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L INTRODUCTION

A problem of predictive inference for maltiple time series is the sobject of this
paper. The proposed solution uses an extessxom of the method of Weemhandi and
Zidek (1988, hercafier WZ), described by Cleveland and Desvlin (1988) as a Bayesisn
version of locally weighted regression, A preliminary version of this paper is con-
tained in Weerahaadl and Zidek (1986),

The context of our work is that in which data aro obained from each of a set of
sample paths, like growth curves for example. The observables are in a panitosed
data column wector, ¥ = (Y[ < - YI7 with ¥, : mxt = (¥i(n,) - - - Xolny), for
i=1,- -m. Itis supposed hat ¥ =5 + N, where S and N are paruzionad i con-
formation with Y. The uncorrelaed cocedinates of N represent nolse; they have mesn
zero and 2 conumon vanasce, Oi. Asd 5, = (S(0q), - -~ Si{2e)) where Si(r) is Pel
times differeatiable in guadratic mean.

An object of particalar tmeerest Is
p:-l - (Snd('ad)' sfh’l“ﬂol)- e -sl?o'x“qd» where Snol fepresents a pouibly as
yet unsampled peocess and £ ., 4 possibly as yet unused sample poset, Bracketod
seperscripts denote Ly derivatives of the process and p < /. More genenlly, the
object of inferential imterest may be = (B - B B,/ . where B, is defined for
allfasinghecase f wam # 1.

As is well known, the optimal linear, that is, Bayes lincar procodure with respect
o & quadratic loss function is

By = EP + ag(Y - EY) (L1

where in general, for any two mmdoos vecwes U and V, gy = [y, 2ad
Fyy = E(U = EUNV - EV)T. The reliability of By is specified by Iyy where, in
penenal, for any two raadom vestors, U aad V. UV = U < [EU + ag(V - EV)] and
Fyy = E(U-VRU-VY. It is also well knows thar a Bayes linear peocedure ks Bayes
when ¥ and § have 3 joint Gaussian distribotion.  But even when the Gaussian diseri-
bution does not obtain, lacar procedures are commonly used as they are here because
of thelr simplicicy.

[a spite of Seir relative simplicity, the global modeling roguired to specify these
procedures can be very demanding A first siep towards the development of such 2
model, which may simplify reassoning by czabling #ts hicrarchical specification, begins
with the lisear model,

YEY«AB-ERE, (1.2}

where A = Gty and £ is independent of B By comstruction, £ has mean zct0 and a
covarfance marrix gives by C = [y p. Madel (1.2) yiekls

FyysCoAlpA” (L.3)



.z.

and
Faymlgpn?, (1.4)

From equations (1.3) aad (1.4), an expression for gy s readily found. A well known
aliernative expression i

agr=lgyA’C"", {L5)

where
Fpr=(TjeATC A (1.6)

Even with the help of the model (1.2) the task of specifyiag the glohal prior dis-
tribution may be substantial. And it may not Be secossary. [If the sampling points
arcund the point of interess. r=1, are of sufficiently high demsity and a semi-Markow-
like propeny defised precisely in Section 2 is believed 1o hold, then the data outside a
window located at =% would be relatvely unimportant. Sometimes the data outside
such 2 window are excluded (cf. Muller, 1987), usually on heuristic grounds, we
believe.

Here the implication of exchading the data outside aa appropeiate dasa window i
thas the elicitation of pricr information can be reatricied 10 that comceming just certain
local rather than global parameters. These will be defined precisely in Section 2.

Excluding data as described above scems desirable where permissible not only
because this simplifies the rask of price modeling, but also because this iacreases e
procedure’s robustness, It avoids Bhe risk and possible comsequences of misspecifying
the giobal madel, say by making 3 comvesien! choice from the time serics Catalogee,
with s preponderance weakly stationary madels. And it avoids the potential negative
inmpact of crrors i those data which cossribute listle 10 the optimal procedure anyway.

To comsaruct a “local” model, sappose remote data have already been excloded so
2at the coondinates of ¥ are just the dama for which & ey <t e semall Tayloe's
theorem implies that

Y =Ap+ £° (.M

where A” Is an approximarion 10 A defined in the next section; £ Inclodes the Taylor
remainders, has expected valve yero, &5 spprocimanely unccerelsied with b, and has a
covasiance manrix, CO which would be expected W be small in sagnitude. Tt will be
argoed on largely heuristic grounds that eguations (1.2} and (1.7) are approximately
equivalent under sultable regularity conditions. Zidek and Weerahan®i (1990) go
further in a special case and rigorously derive bounds 0n Ihe IPprovimation erroes
involved ia substiteting (1.7) for (1.2) when the range of the cooedinates of ¥ is an
arbizrary finise dimensional inner product space, p=0, and P22, In any case, the resuls
is 2 Bayes linear provedase wiich may be viewed as aa approxisation o the “wue”
Bayes limear procedure, which would be obeained by specifying completely the a peoni
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mode! for the processes involved. Likewise, an approximation, ;. is obeined for
Tar The Ratter iy an impoctane object ia tat it ladicases the unceruinty in the Bayes
linear rule.

