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ABSTRACT

This paper extends a method of the authors to obtain a Bayes linear procedure for predicting the

value at a specified time of a future sample path. It is supposed that data are available from a number

of sample paths which are deemed to be related to the future sample path. The method is local and

relies on a simple linear model which derives from the Taylor expansions of the processes at the point

at which the inference is required. It is argued that the resulting Bayes linear predictor is approxi-

mately the same as that from anyone of a family of complex Bayes linear predictors which obtain

under the assumption that the processes possess several derivatives. An illustrative application to

growth curve analysis is used to bring out some of the strengths and weaknesses of the proposed

method.
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1. INTRODUCTION

A problem of predictive inference for multiple time series is the subject of this

paper. The proposed solution uses an extension ofthe method of Weerahandi and

Zidek (1988, hereafter WZ), described by Cleveland and Devlin (1988) as a Bayesian

version of locally weighted regression. A preliminary version of this paper is con-

tained in Weerahandi and Zidek (1986).

The context of our work is that in which data are obtained from each of a set of

sample paths, like growth curves for example. The observables are in a partitioned

data column vector, Y = (Y1' ... ,Y!/ with Yi : nixl = (Yi(til), ... ,Yi(t1n), for

i = 1, ... .m . It is supposed that Y = S + N, where Sand N are partitioned in con-

formation with Y. The uncorrelated coordinates of N represent noise; they have mean

zero and a common variance, (JR. And Si = (SiCtil), ... ,Si(tin) where Si(t) is P+l

times differentiable in quadratic mean.

An object of particular interest is

~';:+l= (Sm+l (tm+l) , s/n111(tm+l), ... , S,W21 (tm+l» where Sm+l represents a possibly as

yet un sampled process and tm+l' a possibly as yet unused sample point. Bracketed

superscripts denote L2 derivatives of the process and p ~ P. More generally, the

object of inferential interest may be ~ = (~r ... ,~~,~~+ll, where ~i is defined for

all i as in the case i = m + 1.

As is well known, the optimal linear, that is, Bayes linear procedure with respect

to a quadratic loss function is

~y = E~ + <X~y(Y- EY) (1.1)

where in general, for any two random vectors U and V, <Xuv = I"uvrv&, and

I'uv = E (U - EU)(V - Evl. The reliability of ~y is specified by F ~.y where, in

general, for any two random vectors, U and V, U·V = U - [EU + <Xuv(V - EV)] and

ru-v =E(UV)(u·vl. It is also well known that a Bayes linear procedure is Bayes

when Y and ~ have a joint Gaussian .distribution. But even when the Gaussian distri-

bution does not obtain, linear procedures are commonly used as they are here because

of their simplicity.

In spite of their relative simplicity, the global modeling required to specify these

procedures can be very demanding. A first step towards the development of such a

model, which may simplify reasoning by enabling its hierarchical specification, begins

with the linear model,

Y=EY+A(~-E~)+E, (1.2)

where A = <Xy~and E is independent of ]'. By construction, E has mean zero and a

covariance matrix given by C = I"y.~. Model (1.2) yields

I'yy=C+Ar~~AT 0.3)
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and

(1.4)

From equations (1.3) and (l.4), an expression for a~y is readily found. A well known

alternative expression is:

(1.5)

where

(1.6)

Even with the help of the model (1.2) the task of specifying the global prior dis-

tribution may be substantial. And it may not be necessary. If the sampling points

around the point of interest, z=t, are of sufficiently high density and a semi-Markov-

like property defined precisely in Section 2 is believed to hold, then the data outside a

window located at t=t would be relatively unimportant. Sometimes the data outside

such a window are excluded (c.f. Muller, 1987), usually on heuristic grounds, we

believe.

Here the implication of excluding the data outside an appropriate data window is

that the elicitation of prior information can be restricted to that concerning just certain

local rather than global parameters. These will be defined precisely in Section 2.

Excluding data as described above seems desirable where permissible not only

because this simplifies the task of prior modeling, but also because this increases the

procedure's robustness. It avoids the risk and possible consequences of misspecifying

the global model, say by making a convenient choice from the time series catalogue,

with its preponderance weakly stationary models. And it avoids the potential negative

impact of errors in those data which contribute little to the optimal procedure anyway.

To construct a "local" model, suppose remote data have already been excluded so

that the coordinates of Y are just the data for which 6ij=tij-T. are small. Taylor's

theorem implies that

(1.7)

where A 0 is an approximation to A defined in the next section; EO includes the Taylor

remainders, has expected value zero, is approximately uncorrelated with ~, and has a

covariance matrix, Ca which would be expected to be small in magnitude. It will be

argued on largely heuristic grounds that equations (1.2) and (1.7) are approximately

equivalent under suitable regularity conditions. Zidek and Weerahandi (1990) go

further in a special case and rigorously derive bounds on the approximation errors

involved in substituting (1.7) for (1.2) when the range of the coordinates of Y is an

arbitrary finite dimensional inner product space, p=i), and P?.2. In any case, the result

is a Bayes linear procedure which may be viewed as an approximation to the "true"

Bayes linear procedure, which would be obtained by specifying completely the, a priori



- 3 -

model for the processes involved. Likewise, an approximation, r8.y, is obtained for

r~'Y' The latter is an important object in that it indicates the uncertainty in the Bayes

linear rule.

