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ABSTRACT

This report is concerned with the analysis of stochastic processes of

the form R(x) = S(x) + N(x) where S is a "smooth", N is noise, and all

quantities including x are real-valued. Our methods, which can easily be

extended to a much more general class of stochastic processes, derive from the

assumption that the observed R-values and unobserved values of R (interpolants

or predictands, the assumed inferential objectives of the analysis), are

linearly related through Taylor series expansions of observed about unobserved

values. The expansion errors and all other a priori unspecified quantities

have a joint multivariate normal distribution which expresses the prior

uncertainty about their values. For technical expediency, both maximum

likelihood and cross-validation are used to estimate the a prior unspecified

hyperparameters. The results include interpolators, predictors and derivative

estimates with credibility interval estimates automatically generated in each

case. An analysis of an acid rain, wet-deposition time series is included to

indicate the efficacy of the proposed method.

KEYWORDS. Non-parametric regression; acid rain; Bayesian regression; time

series; spatial interpolation; Kriging; forecasting; prediction.
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INTRODUCTION AND SUIDIfARY. This report is concerned with interpolation and

prediction for stochastic processes. Although our analysis focuses on a

special case, the metl10ds can easily be extended to a very general class of

multiple, multivariate space-time-regression models. The structure of the

response vectors for the most general class, as a function of a vector

argument of space. time and regressor variable co-ordinates, is given by R(x)

= M(x) + S(x) + N(x). Here N is an independent noise process. S is a

"smooth", a locally Taylor expandable function. and M is a model. possibly

with a priori unspecified parameters. In this paper. to avoid obscuring the

basic ideas, a particular case is studied where M ::0 and all vectors are

real. that is, one dimensional. However an extension of our results to the

general case is straightforward.

We assume R has been observed at a sequence of x-values t ••• t,
• i ' • n

and that the objective of inference is the estimation of some unobserved R

value. In other words, tIlegoal is either interpolation or extrapolation of

a = R(t) at a point. x ::t at which R has not yet been observed.
n+1

(Credibility) interval estimations of 0; are deemed to be necessary.

The key components of our analysis are firstly, the expansions to

finite order, S(t.) = a + ~(t. - t 1) +
1 1 n+.

+ £. where ~
1

dS(tn+1)/dx, and £i denotes the remainder in the Taylor expansion. i=l, ••••

n. And secondly. we assume that all a priori ullspecified quantities like a.

~, and the R(t.) have a joint distribution which we will take to be
1

multivariate normal; all Our results then follow quite simply. However. any

joint distribution which seemed appropriate could. in principle. have been

used instead of the normal.
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In section 2 the theory underlying our approach is outlined. In section

3 we illustrate its use in the analysis of an acid rain wet deposition time

series. OUr method is then compared and contrasted in section 4 with other

approaches which have been proposed for the analysis of nonparametric series.

section 5 includes a brief discussion and our conclusions.

The idea for this work derived from conversations in 1978 with Professor

N. Glick in which he described a running percentile approach to smoothing data

and generating reliability bands. While his analysis was data-analytical in

character and concerned specifically with the assessment of obesity in

children, it did suggest the method described here as a way of explicating his

methods. We are indebted to Dr. Glick for his stimulating comments and active

encouragement in our work.
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2. LOCALLY SMOOTH PROCESSES

2.1 PREAMBLE

The report is conceoled with stochastic processes which have smooth

underlying "carriers". An example would be R = R(t) = R(t,w), the measured

weight of an individual w at time t. R would vary between successive

weighings because of roullding errors, imprecision of the weighing scale and

other factors, some of which would be undetermined. But there is a purely

conceptual, underlying carrier function C = C(t) = C(t,w) which represents

w's intrinsic weight and embodies intermediate to long term trends. In a

frequency-theory setting, C would represent the mean or expected weight after

all extraneous factors have been "averaged out•.over repeated weighings. The

impact of such extraneous variation is embodied in R - C = N = N(t) = N(t,w),

the "noise" term, which here, and in general would be of little intrinsic

interest.