Waen ¥ and B have a joim Gausssian disibution, cur approximatioas yield an
appraximase posterior Eaributicn for B and heace B ;. This may in tum be ssed 10
find attributes of interest for i such as credibility regions.

The problem of specifying the local price distribution for P is discassed in Sec-
tion 2, a8 is that of specifviag the covariance Byperparameters.

Our interest in the problem addressed im this paper derived from discussions with
Dr Ned Glick in 1978 when a very preliminary version of the approximation givea in
WZ was formulated. The peactical prodlem addressed in those discussions was predic-
tive infereace for a future c2d in & cermain growth curve study where there was just
one datum from each of a raadom sample of children. The problem &8 different from
that of classical time series analysis where 2 sumber of ofien oqually spaced values are
obaalned from a single sample path, although the latter is a special case of the general
shuacion considered heve,

The example preseatad in Section 4 also derives from a growth curve staly but
here there are several valoes from each child™s growsh curve and these are taken at the
same equally spaced values for all the chikdren, Owr results are in ¢lose agreement
with those obtained by Fearn (1975) by a different Bayvesian amalysis

2. APPROXIMATE BAYES LINEAR PROCEDURES

s this section, the madel in equatioa (1.7) will be derived @ an explicit form
from (1.2). In this derivation, U = 0,(8) will mean | U/8 has bowsded expectation
for asy 8>0 wihen U any random vecter . An analogous messing is assipeed to
w = O(5) when u is not a random object.

Let us adopt the following notatice:
oy = Ai/r! ,r=Q\..P .
a; = (G4 . .- ), and (2.1)
By =S/0) . w0l P,
BowBo....0) . i=12. . mel,

B=@l.....8h0" .
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By the assumpnions of Scction 1 and Tayloe's theorem

r
Sy = Tapd, o ,0a N (22)
ol
Thus
P
ES; = TaykR, + 0,08 )
rad)
and hence

A
S = Sy - ESy
P
- Eo“’” y + 0,08 1)

where 5,3 B, <ED, froms which it follows wat f, = §7\x).
A straight forward calcalazion now gives

F
ag b= Taph, + T apay,Beo,0af 3
reld} rogel
and
'
ESypy= ¥ a E@, P+ 0,04 "), (24)
rogel
Coenbining equations (2.3) and (2.4) yiekds
r
S = $a,B,+ T a,B B+ 0,080, 2.5)
ro0 repel
where, in genenl, U(V) = E(U) + agp(V ~ E(V)). Relavoking equation (2.2) gives
»
SyB= X a B, Bro,0u]", (26)
rope

Since by definition, S;; = S,(B) + 5§, P, a fundamental decomposition is obtalned:
» ’
Sy=Sau B+ T auB B+ T a,BH+00afh. @
i

repel repel
By combiniag B¢ second and thisd 1enns In eguation (2.7), equation (2.2) is obtaineds
the latier is the basis on which Weerabandi and Zidek (1986) build their Bayes lincar
inferential procedure.

In this paper we share with Zidek sad Weerahandi (1990) the goal of finding 3
single model which approximates those described by equation (1.2) in the sease that it
yickls a local spproximation % cach member of B¢ class of Bayes linear procedures
which arc implied by (1.2). We therefore use the decomposition in (2.7) to suggest an
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sppeoximation w the mode] in equation (1.2). In particular o oeder p, the approxima-
tion A 50 A, Bay i</ th row defined by

A:’.‘U“ .
Equation (2.7) yields an estimate of the error in this approximation:

r
Ay =ADB= X ayofPp .
ropsl

An analogous approximation, C? for C, is obtained below along with an estimane
of the error in the approximation. Zidek and Weerahands (199%)) use these estimases of
the errors in the approxisations 10 A aad C %0 determine bounds oa the approximation
errors indeced in [y and Fyy but we will sot seck such bounds here.

From equation (2.6) we obuin,
p- p
NSy PSuPl = T T apanli™+ 008" 4a™) . a8

rapelrnpel

for all (g &, where I{"P w [y 44 4 & the cesidual covartance besween 57 \1) aad
SPN%) when the linear offect of f§ Bave beea factored out. Assume like Weerahandi
and Zidek (1988,1990) In the special cases they weat, FE2p+2. Then w the arder of
the lizear model for § based ca P, the square root of the absolute value of the quantiry
in (2.5) is zero Jocally the Taylor expassion has removed all vasiation and covasiation
in the S-processes. This was the beurintic basis for the madel proposed in 2 spevial
cases treased by Weerahandi and Zidek( 1986, 1985),