When Y and S have a joint Gausssian distribution, our approximations yield an

approximate posterior distribution for S and hence Sm+l' This may in turn be used to
find attributes of interest for S such as credibility regions.

The problem of specifying the local prior distribution for S is discussed in Sec-

tion 2, as is that of specifying the covariance hyperparameters.

Our interest in the problem addressed in this paper derived from discussions with

Dr Ned Glick in 1978 when a very preliminary version of the approximation given in

WZ was formulated. The practical problem addressed in those discussions was predic-

tive inference for a future child in a certain growth curve study where there was just

one datum from each of a random sample of children. The problem is different from

that of classical time series analysis where a number of often equally spaced values are

obtained from a single sample path, although the latter is a special case of the general

situation considered here.

The example presented in Section 4 also derives from a growth curve study but

here there are several values from each child's growth curve and these are taken at the

same equally spaced values for all the children. Our results are in close agreement

with those obtained by Fearn (1975) by a different Bayesian analysis.

2. APPROXIMATE BAYES LINEAR PROCEDURES

In this section, the model in equation (1.7) will be derived in an explicit form

from (1.2). In this derivation, U = 0p(b) will mean I U/bl has bounded expectation

for any b>O when U any random vector. An analogous meaning is assigned to

u = 0 (b) when u is not a random object.

Let us adopt the following notation:

a.. = !J.UrI r-O 1 PIJr If'" -, , ... , ,

aij = (aijO' ... ,aijp)' and

Sir =,st)('t), r=O,I, ...}',

Si = (SiO' ... ,Sip?, i=1,2 ... ,m+ 1 ,

S = (sf, ... ,S&n+l)l .

(2.1)
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By the assumptions of Section 1 and Taylor's theorem

p

S·· - "'a·· R.. + 0 (I AI (1'+1»)
ij - ~ ijr~~ p U ij

r=O

(2.2)

Thus

P

ESij = LaijrE~ir + Op(1 L11 i<J+1»)
r=O

and hence

- L1
S·· S·· - £S··
'l = 'l 'l

P

- "'a··~· + 0 (I AI (f+1»)
- ~ ijr r'ir p U 'f

r=O

- L1 . . ~ _ -~)
where ~ ir= ~ir-E~ir from which It follows that ~ir - Si (t).

A straight forward calculation now gives

CXSij~~ = faijr~ir + -£ aijrCX~ir~~ + OpCl L11 [[+1»)
r=O r=p+l

(2.3)

and

P

E(Sij'~) = L aijrE(~ir~) + Op(lt:J.1 i<J+l») .
r=p+l

(2.4)

Combining equations (2.3) and (2.4) yields

p p

Sij(~) = Laijr~ir + L aijr~ir(~) + Op(lt:J.1 i<J+l») .
r=O r=p+l

(2.5)

where, in general, U(V) = E(U) + cxuv(V - E(V)). Reinvoking equation (2.2) gives

p

Sij'~ = L aijr~ir~ + Op(IL1li<J+
1»). (2.6)

r=p+l

Since by definition, Sij = Sij(~) + Sij'~, a fundamental decomposition is obtained:

Sij = faijr~ir + f aijr~ir(~) + f aijr(~ir~) + 0p(It:J.1 W+l») . (2.7)
r=O r=p+l r=p+l

By combining the second and third terms in equation (2.7), equation (2.2) is obtained;

the latter is the basis on which Weerahandi and Zidek (1986) build their Bayes linear

inferential procedure.

In this paper we share with Zidek and Weerahandi (1990) the goal of finding a

single model which approximates those described by equation (1.2) in the sense that it

yields a local approximation to each member of the class of Bayes linear procedures

which are implied by (1.2). We therefore use the decomposition in (2.7) to suggest an
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approximation to the model in equation (1.2). In particular to order p, the approxima-

tion AP to Ai has i+j th row defined by

A.oR = a·R
!jtJ !jtJl'

Equation (2.7) yields an estimate of the error in this approximation:

P

(Aij - AS)~ = L aijra(~ir~)~

r=p+l

An analogous approximation, CO for C, is obtained below along with an estimate

of the error in the approximation. Zidek and Weerahandi (1990) use these estimates of

the errors in the approximations to A and C to determine bounds on the approximation

errors induced in ~y and r~.y but we will not seek such bounds here.