In the weighing example, N would be almost negligible as a percentage of

R. In contrast, for the application considered in section 3, N would be

appreciable. There R, the measured acidity or pH level of wet precipitation ,

varies considerably even during a given precipitation event. R is of interest

as an indicator of the state of the environment, C, at the time of the event.

Thus, in this application, the role of C would be analogous to the intensity

function in a point process, while R would be measured only at the times of

the events in that process.

The two examples described above differ in other ways as well. In

experiments where weight was an important consideration, there would
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usually be several randomly selected subjects. w •...• w , and the R(t,w.),
1 m 1

i=l, ••• rn, - W < t < w would be regarded as conditionally independent given

the (C(t,w)}. Usually C(t,w.) = C(t,w.), i ~ j, would be assumed when all
1 J

other explanatory variables had been accounted for. And R might be recorded

at just a single time point, t = t. for subject i.
1

on the other hand, in the acid rain example, there is just a single path,

R(t,w), and observations will be recorded at a sequence of time points. In a

full treatment of this problem R(t,w), would be a multivariate series R(x.w),

where R is a vector of measurements like the average pH level during the

precipitation event, the volume of precipitation, the average concentration of

sulphate, and so on. Here x = (x , x , ••• x
k
) might be the space-time

1 2

co-ordinates (itlcluding elevation) at which the measurements are made. Or x

might be a vector of independent regressors like distance to the nearest major

source of airbortle contaminants.

Although our conceptual model embraces a wide variety of situations. the

methodology we propose in this report is very general and may be adapted to

permit inferences to be made in all of the situations we have envisaged. This

report focuses on the case of a single, real-valued series, R = R(t) where t

is real, an element of an open subset of the real line; t represents "time" in

Section 3.

Interpolation and prediction with attendant measures of reliability are

the objectives of our analysis. Measurements r. = R(t.), i = 1, •••, n are
1 1

assumed to be available. Inference is to be about ~ = C(t + ).
o n 1
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In general, c~ H+S where H is a model for the carrier and'SYis a

"smooth". The model would incorporate any known structure for C,, It might

,have jumps, for example, to incorporate discontinuous changes at possibly

unknown t-points. H might also include a trigonometric series, to account for

seasonality. Any model with only a finite number of unspecified parameters

can readily be incorporated into a conceptually straightforward extension of

the results reported here. However, for simplicity it will be assumed here

that H = 0, and that any known structure like linear trend, for example, has

been removed.

2.2. STRUCTURAL MOOELS FOR S

s is not assumed to have a parametric form. Instead it is assumed to be

locally regular, that is expandable in a Taylor series about t = t A
n+1.

local parametrization of S is thereby achieved where the parameters are ~.
1.

OiS(t ), 0 denoting the differentiation operator. A structural model for
n+1.

the data is thereby achieved. A priori it is

R = X~ + ! (2.1).

Here R = (R , ••• Rn)T, R. = R(t.), ~ = (~ , ••• ~ )T, X, an n x (p+1)
1. 1. 1. 0 P

matrix, is given by X = (I, X , ••• X) 1 is an n-vector of l's, X~ = ([t -
1. • p' J 1.

t ]j/.! ••••• [t -t ]j/j!),
n+1. J n n+1.

T
N. = N(t.). n = (n , •••• n ),
1. 1. 1. n

j = 1, ••• , p, ! =
T

n+N, N = (N ••• N )
1. • 'n'

and n. is the remainder of the Taylor
1.

expansion of S(t.), that is n. = [to - t ]P+1.0P+1.S(6.)/(p+1)!where
1. 1. 1. n+1. 1.

6. is
1.

a point in the interval joining t. and t
1. n+1. In fact this expansion would be

valid if S were deemed to have only p derivatives but n. would then be
1.

represented otherwise. For simplicity of exposition this form will be

assumed.
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The degree of local regularity is reflected in the size of p; its choice

is subjective. If S is deemed to have p+l derivatives, it is desirable to

include the maximal number of terms, p in the expansion, (2.1), to reduce the

size of the error of approximation, n..
. 1

2.3 STOCHASTIC MODELS FOR S

Although R is observed p, (see equation (2.1» and ! are not. The

second key element in our approach is the assumption that all uncertainty

about R (before sampling), p and ! is measureable and representable in terms

of a (multivariate) probability distribution. Here it is assumed that the

co-ordinates of N are independent, identically distributed random variables

which are independent of n and~. As well, it is assumed that (ST, ~T)T

has a joint distribution where S = (S , •••, S )T, S. = S(t.), i = 1, •••
1 n 1 1