But a global spproximant 10 the quastity in (2.8) is rogeired which will yield a
locally weighted prodictive procedure and at the same time peeserve its losal chasacter.
In Weerahandi and Zidek (1986 1988), the approximant was chosen to be a diagonal
matix for simplicity. However ks Zidek and Weersbandi (1990) where pod), the
locally dominast term on e right dand side of ogquation (2.4) is retained 0 capture
the residual covasiance strecture (and emable Bounds on approximation erors © be
found). This serm will also be retained bere,

et the approximation 10 C e given by
Clian = Zgan * Ngany * Sty » Q9
where Lm0 waless imk and j=l when L, the variance of the noisc in ¥i(r,) is
positive. Funhemoce
Mywan * Sy, rgciet®
where

af g ajanira
%wl - W '3 ' (110’
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Canany = 1861 PN 41 @210 8,1 41 8 000 (2.11)
where the a, .y, must be selected 10 assure positive definiteness of the resalting
approximant; (O yy)) could, ia particular, be a dugonal matnx.

The approximation in equation (2.9) is meant 1o replace the higher order terms in
(2.5) cn the coe hand and at the same time insure by making Oy, sufficieady
large, that valoes of ¥i(r,) for which 14,1 is large are “windowed o™, This keads
the approximate model in equation (1.7), sobject 20 the selection of the covaniance
hyperparamesers in equaton (2.9),

The more rigorous approach of Zidek and Weerahands (1990) would entail parti-
ticalag ¥ &s (PT RT)T where P Is the vector of data values in a window at #=%. The
general results of Secticn 2 of Zidek and Weeradandl (1990) couldd now be applied.
The ecror, [by—Pp. is (ibid, Theorem 1)

Tar o Uik 2.12)
where [ppp = Fgp = Tpalphlap and I p s defined in the Imtroducticn. It can be
shown that the R w £ correlagion strucvere can be recovered from [y g the result is

Tpaalale = D&’ Mg py + " 0T (2.13)
where
a” - gy ~ Oy
oaps = Tar i .
] R N 8
and

D = (15} + alolpatipl™
The expression in (2.13) is esefal & obuaining emor bounds for the approxiznation

10 By given by equation (1.7).
[a any case, redection 1 P from Y can only de Jaswified if it is believed thae

HBr=Be V118 1) (2.14)

is small. This is a generalized semi-Markov propeny. For an AR(1) process (c.f. Zidek
aad Weerahand! (1990)), the error will be 2ero when P coasists of just data poings oa
either side of 1ot Of course, the emor in (2.14) seed not be evaluated as loeg as it is
belscved %0 be small and this is the heuristic, presemably, which underlies all methods
which wse data windows. Of counse, the validity of the appeoximation of Bp by %
derived from equation (1.7) will obtains under the rogularity comditions given bere,
Bot unlcss the geseralizad semi Markov condition holds, valuable informaton in the
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data points reenote from the point ar which inference &= being made, = T, may be
lost

To rigocously Jusilfy the model in equation (1.7) entails showing the emor in
(zll)hmumb,wb,muﬂmdbymhwmﬁumiwmﬁo’
wd B%. Zidek and Weerahandi (1990) address this issue (when pl). It is plausidie
that this emror will be small in the present context when ., in equtica (2.11) is
sufficieacly large.

In summary, the analysis of Bds section Bas lead ox 20 the lisear model cn ogua-
tion (1.7). where the if th row of A” is given by

Al‘” - 0.‘;35

for all B, where £7 is uncorrelated with B, and where €% = I'™* is desermined by
oguation (29). This in turn keads to an appeoximate Bayes lincar procedure. It should
be emphasizad that in this section we are assuming the covarlance hyperparametess
have been specified. We address ihe prodlem of specifying them in the next section
where we give s pasticulss implementation of our propoded approximation,

L EXCHANGEABLE GAUSSIAN PROCESS

In this section a special case of the model in equation (1.7) will be investgated
and a further appeoximation to the residual covariance muarrix inwroduced. Foe shergli-
city, the subscripe, “0°, mposed In Sections 1 and 2 on A and C 10 denote thelr
approcismatsons, will be suppressed.

The problem of specifyiag 0, the vector of covariance hyperparameters, will be
addressed below, but suppose for now & has been specified. Asaurme the S, ‘s and the
noise processes are Gaussian, that the noise is homoscedastic and that the §; s are
exchasgeable. To be grecise, we suppose that is equation (29) X,y = ¢ of 0
accoeding as i=k and j=/ o not, and Oy, = OF or 0 according as i=t and J={ or
oo, Furthermoee 117719 has 2 common value, say 1y, foe all pairs, ik and like-
wise PP+ 0wy for all {, Assume 1y = o = 0, 38 assumption which is justified
wnder reasonable conditions indicated in the Appeadix. Finally suppose that condi-
tional on ¥,

Bt 7‘?’”@»‘ YA

in the spant of Lindley and Sosgh (1972, herealter 1S). Indeed, if ¥ is supposed w
have a waiform (improper) prior distribution, the results of LS show that