From equation (2.6) we obtain,

P P

n(Sir~)(Sk(~)] = L L aijraklsri~s.~) + O(I.6.ijl P+l+l.6.kll P+l) , (2.8)

r=p+ls=p+l

for all i ,j,k,l, where ri~s.~) = r ~;r'~'~ks'~ is the residual covariance between st)('t) and

SP)Ct) when the linear effect of ~ have been factored out. Assume like Weerahandi

and Zidek (1988,1990) in the special cases they treat, Pz2p+2. Then to the order of

the linear model for S based on ~, the square root of the absolute value of the quantity

in (2.8) is zero; locally the Taylor expansion has removed all variation and covariation

in the S-processes. This was the heuristic basis for the model proposed in the special

cases treated by Weerahandi and Zidek(1986, 1988).

But a global approximant to the quantity in (2.8) is required which will yield a

locally weighted predictive procedure and at the same time preserve its local character.

In Weerahandi and Zidek (1986,1988), the approximant was chosen to be a diagonal

matrix for simplicity. However in Zidek and Weerahandi (1990) where p=C, the

locally dominant term on the right hand side of equation (2.4) is retained to capture

the residual covariance structure (and enable bounds on approximation errors to be

found). This term will also be retained here.

Let the approximation to C be given by

C8j)(kl) = L(ij)(kl) + Tl(ij)(kl) + ~(ij)(kl) , (2.9)

where L(ij)(kl)=O unless i=k and j=l when L(ij)(ij) the variance of the noise in Yi Cri) is
positive. Furthermore

Tl(ij)(kl) = tl(ij)(klli~+l,P+l'~)

where

(p+l).6.(o+l)
tlij kl

.6.(ij)(kl) = [(p+ l)!f
-(I6.;jl +16.Hi Y6.o
e . (2.10)
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Finally

(2.11)

where the G(ij)(Id) must be selected to assure positive definiteness of the resulting

approximant; (G(ij)(kl» could, in particular, be a diagonal matrix.

The approximation in equation (2.9) is meant to replace the higher order terms in

(2.8) on the one hand and at the same time insure by making G(ij)(kl) sufficiently

large, that values of Yi (tij) for which I~ij I is large are "windowed out". This leads to

the approximate model in equation (1.7), subject to the selection of the covariance

hyperparameters in equation (2.9).

The more rigorous approach of Zidek and Weerahandi (1990) would entail parti-

tioning Y as (pT ,RTf where P is the vector of data values in a window at t="C. The

general results of Section 2 of Zidek and Weerahandi (1990) could now be applied.

The error, ~Y-~P' is (ibid, Theorem 1)

rpRprR~R (2.12)

where rpR.p = rpR - rpRrpforRp and rRP is defined in the Introduction. It can be

shown that the R to P correlation structure can be recovered from rs .p; the result is

rPR .prR~p = D CX* [TR .p P + CX*D CX*Tr 1 (2.13)

where

*cx = cxRP'PCXPP - cxRP ,

CXRP.p = rRp.prplp ,

rRPp = rR.p - rRP.pfplpfPR·p ,

and

The expression in (2.13) is useful in obtaining error bounds for the approximation

to ~Y given by equation (1.7).

In any case, reduction to P from Y can only be justified if it is believed that

(2.14)

is smalL This is a generalized semi-Markov propeny. For an AR (1) process (c.f. Zidek

and Weerahandi (1990), the error will be zero when P consists of just data points on

either side of t="C. Of course, the error in (2.14) need not be evaluated as long as it is

believed to be small and this is the heuristic, presumably, which underlies all methods

which use data windows. Of course, the validity of the approximation of ~P by ~oP

derived from equation (1.7) still obtains under the regularity conditions given here.

But unless the generalized semi Markov condition holds, valuable information in the
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data points remote from the point at which inference in being made, t = "C, may be

lost.

To rigorously justify the model in equation (1.7) entails showing the error in

(2.14) is small when ~y and ~p are replaced by this corresponding approximants, ~Oy

and ~op. Zidek and Weerahandi (1990) address this issue (when p=O). It is plausible

that this error will be small in the present context when a(ij)(kl) in equation (2.11) is

sufficiently large.

In summary, the analysis of this section has lead us to the linear model on equa-

tion (1.7), where the ij th row of A 0 is given by

ASi3 = aij i3i

for all ~, where EO is uncorrelated with ~, and where Ca = rOy.~ is determined by

equation (2.9). This in turn leads to an approximate Bayes linear procedure. It should

be emphasized that in this section we are assuming the covariance hyperparameters

have been specified. We address the problem of specifying them in the next section

where we give a particular implementation of our proposed approximation.

3. EXCHANGEABLE GAUSSIAN PROCESS

In this section a special case of the model in equation (1.7) will be investigated

and a further approximation to the residual covariance matrix introduced. For simpli-

city, the subscript, "0", imposed in Sections 1 and 2 on A and C to denote their

approximations, will be suppressed.