2
n. Let Var(N.) = C

1

Finding a coherent, probabilistic expression of uncertainty about the

unspecified elements of equation (2.1) is not straightforward. It seems

reasonable to regard the Taylor series remainders, n., as independent with
1

mean zero. And clearly the v~riances of the n. should be an increasing
1

function of the {It.-t I}, say h(lt. - t I). If DP+
1
S(6) is regarded as

1 n+1 1 n+1

bounded, the mathematical form of n. suggests hex) = &2X2P+2 as a first
1

approximation. However this can only be regarded as an approximation since it

is unbounded as x ; It. - t I ~ m whereas the uncertainty about n.,
1 n+1 1

which is expressed by Var(n.), is necessarily bounded. After all the pH
1

values of rainfall are in the neighbourhood of 5.6.
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It is also clear that n. will depend upon ~ to an extent which
1.

diminishes as x increases. Consider the case where p = 0, i.e. S(t.) =
1

set ) + n .• Since the prior distribution fixes the scale of set ) = ao'n+l 1 n+a

an extremely small value of set ), for example, would entail n.> 0 if x
n+1 1

were small.

After recentering p, if necessary, and the removal of known trends in S,

we would have E(P) = 0; this will now be assumed. The covariance of p, say

2, is more complex.
2

Assume Var(S(t» = & for all t. Consider Cov(S(t ),
n+1

OS(t », for example. If P were, conditionally, an extreme value of S,
n+l 0

this would indicate that S was at a maximum or minimum and hence P = 0; if
1

P were not extreme nothing could be inferred about ~ so its independence
o 1

from P would be immediate. Hence ~ and pare uncorrelated. But similar
001

reasoning about P and P suggests a possibly strong negative correlation.
o 2

*Let c (t,u) = E S(t)S(u) denote S's auto-covariance function. Assume

*c (t,u) = c(t-u). Then as is well-known c(-u) = c(u). Assume c is 2p - fold

differentiable. Observe that Oc(-t) = lim{(c(-t)-c(-t-h»/h h -+ O+} =

-lim {(c(t+h) - c(t»/h : h -+ O+} = -Oc(t). It follows that Oc(O) = 0 and

by induction that all of odd c's derivatives of odd order are zero at t=o

the induction hypothesis.

Note that (_1)
j
o2
j

c(O) ~ 0 for all j. To see this first observe that

E OiS(t)ojS(u) = (-l)jc(i+j)(t-u) ,i,j = 0, •••, p,

where, in general c(r)(x) denotes the r-th derivative of c evaluated at x

(Priestly 1981, Section 3.6.4 presents this result when i=O, j=l). Taking
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the limit in this last result as u ? t with i=j gives the result.

From the analysis presented above, the following representations are

obtained, where L = Cov(~) = (L..):
1J

L ..
1J

r
j

= (_l)jc(i+j)(O)

= (-l)jc(j)(t-t )
n+l

(2.2)

for i,j = 0, •••, p where r
j

is the j-th co-ordinate of r = Cov (S(t),

pT), a (p+1) dimensional row vector for any t. Observe that for small values

of

1 t- t 11, r
j =n+

Thus

(-I)j L
r

(t-t l)rCcr+j)(O)/r! = L (t-t l)r. L . I r!.
n+ r n+ rJ

r = L
r

r
(t-t 1) L Ir!n+ r

(2.3)

where r denotes the rth row of L.
r

Now suppose (S(t), pT)T has a distribution with set) = a p + , where a

is a vector of constants, Cov (C, p) = 0, and E(C) = O. It follows

immediately that r = Cov (s, pT) = a I so a = rI-I. Also Var(C) = c(O) -

rI-lrT, In summary we will assume, in conflict with equation (2.1), that

lie lie

R = X P + £ (2.4)

lie -1 T lie

where X 's i-th row is r(t.)I ,r(t.)=cov(S(t.),~) and £
111

*the uncorrelated noise process in (2.1), n. = (c(O) - r(t.)
1 1

*= n + N; N is

-1 T ¥.z

L r (t.» Z.,
1 1

and Z. = Z.(t,t +1) has mean 0, variance 1 and is uncorrelated with the other
1 1 n

components of the righthand side of equation (2.4).
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2.4 STOCHASTIC VERSUS STRUCTURAL LOCAL MODELS FOR S.