BYB =~ Nl Do . Dy) G0



where i the sotaticn of LS
D' =AICT'A, + €5 = O ATICT A ALCS!
o
dy=AlCy'Y .
To tGaslate these results in the preset comext, st Cy=C, A=A,
ComDiag(A, - - Al Agw - 1), an (e )(pelopel) mamix with / denot-
ing the (p+1)x(p+1) ideatity matrix.
It is stradghaforward 10 show that
AlCT Ay = (m+1N
Thas
C3'AAICT'ATALCS = (maly A A7 AT
The assumpGons made above in this section entail

C =a’ + oj0
where
D = Diag{D;. - -~ DL}
and
D, -Dqu(lA“l:"". o4 Jk'b.’) -
Now

D;' = e = (m+l)"AATAL
where ¢ = Diag{ey ** , €gmeny)s & =i + A w; = afc7%a; or 0 accoeding 25 ¢ Zm
o i=m+l, ;=0 +0fD, i=1,.m and g i=1 " m is the nxip+l)
matrix whase j-throw Sy  Jmlooo e dTml o om, Bat i,

ay = (age, ‘1 0p).

withay, »Al/riforr =0, .p, Infact, g =1, misasubmatrix of A (A in
the last section) defined just below equation (2.7) with A = (Diag{a, - -, a0,

We note im passing that when, as in the mext section, the n; are identical, and the
cbservations for cach process ¥, are mkes & the sune time points, thea the g, are
identical as are the ¢;'s. Sothe v, ¢ = 1, - -+ m are identical In thés case,

From the well known matrix equation (see LS).
(= + vT")-l - ~°3 - .-l,r(,-l + W-’Vt)-‘u.'.

Dy=et we A fiale?,

"~
where F w AYF A snd Fomv o A,
in}
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Of panicular interest is the marginal posterior distribution of [, which ©
easily deduced from eguation (3.1). Itis

&po"’ re~ Nodﬂh.-dﬁ :(-ol)) ' (3-2)
where

-~

Ly ®A e l’Z’F‘"l" '

B(..ol) - IZF."I"EF."E '
and f; = (@] "'a,) M afc'¥,). In other words, B,,;, & a weighud average of e
bocal Jeast sguares estimatoes of & P, When ¢ F.'s arc ogual a3 they ame in the
next section, the weights are ideatically equal so Vm. The distribution in (3.2} serves
as 2 basls for inference about P, If the covariance hyperparamesers have been speci.
fied. However, in practice these parameters will aoe usually be specified a1 this fimt
stage of hierarchical modeling so0 we tum briefly to the issve underlying these coa-
siderations,

The vaniance of the noise process {in the homoscedastic case) is a global covari-
ance hypesparameter unlike the other paramesers in our approximate model which are
kocal, Our theary Is deficient in Bar it Soes sot deal adoguately with global meoded
paramesers, inference abowt which shoedd be bused ca all the datr  [=s2ead for all
approxisalely lincar madels ( in the sease of Sacks and Yivisaker, 1979), inferesce in
both repeated sampling contexts like that of Sacks and Yivisaker and Bayesian con-
texts ( see Zidek and Weerahands, 1990) will rely primarily on the data for which the
cosendeticn from the local model & small, Here 25 means, the data i 2 window at
% To deal with the complex issuc of estimaling the global components of approxi-
mately lincar models, entails simultancous inferesce across all © A model like that
underlying e theory of splines for example, (c.f. Wahba, 1982) would be needed. It
shoold be emphasized however, that ?he priors for splines aze highly specialized and
we believe they are insufficieatly flexhle as o adeguately represent a reasawable spec-
treen of prior opinios,

The scemingly natural approach 1o dealiag with the remaining covarfance hyper-
paramseters (soe oguation (3.1)) entails putting a dissridution on of and A, And pro-
vided that the conditonal expectations of the S processes given these paramciers does
et depend on them, then Bhis may be done. That is, it does not manier whether the
approximation siep = poing from equation (1.2) to (1.7) is camied cut before or after
“masginalizing owt” these covariance hyperparameters. However, it Is not clear how
well the margisal distribution froos (1.2) woeld be approximnated by that from it
simpler relative, (1.7). Clearly the Geussian madel of Section 3 will be Jost clther way.
For practical reasons, it is semptng o adopt the simple madel i (1.7) as we Jo hers,
But this matier deserves further kavestigasion.
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The determinacon of the margisal posterior distribazion of 8 s straightforward,
The result is

X Y) = KICI YA A A D Vexp{-12 YT G-'Y) () (33)

where X i the sommalization constant whose cxact value is unsccessary for our pur-
poses, G = C*} = C'ADATC " and 2(8) is the prior deasity of @ .