The problem of specifying 8, the vector of covariance hyperparameters, will be

addressed below, but suppose for now it has been specified. Assume the Si'S and the

noise processes are Gaussian, that the noise is homoscedastic and that the Si'S are

exchangeable. To be precise, we suppose that in equation (2.9) L.(ij)(kl) = a
2 or 0

according as i=k and i=! or not, and aUj)(kl) = a~ or 0 according as i=k and j=l or

not. Furthermore rtf+l,p+l'~) has a common value, say 'YB, for all pairs, i:;ek and like-

wise rH7+1,p+l'~) = 'Yw for all i. Assume 'YE = Yw= 0, an assumption which is justified

under reasonable conditions indicated in the Appendix. Finally suppose that condi-

tional on y,

Rind
I-'i I Y _ N (P+l)C Y , A) ,

III the spirit of Lindley and Smith (1972, hereafter LS). Indeed, if y is supposed to

have a uniform (improper) prior distribution, the results of LS show that

131 Y,8 - N(m+l)(p+l)( Dodo, Do) (3.1)
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where in the notation of LS

DOl = ATc1lA 1 + C2l - C2lAz(AIc21AzrlAIc21 ,

and

do = ATc1
1y .

To translate these results in the present context, set C1 = C, A1:= A,

Cz = Diag{A, ... , A}, Az = Cl, ... , If, an (m+l)(p+l)x(p+l) matrix with I denot-

ing the (p+l)x(p+l) identity matrix.

It is straightforward to show that

AIc2
1Az = (m+1)A-1 .

Thus

The assumptions made above in this section entail

C = a2l + aliD

where

D = Diag{D ... D }l' , m

and

D· = Diag{I~· 12p+3 ... I~· 12p+3}
1 11" In; •

Now

Dc/ = e - (m+1)-IAzA-1AI '

where e = Diag{el, ... , e(m+l)}, ei = Vi + A-I, Vi = a!ci-1ai or ° according as i $.m

or i = m+l, c, = azIni + aliDi, i = l , ,m, and ai, i = 1, ... ,m is the nix(p+1)

matrix whose j-th row is aij , j = 1, , ni, i = 1, ... ,m, that is,

aij = (aijO, "', aijp) ,

with aijr = ~Vr! forr = 0, ...., p. In fact, ai, i = 1, ... ,m is a submatrix of A CA0 in

the last section) defined just below equation (2.7) with A = (Diag {a 1, "', am},O).

We note in passing that when, as in the next section, the ni are identical, and the

observations for each process Yi are taken at the same time points, then the ai are

identical as are the c/s. So the Vi, i = 1, ... , m are identical in this case.

From the well known matrix

(u + vTtvrl = u-1 - u-1vT (t-l + vu-1vTr1vu-1,

Do = e-1 + e-1A2F-1AIe-1 ,

equation (see LS),

m

where F = ALFi-1 A and F, = Vi-l + A .

i=1
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Of particular interest is the marginal posterior distribution of ~(m+l) which is

easily deduced from equation (3.1). It is

~(m+l)1Y,8 - N (p+d~(:'+l)' ~(m+l») , (3.2)

where

m

L(m+l) = A + CLFj-1r1 ,

1=1

A* ["k'-l]-l"k'-lR
!-l(m+l) = £../ i £../ i !-li'

and ~j = (aTci-laJ-l(aTci-lYj)' In other words, ~(:'+l) is a weighted average of the

local least squares estimators of the ~i' When the F,' s are equal as they are in the

next section, the weights are identically equal to lIm. The distribution in (3.2) serves

as a basis for inference about ~m+l if the covariance hyperparameters have been speci-

fied. However, in practice these parameters will not usually be specified at this first

stage of hierarchical modeling so we turn briefly to the issue underlying these con-

siderations.

The variance of the noise process (in the homoscedastic case) is a global covari-

ance hyperparameter unlike the other parameters in our approximate model which are

local. Our theory is deficient in that it does not deal adequately with global model

parameters, inference about which should be based on all the data. Instead for all

approximately linear models ( in the sense of Sacks and Ylvisaker, 1979), inference in

both repeated sampling contexts like that of Sacks and Ylvisaker and Bayesian con-

texts ( see Zidek and Weerahandi, 1990) will rely primarily on the data for which the

contribution from the local model is small. Here this means, the data in a window at

'to To deal with the complex issue of estimating the global components of approxi-

mately linear models, entails simultaneous inference across all 'to A model like that

underlying the theory of splines for example, (c.f. Wahba, 1982) would be needed. It

should be emphasized however, that the priors for splines are highly specialized and

we believe they are insufficiently flexible as to adequately represent a reasonable spec-

trum of prior opinion.