Both of equations (2.1) and (2.4) are exact under appropriate

circumstances. At least locally they are approximately the same. To see this

-1 r
observe that equation (2.3) entails r(t.)L ~ L e (t. - t 1) Ir! where

1 r r 1 n+

e denotes the vector all of whose elements are 0 except the r-th which is 1.
r

Thus r(t.)L-1~ =
1

L
r

r *~ (t.-t 1) Ir! so that the i-th row of X is
r 1 n+

approximately equal to that of X when t. is near t l' At the same time
1 n+

,\"-1T '\" r ~ k (k) r'\" (kr) (_l)k-r _r(t')L r (t.) ~ L (t. - t 1) r. Ir! = x c (O)/k! L

1 1 r 1 n+ 1r

e = c(O) - e where x = t. - t 1 and e denotes the remainder and involves
1 n+

terms of order at least xP+1. To obtain the correct order would require

expanding r(t.) to an order higher than p. This would require derivatives of
1

c of order higher than the assumed 2p. And the definition of >: would have
r

to be formally extended to values of r exceeding p using the first of

equations (2.2). If these extensions are assumed and only terms of order

x2p+2 or lower order were retained, we would have the reminder , e, given by

2p+2 k-p-1

-2 L (xk/k!) L (k)[L L-1>: _c(k)(O)(_l)k-r]
r r k-r

k=p+l r=O

= _ {x2p+2/[(P+l)!]2} {L L-1LT _c(2p+2)(O)(_1)P+1}.
pH p+1

1 t .. it i . (2p+2) ( ) ( )p+l '\"as express10n 1S POS1 1ve S1nce c 0 -1 = L 1
p+ ,

this
pH'
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Thus under the added assumption that c(·) has d~rivatives up to the order of

* 24p+4, Var(n.) ~ Var(n.) ~ 6 It.
111

2p+2 2
t 11 for some constant & ; the two
n+

models would then agree locally.

In our analysis we will adopt the structural model with Var(n.) = 021t.
1 1

- t 112P+2. It is the simpler of the two. They agree at least locally, as
n+

was pointed out above and it is the local behavior which is of primary

importance. As It. - t I increases, n. becomes dominant, R. reduces to
1 n+l 1 1

noise and is essentially "windowed out" of inferences about f3. Of course,

the proposed model would be more appealing in principle if Var(n.) were a
1

bounded function, h, of It. - t 11. However, in practice, this would appear
1 n-

to make almost no difference in estimating f3 = S(t 1)' A variety of h's,
o n+

bounded and UnbOUl\ded, were tried experimentally on the data in the

application presented in Section 3 with little effect on the outcome. The

assumed underlying joint distribution was normal throughout that analysis.

2.5 STATISTICAL INFERENCE. Conditionally for fixed f3 assume that equation

(2.1) holds with Cov(£) = e2 diag {l+c x2p+2, •••,
~

2p+2} 2l+cx = e H,
n

222
= 0 le , and 0

say

where e
2
= Var(N.) is the variance of the noise, c

1

represents uncertainty about the size of DP+1S/(P+l)! in the remainder term of

the Taylor expansion of Sand H = diag {hI' •••, h }, h. = l+cx~p+2 for all
n 1 1

i. Assume all a priori unspecified quantities have a jointly normal

distribution. The following results are standard (see Lindley and Smith 1972)

with "-" meaning distributed as and "ulv" meaning the conditional distribution

of U given v:
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2 0 T 2
RIL.O .H-N(X~ ,XLX +0 H)

(2.5)

2 -loT ~1
~IR,L,O ,H-N(F(L ~ +X HR), F)

In principle this solves the inference problem. When the hyperparameters

in ~o, L, 0
2

and H are specified, ~ may be estimated by its a posterior

expectation and a credibility ellipsoid is easily constructed to give a 95~

credibility set for~. Alternately, point and credibility interval

estimators of ~ = set I)' ~1 = DS(t 1)' etc., may be constructed from the
o n+ n+

normal marginal distributions of these parameters.