By combéning (3.2) and (33), the joim distribution of f .., and @ is obtained
and froe this in tem the marginal dsaridacion of B, We will not discuss in gen-
eral, the problem of desermining the prior distibution of 8. But in the next section we
will make a particular choice for the example coasidered there.

4. APPLICATION TO GROWTH CURVE ANALYSIS.

In this section the approximase model developed in Sections 2 and 3 is applied 10
data used by Grizzle aad Allen (1969) in their frequency theory analysis and Feamn
(1975) In his Bayesiza asalysis of growth curves. These dama coasist of the Ramas
heiehts o men). of 20 bovs ot 8, 8 12, 9 and 9 172 yveans of age. The data were col-
lostos w establinh 3 normal growth curve foe e uie of cathodontists,

The example Is a challenging coe chosen %0 bring out strengths and weaknesses
of our proposed method. As we will argoe below, s use seems bsappropeisse here
given the assumptions we have made & its developmest. And Feam's ssalysis sug-
posts the regression cuwrve of Ramus height on age is very well approximated by a
parametric (in face, lincar) model w0 cur notparametnic sppeoach scems gnrealistic
from the outset. Nevertheless, surprisingly pood agreement with Fearn's results will be
cbained.

Figure 1 depicts the dam aloag with the results of our analysis.  From 2 superfi.
cial examination, the inter-sampliag points seem large while our theoey is designed for
data which e clussered asvund the point of inference. But sasrpling ivensity is a
relative concepe and must be measored against the inherent variability of the process.
$o our lmenedixe reaction w Figere | may be premature. Indeed, we do not yet know
how 10 assess the adoguacy of sampling intensity, There does not seem 10 be 2 gea-
erally satisfactory way of addressing this issoc cven though it underlies discrete time
series analysls which always coocerns itsel, implicitly at least, with samples from
underlying continuous e processes.

The number of derivatives 80 include & the model of ogeation (1.7) is somewhat
arbitrary, although in some situations there may be physical models which dicrate a
usefial wpper bound.  For example, if the underlying S,'s were Brownian paths, thes of
necessity p woeld be zero. However, in this case the condition i the Sectioa 2 tha
P>2p+2 would be violated; the justification given in Section 2 for using our method
would be losz, although the mechod could still be applied and may evea be justified on
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ocher growsds.

Denvanves must be included in oquation (1.7) when inferonce about them i
required.  First derivatives, for example, might well be of interest as indioators of Jocal
weads. Now if the values of the process over a neighborbood at £#4,,, were simul-
uncously estimarted these derivatives coedd simply be calculazed. But our method
does moe permil simulancous inference. Moreover, the jolnt distribution of the deriva-
tives and values of the process, if required, would not be given by this approach.

As we have formuolazed the growth curve problem, estimsates of the process
desivatives are mot required, and @i leads us 1o choose p=,.  We belicve the underly-
ing growth processes to be Quite smooth, at Jeast Shrice differential, so that we can
view our iaferential peocedares as approximating $he Bayes lncar procedures which
would obezxin from kmposiag 2 global stochastic model on the waderlying peocesses.

In peseral, there is & seoond potential reasca for including derivatives in e
model of equation (1.2). This is the need to bring in available prior knowledge about
these derivatives which would otherwise be lost in the approximation of the residual
covariasce. In the preseat exampie, for isssance, $he growth funciions mus: have noa-
regative derivatives and we should have incloded this knowledge through an appropei.
ate proor distribution, Siace we have chosen pol), pandy for ssmplicity and partly &
keeping with our desire 10 challenge the proposed mcthod sader less than &5eal condi-
toes of implementation, our analysis ¢an undoubiedly be improved spon. A more
realistic approach 10 growth curve analysis is Bhe salject of current waork,

Let us make the realistic cholce in this situation of ¢ =0, even though this
asaumnption of 20 sokse causes us %0 violate the assumption which helps o jusGly the
approcimation of Section 3. It is reavsurisg ©at nonctheless onr amilysis leads w0
resalts which are in good agrecment with those of Fears (1976),

To specify the jolat posterior density fanction given in (3.3) we need 1o specify a
prior distribution for 8. It is convenlest %0 Jot @ = 03°A. Our lack of knowledge
about @ suggests adopting a vague prioe distribution %o describe our wacertainty about
it Because of the complicated ssructare of the covariance, we choose the Jefirey's
price computed by Weerzhandi and Zidek (1986) to give an operational interpretation
of the notica of "vague™. But we recognize there &5 soene arbiomriness about this
choice, which has the improper deasity fusction, O3 % (W), with respect 0 dojde,
where ®,(00) = (1 + &) and v denotes the common value of v, = af¢'a; in this
special case (see Weerahandi and Zidek, ibid).