The seemingly natural approach to dealing with the remaining covariance hyper-

parameters (see equation (3.1» entails putting a distribution on (J~ and A. And pro-

vided that the conditional expectations of the S processes given these parameters does

not depend on them, then this may be done. That is, it does not matter whether the

approximation step in going from equation (1.2) to (1.7) is carried out before or after

"marginalizing out" these covariance hyperparameters. However, it is not clear how

well the marginal distribution from (1.2) would be approximated by that from its

simpler relative, (1.7). Clearly the Gaussian model of Section 3 will be lost either way.

For practical reasons, it is tempting to adopt the simple model in (1.7) as we do here.

But this matter deserves further investigation.
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The determination of the marginal posterior distribution of e is straightforward.

The result is

(3.3)

where K is the normalization constant whose exact value is unnecessary for our pur-

poses, G = C-1 - C-1ADoA TC-1 and nee) is the prior density of e .
By combining (3.2) and (3.3), the joint distribution of ~(m+l) and 9 is obtained

and from this in turn the marginal distribution of ~(m+l)' We will not discuss in gen-

eral, the problem of determining the prior distribution of 9. But in the next section we

will make a particular choice for the example considered there.

4. APPLICATION TO GROWTH CURVE ANALYSIS.

In this section the approximate model developed in Sections 2 and 3 is applied to

data used by Grizzle and AlIen (1969) in their frequency theory analysis and Fearn

(1975) in his Bayesian analysis of growth curves. These data consist of the Ramus

heights (in mm), of 20 boys at 8, 8 1/2, 9 and 9 1/2 years of age. The data were col-

lecteo to establish a normal growth curve for the use of orthodontists.

The example is a challenging one chosen to bring out strengths and weaknesses

of our proposed method. As we will argue below, its use seems inappropriate here

given the assumptions we have made in its development. And Fearn's analysis sug-

gests the regression curve of Ramus height on age is very well approximated by a

parametric (in fact, linear) model so our nonparametric approach seems unrealistic

from the outset. Nevertheless, surprisingly good agreement with Fearn's results will be

obtained.

Figure 1 depicts the data along with the results of our analysis. From a superfi-

cial examination, the inter-sampling points seem large while our theory is designed for

data which are clustered around the point of inference. But sampling intensity is a

relative concept and must be measured against the inherent variability of the process.

So our immediate reaction to Figure 1 may be premature. Indeed, we do not yet know

how to assess the adequacy of sampling intensity. There does not seem to be a gen-

erally satisfactory way of addressing this issue even though it underlies discrete time

series analysis which always concerns itself, implicitly at least, with samples from

underlying continuous time processes.

The number of derivatives to include in the model of equation (1.7) is somewhat

arbitrary, although in some situations there may be physical models which dictate a

useful upper bound. For example, if the underlying Si 's were Brownian paths, then of

necessity p would be zero. However, in this case the condition in the Section 2 that

P?2p+2 would be violated; the justification given in Section 2 for using our method

would be lost, although the method could still be applied and may even be justified on
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other grounds.

Derivatives must be included in equation (1.7) when inference about them is

required. First derivatives, for example, might well be of interest as indicators of local

trends. Now if the values of the process over a neighborhood at t=tm+1 were simul-

taneously estimated these derivatives could simply be calculated. But our method

does not permit simultaneous inference. Moreover, the joint distribution of the deriva-

tives and values of the process, if required, would not be given by this approach.

As we have formulated the growth curve problem, estimates of the process

derivatives are not required, and this leads us to choose p=O. We believe the underly-

ing growth processes to be quite smooth, at least thrice differential, so that we can

view our inferential procedures as approximating the Bayes linear procedures which

would obtain from imposing a global stochastic model on the underlying processes.

In general, there is a second potential reason for including derivatives in the

model of equation (1.2). This is the need to bring in available prior knowledge about

these derivatives which would otherwise be lost in the approximation of the residual

covariance. In the present example, for instance, the growth functions must have non-

negative derivatives and we should have included this knowledge through an appropri-

ate prior distribution. Since we have chosen p=O, partly for simplicity and partly in

keeping with our desire to challenge the proposed method under less than ideal condi-

tions of implementation, our analysis can undoubtedly be improved upon. A more

realistic approach to growth curve analysis is the subject of current work.

Let us make the realistic choice in this situation of 0 = 0, even though this

assumption of no noise causes us to violate the assumption which helps to justify the

approximation of Section 3. It is reassuring that nonetheless our analysis leads to

results which are in good agreement with those of Fearn (1976).

To specify the joint posterior density function given in (3.3) we need to specify a

prior distribution for 9. It is convenient to let eo = 0iA. Our lack of knowledge

about 9 suggests adopting a vague prior distribution to describe our uncertainty about

it. Because of the complicated structure of the covariance, we choose the Jeffrey's

prior computed by Weerahandi and Zidek (1986) to give an operational interpretation

of the notion of "vague". But we recognize there is some arbitrariness about this

choice, which has the improper density function, 0R"41tJCO), with respect to d 0hd eo,

where 1t1(CO) = (1 + covr1 and v denotes the common value of Vi = a!ci-1ai in this

special case (see Weerahandi and Zidek, ibid).