Usually, additional stages would need to be added to the process of

constructing the prior since specifying the hyperparameters at the first stage

would be difficult. Moreover, the resulting theory would be technically

complex.

A somewhat ad hoc, much simpler, approach is adopted for the analyses of

Section 3. Observe that as L-1 7 0, F 7 0
2 (XTH-1x)-1 so that E(~IR) 7

T -1 -1 T -1
(X H X) X H R, the generalized least squares estimator of ~ with (a

posteriori) covariance matrix 02(X
T
H-

1
X)-1. Thus, using a diffuse prior for

~ leads to the classical estimator when 0
2

and H are specified.

The same estimator may be obtained by treating ~ as a hyperparameter in

2
the likelihood obtained from the conditional density of R given ~, 0 , and

H; evaluated at R = r, this is, ignoring irrelevant constants,
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-n/2 -1/2 -2 T -1
a IHI exp (-(a 12) (r-Xa) H (r-Xa)}

By standard theory this is maximized at

ii' = (XTH-1X)-lxTH-1r

~ -1 T -1
a = n (r-Xp) H (r-Xp). (2.6)

And a priori, conditionally, given a and H, 1r~N(P, a2(XTH-1X)-1),

independently of ~ which has a chi-squared distribution with n-p-1 degrees

of freedom.

Only c or equivalently 62 remains to be chosen. If p = 1 or 2, say,

this may be done by introspection. Alternately since the likelihood, with a2

= ~ and f3 ='fi'.reduces to

(~)-n IHI-1I2, (2.7)

an estimate ~may be found by maximizing, numerically, the expression

displayed in (2.7). The stochastic independence of 13' and ~ is then lost

and the resulting credibility interval for ~
o

set 1) is then only
n+

approximate.

In the application of Section 3, c = 0 was obtained for both p=l and 2 by

maximizing equation (2.7) but the reduced likelihood is nearly flat in a large

neighbourhood of c=O so this choice is not strongly supported. Introspection

suggests a small value for 62 and hence c, but c=O seems unrealistic. The

possible dependence of the maximum likelihood estimate of c on the choice of

t 1 presents a dilemma. A data-based alternative to maximum likelihood for
n+

finding c, which avoids this issue, was finally adopted for the application of

section 3. This approach uses cross-validation (Stone 1974); t 1= t. is
n+ 1

chosen, successively, r. is dropped from the sample and interpolated using~.
1 . 1

=1r (i) obtained as above by maximum likelihood, and then c = c is found by
o

numerically minimizing L (r. - ~)2. This approach gave a small but positive
1 1
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value of c and was judged superior to the maximum likelihood method. It is

2
noteworthy that c, found in this manner, does not depend on 0 .

To estimate 0
2 observe that for t 1 = t., the a priori local structuraln+ 1.

model is R. = c. + oz. i = 1, ..., n where c. = S(t.) and Z. has mean 0,
1. 1. 1. 1. 1. 1.

variance 1. Now c. may be estimated without knowledge of 0 by the
1.

2
generalized least squares method described above and Var(c.) = c.o where,

1. 1.

given c = ~ c. is a known factor obtained from the generalized least squares
1.

procedure itself.
2 A 2 2 2

Thus E(R. - c.) = Var(c.) + 0 = 0 (1 + c.) when the
1. 1. 1. 1.

noise is regarded as independent of the carrier. Consequently an unbiased

estimated estimator of 0
2 is

A2 \' A 2
o = - L (R. - c.) I (1 + c.).

1. 1. 1.

This is the estimator which is used in the application given in the next

section.

A
The proposed estimator 13, of 13 has the curious property that for large

(2.7)

where the ~ts are the least squares estimates obtained by minimizing L

- A - A t. -
011.