We may factor af oet of & semnber of objects like Dj and leave behind & factor
which depends on @ ocaly through e It will be useful 10 desigaare soch resulring foc.
wors with a sisgle aserisk.  Thus, Do=cfD; for exampl, whee
Dy w (") ¢ (" V'ALF Y 'AL" Y, € = Diagle]..timiny) & = + 07" and
v, =alDa,.
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With the help of this new notation, we have, after incoeporatisg e of froem the
change of vasiables, dA ~ gjdm,

T Pimet 0.0F V) = KF(00) (0F) ™ P Rexpl~<0°T" v2] (4.1)

where F(m) = % (6)(E 1) 20 2D X0 1) = wel)arm + (")), whea v*

uu«d»mmmemmdm\'s.

& (Bimet) = Bmet) m..,g-’ +¥YTD3Y, and it will be recalled that here

n...,,-n '3H, while D; =D = DIAT(DHAD!. By inmwgrasing cut of from

equation (4.1) we dadwce that

Bimet) = Bimen) LY =~ @2

mael)

and is distributed independently of o with demasty
w(el ¥) = RF(@XYTDY) 2, (4.3)

where K is the nommalization constant, n = Y, 4, Is the Smudeae’s t diszribution
with a=1 degrees of freedom aad O,y = ( Ly Y*O¥AR-1) 2. The inferences
00 Pty Can be based on (4.2) and (4,3) as Wlustrated below,

Numerical Dlustration

Retaming 10 the specific applicatsos on Ranus heights of male children described
in the first paragraph of this section, we now illustrate how the foregoing theory <an
be used 1o carty owt inferences on the Rumus beight, say M=l ,,. of a representative
¢hidd who may oc may not have been sampled yet. In Figure 1, the Ramus height data
of cach boy are plotted agninst his apes at the tenes the heights were measured; the
data polaes of the X0 boys are labeled A, B.... and T

Shown in the same figure e the estimated values of the mean growth curve,
H(=30,(¥20 and the 95% point-wise cstimated Baycsian crodibility band of H(2).
In extimating the mean growth curve, (4., 1) wis competed for a range of valoes of
t. .1y using the formula given in equation (3.2 The 95% polar-wise credibility
band for /{ was also obtained by varying #=f..,,, wsing (4.2) &a conjunction with the
posterioe distribetion of @ given by (4.3) and the vague prioe for & described above,
The asalysis cotails solving, for exch ¢ with the Belp of numerical integration, the
appropriate oguation to determine the 97.5 th percentile of the Student’s 1 distribution
with 79 degrees of freadom, but this &s staightforward. The details may be found =
Weershandi and Zidek (1986),

It is of interest that, although we have not assumed 2 parametric maodel, the
estmated nommal growth curve of Ramus beights was found o be slightlly concave but
almos: Nnear over the sampled range of ages. Heace the mwodel assumed by Feam
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(1975) secens seasonadie; the fnderenmt technical difficaltios of his approsch make she
comssruction of Bayesias credibility istervals exceedingly @ifficslt. An advastage of
our nonparametsic approsch lies in its capability 10 Bandle even highly sonlincar
growth curves such as those treated by Berkey (1932) withowt scoding w0 ientify
appropriate parametric models.

5. CONCLUDING REMARKS.

Bayesians have not contriduted 1w the theory of sceparametsic regression sad
umooding for contitmous paraneicr processes %0 anything like the same degree as fre-
queatists. This remark ignores the cxicnsive Bleratire oo e classical theory of tme
stationary time series and Kriging bodh of which, it could well be argoed, oaly have
meaning la a Bavesian framework, However, neither & usually considered a Bayesian
theary, A paper much more in e characier of this onc is that of O"Hagen (1979) but
unlike O'Hagen, we xe oot concerned with adaptive modeling and our focus is con-
cormed with the implications of local smoothness for infereace at a fixed poist. The
recent maseseript of O'Hagen (1989) oo numerical geadrature as well as that of
Angers and Delampady (1990) cn smoothing entail Bayessan approaches %o continposs
parumeter processes, although the approaches taken are guite different 1o thar of this
paper, Lack of space prevents us from giving a detailed survey; instead we refer the
inerested reader to the recent review of Sacks, Welch, Mitchell. and Wynn (1989,

There i an imemense and rapilly growing list of repeated saenpling school const-
buticas to e literature of smoothing and ncaparametric regression. Recently some
work has been pablished ca the wwpic of this paper, smoothing for enultiple time series,
References may be found i the forthooming pager of Fraiman and Iribarren (1951)
who mix a nonrandom population mean function with random sample pachs for indivi-
duals, ( = 1, which deviate from the population mean function by a zero mean,
awcorrelaed stochastic processes,  Inference is simultascously abowt ihe population
mean function and its first derivative, as both the number of individuals, m and the
member of data per individual , n;d = 1, m approach iafinity. The n; are supposed
© be ientoal as are e equispaced sampling podsts for all individuals, The latier
becomne Eacreasingly dense as the amount of dita increases; imscrest focuses on Coa-
sistency and the asympiotic distidutioas for a wide class of linear inferential pro-
cedures all of which aze locally weighsed means whose welghts become Incoeasingly
concentrased a2 the paiet, ¢, of inferential isterest. The samne kxally weightings ae
used for each individual and the lincar inferential procedure averages across individu.
als with equal weighes, a8 is justied by the method of Sectivn 3 for balanced sam-

