density of data points around 't=.25 is increased in two steps by doubling n twice; the

density of sampling points around .50 and 1.05 were not increased to enable us to see

how the increased density at a remote sampling point can affect the WZ smoother.

Specifically, the S process was generated at

t1=(.1,.2, ...,1.0), t2=t1U[.2+(t(1O)], and

t3=t2U[·21+(t(1O)]U[.22+(t(1O)] ,

respectively. A large noise generated from (5.2) with a=0.25 is added to each of the

unobservable S values. Shown in Table 1 is a particular set of data generated when

n=10 and Z=-.88. Notice that the noise is large enough to mask the monotonicity in S

values.

-- PLACE TABLE 1 ABOUT HERE--
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For each value of tthe simulation is repeated with five Z values, namely with

Z=-.88,.80,-.29,-.43, and 1.14 generated from the N(O,I) distribution. The values of

P('t) for these values of Z and for 't=.25, .5 and 1.05 are shown in Table 2. Shown in

the same table are the exact Bayes linear estimates, ~y, and the WZ approximation,

j3~; in computing the latter using (4.1), ~ and <Jw were each set at .5. The values of

11LIT sr 112=(r ~.y - r8.y)2 are also displayed for each value of 't and t, where

r~.yand r8.y serve to measure the reliability of the exact Bayes linear estimator and

the WZ approximation respectively.

-- PLACE TABLE 2 ABOUT HERE --

It can be observed that the exact Bayes linear estimator performs fairly well even

for sample sizes as small as 10. Of course in this simulation study, for the purpose of

obtaining insight of what is happening, we have assumed all the parameters of the

underlying processes to be known. In practical applications this will not really be the

case and therefore additional stages of the hierarchical Bayesian specifications will be

required. Notice that because most of the points are remote from 't=1.05, the relative

accuracy of the WZ approximation is least at this point of inference. When the density

of data around 't=.25 is increased both the exact Bayes linear estimator and the WZ

approximation tend to improve and converge towards the true value P(.25). The exact

Bayes linear estimate at 't=1.05 is almost unaffected by increased density around

't=.25. On the other hand, the increased density of remote sampling points has the

expected adverse effect on the approximation P~ for ~(1.05). These effects are also

reflected in 11LIT~. y 112. At the point 't=.25 this quantity is dramatically reduced

almost by ten fold at each doubling of the sample size.
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t 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 I
S(t) -0.09 -0.18 -0.28 -0.38 -0.49 -0.61 -0.74 -0.88 -1.04 -1.23 I
N(t) 0.33 -0.22 -0.48 0.09 0.01 0.03 -0.74 0.17 0.02 -0.20 !

Y(t) 0.24 -0.40 -0.76 -0.29 I -0.48 -0.58 -1.48 -1.05 -1.02 -1.43 :

TABLE 1: Ob d Val f S Noise N. and Y=S+ N



TABLE 2

Approximate (SS) and Exact (Sv) Baves Linear Estimates with t=t1

T=.25 7=.50 7= 1.05

II6.f B'Y 112= .00040 II6.f B'Y 112= .000012 11 6.fB'Y 112= .029

Z ~('i) ~y ~~ ~(T) ~y ~~ ~(T) ~y ~~

-.88 -0.23 -0.15 -0.46 -0.49 -0.36 -0.51 -1.34 -1.36 -0.61

0.80 0.19 0.13 0.37 0.36 0.28 0.39 0.59 0.71 OA3

-.29 -0.10 -0.10 -0.33 -0.27 -0.25 -0.36 -1.00 -1.02 -0.44

-A3 -0.13 -0.12 -0.35 -0.33 -0.29 -OAO -1.10 -1.15 -OA9

1.14 0.30 0.22 0.64 0.64 0.50 0.70 1.58 1.79 0.83

Approximate (SS) and Exact (~Y) Bayes Linear Estimates with t=t?

7=.25 7=.50 I T= 1.05 I

IILlf B'Y 112= .000047 II~fr~.y112= .000018 1 1Llf1iY 112= .032

Z ~(T) ~Y ~~ ~(7) ~Y ~~ '~(T) ~y ~~

-.88 -0.23 -0.17 -0.33 -OA9 -0.39 -0.37 -1.34 -1.34 -OA6

0.80 0.19 0.14 0.26 0.36 0.29 0.27 0.59 0.70 0.32

-.29 -0.10 -0.10 -0.20 -0.27 -0.25 -0.23 -1.00 -1.03 -0.30

-A3 -0.13 -0.11 -0.21 -0.33 -0.27 -0.24 -1.10 -1.16 -0.32

1.14 0.30 0.24 OA7 0.64 0.54 0.51 1.58 1.76 0.62

Approximate (SS) and Exact (Sv) Baves Linear Estimates with t= t-,

T=.25 -:-=.50 I T= 1.05
I

II~r BY 112= .0000056 I II~r)y 112= .000024 I 11.:i rB.Y 112 = .034
Z ~(T) ~y ~$ ~(7) [)y ~$ I ~(T) ~Y ~$
-.88 -0.23 -0.20 -0.29 -OA9 -OA3 -0.31 I -1.34 -1.32

-~:~~ I0.80 0.19 0.14 0.21 0.36 0.29 0.22 I 0.59 0.70

-.29 -0.10 -0.10 -0.16 -0.27 -0.25 -0.17 -1.00 -1.03 -0.22 I
-.43 -0.13 -0.11 -0.16 -0.33 -0.27 -0. 17 ! - 1.10 -1.17 -0.23 I
1.14 0.30 0.26 0.39 0.64 0.57 OA2 I 1.58 1.74 0.491
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