We may factor 01 out of a number of objects like Do and leave behind a factor

which depends on e only through eo, it will be useful to designate such resulting fac-

tors with a single asterisk. Thus, Do = 01D ~ for example, where

D *' (*' )-1 (*' )-lA (F *')-lAT ( *')-1 *' D . {*' *' } *' *' -1 do = e + e 2 2 e ,e = tag e1, ..·,e(m+l) , ei = Vi + CO an

v~ = aTD~la·
1 1 1 I'
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With the help of this new notation, we have, after incorporating the (j~ from the

change of variables, dA = (jldw,

n(~(m+l),W,(j~1 y) = KF(w) ((j~ren+2Y2exp[-((jiT*Y2] ,

where F(w) = nl(w)(Le:n+l»-V2w-mI2(D~)V2 ,Le:n+I) = (m+1)CJY'm + (mv*rl, when v"

is used to represent the common value of the

T* = (~em+l) - ~e:n+l»2 (L(:n+I»-l + yTD;Y, and it will be recalled that here

~(:n+l) = m-IL~i while D; = D-1 - D-1AT CD~)AD-l. By integrating out (j~ from

equation (4.1) we deduce that

~(m+l) - ~C:n+l)
------ I Y ~ tn-l

(j(m+l)

(4.1)

(4.2)

and is distributed independently of eo with density

n(wl Y) = KF(w)(yTD;y)-n/l , (4.3)

where K is the normalization constant, n = Di' tn-1 is the Student's t distribution

with n-1 degrees of freedom and (jem+l) = ( LC:n+l)ytD;YI(n-1) )V2. The inferences

on ~em+l) can be based on (4.2) and (4.3) as illustrated below.

Numerical Illustration

Returning to the specific application on Ramus heights of male children described

in the first paragraph of this section, we now illustrate how the foregoing theory can

be used to carry out inferences on the Ramus height, say H =~m+I' of a representative

child who mayor may not have been sampled yet. In Figure 1, the Ramus height data

of each boy are plotted against his ages at the times the heights were measured; the

data points of the 20 boys are labeled A, B ,... and ,T.

Shown in the same figure are the estimated values of the mean growth curve,

H(t)=L~i(tY20 and the 95% point-wise estimated Bayesian credibility band of H(t).

In estimating the mean growth curve, J\(tm+l) was computed for a range of values of

t=tCm+l) using the formula given in equation (3.2). The 95% point-wise credibility

band for H was also obtained by varying t=tCm+l) using (4.2) in conjunction with the

posterior distribution of eo given by (4.3) and the vague prior for eo described above.

The analysis entails solving, for each t with the help of numerical integration, the

appropriate equation to determine the 97.5 th percentile of the Student's t distribution

with 79 degrees of freedom, but this is straightforward. The details may be found in

Weerahandi and Zidek (1986).

It is of interest that, although we have not assumed a parametric model, the

estimated normal growth curve of Ramus heights was found to be slightly concave but

almost linear over the sampled range of ages. Hence the model assumed by Fearn
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(1975) seems reasonable; the inherent technical difficulties of his approach make the

construction of Bayesian credibility intervals exceedingly difficult. An advantage of

our nonparametric approach lies in its capability to handle even highly nonlinear

growth curves such as those treated by Berkey (1982) without needing to identify

appropriate parametric models.

s. CONCLUDING REMARKS.

Bayesians have not contributed to the theory of nonparametric regression and

smoothing for continuous parameter processes to anything like the same degree as fre-

quentists. This remark ignores the extensive literature on the classical theory of time

stationary time series and Kriging both of which, it could well be argued, only have

meaning in a Bayesian framework. However, neither is usually considered a Bayesian

theory. A paper much more in the character of this one is that of O'Hagen (1979); but

unlike O'Hagen, we are not concerned with adaptive modeling and our focus is con-

cerned with the implications of local smoothness for inference at a fixed point. The

recent manuscript of O'Hagen (1989) on numerical quadrature as well as that of

Angers and Delampady (1990) on smoothing entail Bayesian approaches to continuous

parameter processes, although the approaches taken are quite different to that of this

paper. Lack of space prevents us from giving a detailed survey; instead we refer the

interested reader to the recent review of Sacks, Welch, Mitchell, and Wynn (1989).

There is an immense and rapidly growing list of repeated sampling school contri-

butions to the literature of smoothing and nonparametric regression. Recently some

work has been published on the topic of this paper, smoothing for multiple time series.