To see this observe that i3' is found by
i

(r.
1.

minimizing

l (r
i
- 13

0
- I3
I
(t
i
-tn+I) - ••• -

where d. = 1 + c(t. _ t )2p+2
1. 1. n+l

-1
It I is large. Thus h. may be replaced
n+I 1.

of squares which determines 13'. Now let 13
r

P 2 -1
13 (t.-t 1) Ip!) h.
p 1. n+ 1.

2p+2 .
::! c l t 11 ::! d., 1.,

n+ J
j=1, ••• n when

••• t p.

by 1 in the weighted residual sum

~ ~.tj-Ir/(j-r)! where the
. J n+
J=r

L 13 (t.-t I)r/r! =
r 1. n+

~ts are arbitrary, r = 0, 1, Then

L (~./j!) L (;)
. J
J

r

tn+I)r after interchanging the orders of

j

~.t./j! which proves the assertion.
J 1.

L
j

summation and this in turn is just
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3. APPLICATION. In this section, the results of the last are tested on a

specific data set. These data are derived from the ADS data-base which is

maintained and updated by Battelle's Pacific Northwest Laboratories in

Richland, Washington. The data were obtained from one of the nine stations

which cOtlstitute the MAP3S/PCN, monitoring network. This station, located at

Pennsylvania state University, has latitude and longitude 40°47'18 and

75°56'47 respectively. This network is found in the Northeastern part of the

united States atldhas provided event-based chemical measurements of wet

deposition events since about 1976, although the start-up varies from station

to station. For illustrative purposes, our analyses are confined to two

subcases: (i) the field pH values which were measured at a particular station

during the precipitation events of 1977, and (ii) the monthly average

pH-values over the 1976-82 period at the same station. The last is an

intrinsically smoother alternative to the former and will be referred to as

the Monthly Average Data. Throughout this section time is measured in days

starting with January 1, 1976 which is regarded as the origin.

Only locally constant, linear and quadratic (Le. p ~ 2) structural

models will be considered in this illustrative application. In the locally

linear case, for example, with w. = t. -t 1 the a priori model, R. = a +
1 1 n+ 1

~w. + a(l+cw~)~ Z., i=I, •••, n, obtains, given a, ~, a, and c, where
111

a = S(t 1) is the interpolant or predictand, that is, the object of primary
n+

,
inferential interest, ~ = S (t 1)' and z. ~ N(O,I) independently of each

n+ 1

other and of a, ~, e, and a
2
• Under appropriately diffuse prior

distributions, posterior estimates of a and ~, may be found by maximum

likelihood when c and a2 are fixed. The results are precisely those obtained

by generalized least



-17-

squares. Thus the calculations are easily performed by using conventional

statistical packages like SAS or by simple-to-write code (which in our case

was 1/30 the cost of the first approach). The computations for the locally

constant and locally quadratic cases are just as straightforward as those for

the locally linear case; the 4-th power of w. 's in R. 's conditional variance
1 1

(given a and ~) is replaced in the former and latter cases, respectively, by

2nd and 6th power, according to the reasoning of Section 2. The estimated

value of c was found by cross-validation using a numerical optimization

subroutine to minimize the sum of the leave-one-out squared errors as

described in section 2.5. ~2 was also found by the method described in that

section. The estimated variance of a is easily found by means of standard

formulas from the theory of curvilinear regression. Since a posteriori, a

has a normal distribution with mean a, an approximate 95'0 credibility

interval for a is obtained by adding to and subtracting from ~ twice the

estimated standard deviation of a.

Before turning to an analysis of the acid deposition data, these methods

were applied to an artificial, parabolic data set. The locally quadratic

model gave a perfect fit with estimated 0
2

and c values of O. Moreover, the

locally quadratic extrapolant of these data is the same parabola as that which

generated the data. This is because the locally quadratic fit is also the

least squares quadratic fit and, as pointed out in Section 2 in the material

following equation (2.7), the extrapolant of any of the proposed local fits is

the least squares polynomial fit of the same order, extended beyond the data.

In Figure 1, the locally constant and linear fits are displayed. The local

fits are again essentially perfect over the range of the fake data. However,

the extcapolants are asymptotically constant, in the locally linear case
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because the least squares line for these data has slope O.