pling at equi-spaced sampling polats (bar not otherwise),
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We have general coacerss aboar the validity of sepested sampling Seory. And
wo have specific concems about $e value of $e consisteacy critserion which cannot
rule ot obviously inefficient procodures. For example, if &t were known that the
population mean functon were similar 2t several widely separated parameter points,
the Jocal averages from data windows at these poists should obviously be combined in
some way. B single window procedurcs would nevertheless be comsistent.

The very clegant and general theory of Fraiman and Iribarren (1991) embeaces &
lazge family of poteasial linesr provedures, as the local weightings are rogquired ©
satsly only comain rather weak condtions. The vistue of generality can be a
shortooening when it is confronsed with a finite sample size in that the theory does not
poimt o 2 pood choike of weights, However, point estimmation in this contex: seems
rather well understiood so this criticism may be misplaced. A more significant problem
is that of providing reasonably good indicators such as residual covariances and rella-
bility {confidence or credibilicy) imervals, of the accuracy of point estimasces. This
weie has not deen moch addressed in the theory of noaparamelric segresske and
smoothing.

We have bricfly reviewed the paper of Fraiman and Inbamren (1991) 10 give the
flavor of the repeated sampling school theory for this problem. The issues we hawve
Identified, among ochers, have lead us 1o the approach of the present paper,

Bayes linear procedures (soe oguation (1.1)), the objects of interest in this paper,
arc often derived from Bocar models like $hat in oguation (1.2) to enable hicraschical
modeling. That is the case here where inference is about the value at a particular time
of a future sasvple pach.  Observaticns with nolse froms cach of several related sample
paths are decmed o be available, The model in egeation (1.7) & convenicns for incor-
porating the information that the processes are at least p times differentiable. We have
Justified this model as an approximation 10 that is (1.2) for every member of a class,
&, of models that express the knowledge that the processes are p tmes differentiable,
It is argued thar the approximasion will be good If these processes are actually
P 2 2p+2 times differentiable and the data are sammpled with safficient inensity near
the paint of interest. "Good™ means that the resulting Bayes lacar procedue desived
from the model & (1.7) will be in good agreement with that derived from (1.2) for
cvery member of the class 8. It is also argued that the residual covanance matrices
obiziaad from (1.2) and (1.7) will likewise B¢ in close agrocmment under these cir-
cumatances. This justification is analogous 10 consistency in the frequency setting.

Our proposed method has 2 number of potential competitors Incloding kemel,
locally weighted regression (LWR) and spline methods. In fact Cleveland (198%) chies
our method as a Bayesian versicn of the LWR medad.  And &t shares the simplicity of
the latter; the model i equation (1.7) is just the conventional linear model of regres-
sion asalysis and 5o suscepeible 1o asalysis by B¢ host of methoads and coengputational
software which bave bees developad for such models.
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But as this pager anempts 10 show, the poental domain of spplication of the
method is extremely broad and o it may enjoy sume advaniages over ios COMPpPenion.
The theory in Secron 2 addresses data from a fairly complex sampling plan in 4 stem-
ingly natural way, As Zadek and Weerahandi (1990) show, vecwor valued procosses
<¢an readily be accommaodated, Amd i cumrest work with Dr M. Delssmpady and Ms.
frene Yee, Nieldhood funcuon essmators for e series are developed fromn the same
starviag point. The work of Joe, Ma and Zilek (1956) based cn the proposed Bayesian
approach sugpests a computationally cheap aliermative 10 cross validation. In fact, we
view this paper as illestrating a general Bayesian framework for addressing problems
of interpolating and extrapolating locally smooth functions, rather than as merely pro-
viding an additicnal method for sackling them,

When the processes which generate @ data have P derivatives with psP22pe2,
the justification of this paper for the proposed method Is lost.  An approprisse appeond-
mation is unclear. Seppose (i) m=] and iafereace is about values of the single S pro-
cess: (i) P=p (iil) the process is weakly stationary: and (iv) the resideals to the keft
and right of r=¢,, from fitting the model in (1.7), are uncoerelated. Then it can be
shoen that the process is AR(p) asd the resulting residual comrelations may be mken 0
e approximately rero, This argussent lead Weerahands and Zidek (1985) 0 the
approximation they chose, one which corrospoads to that of Section 3. Clealy as
P2p increases and more of the process derivatives are buried in the model’s residual
term, so intuitvely it scemns that the residaal corelation mwst increase.  Therefore &
would seems 0 be desimable 20 chocse p as large as possible. Bur the price &
fncreased modeling complexity and givea the Increased likelibood of prior model
pusspecification, it is not clear ®¢ tradeofl is wortdwhile, Clearly this is & satter for
further stody.