References may be found in the forthcoming paper of Fraiman and Iribarren (1991)

who mix a nonrandom population mean function with random sample paths for indivi-

duals, i = l, ..."m which deviate from the population mean function by a zero mean,

autocorre1ated stochastic processes. Inference is simultaneously about the population

mean function and its first derivative, as both the number of individuals, m and the

number of data per individual, ni i = 1,..., m approach infinity. The nj are supposed,

to be identical as are the equispaced sampling points for all individuals. The latter

become increasingly dense as the amount of data increases; interest focuses on con-

sistency and the asymptotic distributions for a wide class of linear inferential pro-

cedures all of which are locally weighted means whose weights become increasingly

concentrated at the point, t, of inferential interest. The same locally weightings are

used for each individual and the linear inferential procedure averages across individu-

als with equal weights, as is justified by the method of Section 3 for balanced sam-

pling at equi-spaced sampling points (but not otherwise).
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We have general concerns about the validity of repeated sampling theory. And

we have specific concerns about the value of the consistency criterion which cannot

rule out obviously inefficient procedures. For example, if it were known that the

population mean function were similar at several widely separated parameter points,

the local averages from data windows at these points should obviously be combined in

some way. But single window procedures would nevertheless be consistent.

The very elegant and general theory of Fraiman and Iribarren (1991) embraces a

large family of potential linear procedures, as the local weightings are required to

satisfy only certain rather weak conditions. The virtue of generality can be a

shortcoming when it is confronted with a finite sample size in that the theory does not

point to a good choice of weights. However, point estimation in this context seems

rather well understood so this criticism may be misplaced. A more significant problem

is that of providing reasonably good indicators such as residual covariances and relia-

bility (confidence or credibility) intervals, of the accuracy of point estimators. This

topic has not been much addressed in the theory of nonparametric regression and

smoothing.

We have briefly reviewed the paper of Fraiman and Iribarren (1991) to give the

flavor of the repeated sampling school theory for this problem. The issues we have

identified, among others, have lead us to the approach of the present paper.

Bayes linear procedures (see equation (1.1)), the objects of interest in this paper,

are often derived from linear models like that in equation (1.2) to enable hierarchical

modeling. That is the case here where inference is about the value at a particular time

of a future sample path. Observations with noise from each of several related sample

paths are deemed to be available. The model in equation (1.7) is convenient for incor-

porating the information that the processes are at least p times differentiable. 'rVe have

justified this model as an approximation to that in (1.2) for every member of a class,

B, of models that express the knowledge that the processes are p times differentiable.

It is argued that the approximation will be good if these processes are actually

p ~ 2p+2 times differentiable and the data are sampled with sufficient intensity near

the point of interest. "Good" means that the resulting Bayes linear procedure derived

from the model in (1.7) will be in good agreement with that derived from (1.2) for

every member of the class B. It is also argued that the residual covariance matrices

obtained from (1.2) and (1.7) will likewise be in close agreement under these cir-

cumstances. This justification is analogous to consistency in the frequency setting.

Our proposed method has a number of potential competitors including kernel,

locally weighted regression (LWR) and spline methods. In fact Cleveland (1988) cites

our method as a Bayesian version of the LWR method. And it shares the simplicity of

the latter; the model in equation (1.7) is just the conventional linear model of regres-

sion analysis and so susceptible to analysis by the host of methods and computational

software which have been developed for such models.
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But as this paper attempts to show, the potential domain of application of the

method is extremely broad and so it may enjoy some advantages over its competitors.

The theory in Section 2 addresses data from a fairly complex sampling plan in a seem-

ingly natural way. As Zidek and Weerahandi (1990) show, vector valued processes

can readily be accommodated. And in current work with Dr M. Delampady and Ms.

Irene Yee, likelihood function estimators for time series are developed from the same

starting point. The work of Joe, Ma and Zidek (1986) based on the proposed Bayesian

approach suggests a computationally cheap alternative to cross validation. In fact, we

view this paper as illustrating a general Bayesian framework for addressing problems

of interpolating and extrapolating locally smooth functions, rather than as merely pro-

viding an additional method for tackling them.

When the processes which generate the data have P derivatives with p5Y5:.2p+2,

the justification of this paper for the proposed method is lost. An appropriate approxi-

mation is unclear. Suppose (i) m=l and inference is about values of the single S pro-

cess; (ii) P =p (iii) the process is weakly stationary; and (iv) the residuals to the left

and right of t=tm+l from fitting the model in (1.7), are uncorrelated. Then it can be

shown that the process is AR(p) and the resulting residual correlations may be taken to

be approximately zero. This argument lead Weerahandi and Zidek (1988) to the

approximation they chose, one which corresponds to that of Section 3. Clearly as

Pep increases and more of the process derivatives are buried in the model's residual

term, so intuitively it seems that the residual correlation must increase. Therefore it

would seem to be desirable to choose p as large as possible. But the price is

increased modeling complexity and given the increased likelihood of prior model

rnisspecification, it is not clear the tradeoff is worthwhile. Clearly this is a matter for

further study.

The approach underlying the analysis of this paper can be applied without the jus-

tification described above provided the model expresses well the investigator's prior

views. In particular it can be applied even when the data are not dense around the

point of inference. In such situations values inferred from automatic procedures like

spline fitting, become mathematical artifacts of their definitions. Indeed, such pro-

cedures can have other unforeseen properties. A simultaneous frequency property

called "intriguing" (cf. Nychka (1988» is observed by Wahba (1983) for point-wise

intervals generated by a Bayesian approach. Nychka (1988) seeks to "remove some of

the mystery" by interchanging the randomness in the function (here the S's) assumed

by Wahba (1983) with the determinism of the observation times (here the tij 's) so that

the latter are now endowed with stochastic uncertainty.

We believe the properties of the method proposed here may be more predictable.

In particular, the investigator can ensure that values inferred from the proposed method

are in accord with prior experience. However, accomplishing this would require that

the investigator use an informative prior rather than that adopted in Section 3 and in
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the illustrative example of Section 4.

We will now summarize some of the concerns and open questions that remain.

Given its fundamental importance, a better understanding of the extended semi-Markov

property of Section 2 is required. This is needed to justify all inferential procedures,

including those of this paper, which make local inferences either by local weighting or

by relying only on data windows.

We need a better understanding of the role of the components of local curvature,

like r[f+l)(P+l)'~. These may be important for incorporating data at moderate distance

from the point at which inference is being made, even when the extended semi Mar-

kov property holds. For simplicity this quantity was ignored in our analysis, albeit

with some justification as provided in the Appendix.

The hierarchical development of priors through linear models like that in equation

(1.2) is important. But it is not clear how well the resulting marginal distribution is

approximated through the adoption of the simpler model in (1.7) instead. Presumably

the answer depends on the sampling intensity around the point of inference.
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APPENDIX

An argument in support of the approximate residual covariance matrix adopted in

Section 3 will now be given.

In the notation of Section 2, suppose 'YB = rff+l,p+I'~) for all i-:l=k while

'Yw = rtf+l,p+l'~) for all i. Let 'Yd = 'Yw - 'YB' Then the approximate residual covariance

matrix in equation (2.9) becomes

C=CI+C2 (A.I)

where Cl = Diag {Cll' ... ,Clm} and C2 = 'YBocl and for all i=l,oo.,m, j=l., ....ni,

cli = di + 'YdOiO!,
oT = (0[, ... ,o~) ,

d. = L· + r .
E E ~E'

0·· = .6... exp[-I.6.··I/A-Y(P+I)!
IJ EJ IJ '-'U . ,

~; = 2Diag {~il' ... ,Sin}
I

and

r .. = 21.6. .. 12p+3a ..
~/J EJ IJ

From the well-known matrix identity,

(x+yT zy)-l = X-I _ x-lyT (z-l + yx-1yT)yx-1 , (A.2)

C-1 = Cll - KBCl
100T Cl, (A.3)

where KB = (Yii1+ oTCll orl. Now let di = Diag {dil, ... ,din)' Then

Cl
l = Diag {cIl, ... ,c~} (A.4)

where from equation (A.2),

CI-·I = d·-l - Kd.-18.8! d·-l
E EEl I I I

(A.S)

with K, = 'Yd + 0idiO; .

From equation (A.3) it follows that, with A defined in equation (1.7) and its

superscript, "0", deleted,

ATC-IA =ATCllA -KBATCl18oTC-1A. (A.6)

From (A.4)

where a, = (all, ... ,aTn.l : nix(p+I), i=l, ... ,m. And
I
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ATC118 = [(aIclf81l, ...,(a~c~8ml,of .

Now from (A.S) we obtain

T -1 Td-1 K Td-l~ ~Td-la· Cl' a· = a· . a· - ·a· . v·v· . a·
I III I I I ILL L L L

CA.7)

and

aTC 1-.18. = aTd·-18· - KaT d-:-18·8Td·-18·
I I I I III I l Ill'

(A.8)

Observe that

aTd-:-18· = "aT.8.·/,(L·· + Y .. )
l I I £... I] If· I] SI]'

j

But for large and small I~ijl ,the summand in equation (A.9) is approximately zero

because Sijccl ~ijI2p+3, and 8ijoc.6.&+lexp[-I.6.ijl/.6.o], respectively, become dominant. At

most, the summands corresponding to moderate values of I~ij I will contribute to equa-

tion (A.9). To simplify the model and the problem of specifying the prior parameters,

it seems reasonable therefore to drop the second term in equation (A.7) at least if the

Lij > 0 are not unduly small.

Returning to (A.6), observe that

[ATC118f = [(afcll81l, ... ,(a~cl~8ml,0]

(A.9)

which by the reasoning of the last paragraph might reasonably be approximated by a

matrix of 0 'so In summary,

ATC-1A =AT(L+ sr1A

is a plausible approximation. This corresponds to taking YB = Yw = 0, that is, to ignor-

ing the middle term in the approximation.

Analogous reasoning for AT C-1Y yields a similar conclusion. This leads to the

approximation in Section 3.
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and confidence band.