The approach saderlying the analysis of this paper can be applied without the jus-
ofication described above provided the model expresses well the investigator’s prior
views. In particular it can be applied even when the data are not dense around the
point of inference. In soch situarioas values inferred from amomatic procedures like
spline fittimg, become mathcmatical artifacts of their definitions, Indeed, such pro-
codures can have other unforeseen properties. A simeltancous frequency property
called “intriguing® (cf. Nychika (1988)) is observed by Wahba (1983) for point-wise
intervals gescrated by a Bayesian sppeoach.  Nychka (1988) seeks 10 "remsove soese of
the mystery™ by interchasging the randomness in the function (here the S's) assamed
by Wahba (1983) with the determinism of the observation times (here the 2, s) so that
the latter aro now endowed with stochastic uncerainty,

We believe the propesties of the method proposed kere may be muove preddiczable.
In particulas, the kavestigator can easure that values infeered from the proposed msethod
are in accord with pricr expenience. However, accomplistang this would requize that
the mvestigatoe use as infomslive prior rather than that adopied in Section 3 and 1n
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the iBustrative example of Secticn 4.

We will now sumearize some of the concerns and opea questions that romain.
Given its fesdamental impormance, a better understanding of the extended semi-Markow
peoperty of Section 2 is roguired. This is needed 10 justify all infereatial procedures,
lacluding those of this paper, which make local inferences cither by local weighting or
by relying only on data windows,

We need a bemer understanding of the role of the components of local curvarure,
like FE* U0 These may be important for incoeporating das a2 moderate distance
froms the point at which infereace is being made, even when the exteaded semi Mar
kov propeny Bolds. For simpliciy s quandry was ignored in our asalysis, albeit
with some justification as provided i the Appendix.

The hierarchical development of poiors throagh linear models like that in equatica
(1.2) is impormane. Bat it is not clear 2ow well the resulting marginal distribution is
spproximated through the adopticn of the simpler model in (1.7) basead. Prescenably
the answer depondds on the sampling intensity acousd the point of inference,
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APPENDIX

An argumess in support of the approximate residual covariance matrix adopeed in
Section 3 will sow be given.
In the notation of Sectiom 2, suppose ¥y = I'f*'?*'® for all fwk while
Yo = P22 for all f, Let 7 = ¥ ~ Ya- Thea the approximase residual covariance
mamix in equation (2.9) becomes
CuCi+C, (A1)
where C; = Diag {cyy. - .+ ,Cra) 30d C = 1,88 and for all i=1,m, f=l..5,
cu=d + 158 .
¥ wsl.....80 .
d=K+{ .
E = Diag (Zupny - o Toaan) A = B8
Oy = Ay expl-1 A VAN p+1) .
& = Wiag (K. S

Gy =24,1%%%, .
From the well-known matrix identity,

ey oyt =t - x T e 4 ety Tt (A2)
ClucCi! = KyCii88C,, (A3)

where Ky w (73" + 8TCT 8y Now let d, = Diag {d;y, ... .dy ). Then
Ci! =Diag {cj), ....c3d} (A4)

where from equation (A.2),

il =4 - K488t (AS)

with K, =y, » 8,48, .
From egaatica (A.3) it follows that, with A defined in equation (1.7) and its
superscript, "0°, Seleted,
ATCA w ATCT'A < KyATCEETCA (A6)
From (A.4)
ATC'A = Digg {alcifay. . . . .akcirag0)
where a, = (afy, .. .. el V¥ = nx(pel), fml, m. And
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ATC 8 = [aleil 8. .. . talesh8 Y OF

Now from (A.5) we obtzin
afcila; = afd e, - Kald 8,814, . (A7)
and
alci' = a6, - Kald*8,874"8, . (AS)
Observe thar

af '8, - ?‘«’M!w INE (A9)

Bex for large and seall 14,1 |, the summand &= equation (A9) Is approvimately 2er0
because §j=! A1 %%, and 5]  expl— A;1/Ag), respectively, become dominant. At
m0st, the seemmands coeresponding to moderme values of 13,1 will comnbute o ogea-
toa (A9). To simplify the model and the problem of specifying the prior parasneters,
it seemns reasoeable therefore w drop the second term in equation (A7) az Jeast If the
L, > 0 2ze not unduly small
Returning to (A.6), cbserve that
ATC 81 = ((alesis)Y. . ... taleii8. 07 0) .

which by the reasoning of the last paragraph might reasceably be sppeoximased by a
matrix of 0 's, In summary,
ATC A = ATE+ DA
i 3 plagsshle approximation, This comespoads 10 1aking ¥y = Yy = 0, that 15, 10 ignoe.
ing the middie term in the approximation.
Analogous reasoning for ATC'Y yields a similar conclusion, This leads o the
appeoximation in Section 3.
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