FIGURE 1 HERE

Observe in Figure 1 how much more abruptly than the locally linear fit,

the locally constant fit, which is not required to locally differentiable,

tunls toward its right hand asymptote, the sample average of r-values.

The successively greater smoothnesses of the locally constant, linear,and

quadratic-fits are revealed in Figure 2 where all three models are fitted to

the 1977 data. The twice differentiable quadratic cannot make the quick turns

of the linear, for example, and it tends to round off the latter's corners.

Such comparisons are somewhat tentative, however, since the "smoothing

parameter", c, is fitted independently for the three curves and its size

determines to a considerable extent the smoothness of the curve. When c is

large, the conditional a priori variance of R. grows very rapidly as Iw.I =
1 1

It. - t 11 increases, the fit at any given t 1·is then highly localized and
1 n+ n+

only the R.ts with Iw.I close to zero determine that fit. The result for a
1 1

large c is very irregular for a noisy process like that portrayed in Figure

2. As a final note about Figure 2, observe that because of a degree of some

apparant seasonality in the data they have a slightly parabolic character.

Thus the locally quadratic fit, unlike its linear counterpart emerges from the

data at either extremity (side) with a marked upward trend. This emphasizes

the need to remove seasonal components, if any, by adding a model to the

smooth to avoid the possibility of nonsensical predictions.
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FIGURE 2 HERE

The same caution is necessary in interpreting the credibility intervals

portrayed in Figure 3. It must also be emphasized that just as the results in

Figure 2 are not curve estimates, the bands in Figure 3 are not simultaneous

interval estimates. That is they cannot b~ said to enclose (S(t), a < t <

b}, over the appropriate time interval (a,b), with probability 95% even

approximately. Such bands would be appreciably wider. Those in Figure 3

merely indicate the appropriate credibility interval for S(t 1) at each
n+

These are not tolerance intervals, that is, they do not contain R(t 1)
n+

with probability 95%. Such intervals are easily obtained approximately,

however, by adding (respectively subtracting) 2c to the upper (respectively

lower) limit of S's credibility intervals. Although it would seem to be of

little interest we did examine the locally constant case with monthly data and

found that 5 of 80 i.e. 6% of R-values were not covered in the appropriate

tolerance intervals; in that case ~ = 0.1526.

FIGURE 3 HERE

with these cautionary remarks in mind let us turn, to Figure 3 for an

evaluation of the results. The credibility band for the locally quadratic

model turns out to be narrower than that of the locally linear model. This is

intuitively appealing; the smoothing constant c is a critical determinant of

the width of these bands and represents essentially the size of the remainder

term in the Taylor expansions. It is intuitive that this should be smaller in
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the quadratic case since there, the second order term has been "lifted" out of

the error for the linear case and so reduced it. The cross validatory

estimates of c agree with this choice in the examples, but there is no

guarantee that a similar result would obtain in every case. Notice that the

credibility intervals for the two cases represented in Figure 3, are

considerably different outside the range of the data; the quadratic band is

much narrower.

Figure 4 reveals that the locally linear bands are somewhat anomalous

outside the range of the data. They diverge more rapidly than either those of

the locally COtlstant or locally quadratic case. The apparent anomaly is a

product of the ad hoc method used for fitting c; the cross validatory choice

in the locally litlear case is too large relative to the other two cases.

FIGURE 4 HERE

The residuals for the locally linear fit for both data sets are

represented in Figure 5. The assumption of a constant error variance,
2

C1 •

seems reasonable in the case of the 1977 data. However, the residuals for the

monthly average data make this llypothesis seem more tenuous in that case.

Overall the fits seem reasonably good.

FIGURE 5 HERE

In Figure 6 are contrasted the results of linear and locally linear

fitting when the middle of the data are deleted. Notice in particular that
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the width of the confidence band for the linear fit reaches a minimum where

the data are missing. This is. technically. because the time mean. t. is

located in the gap. However. this is somewhat paradoxical since there would

seem to be COllsiderable uncertainty in this region because of the lack of

data. The explanation lies in the unequivocal choice of the linear model over

the whole range of the data. In contrast. the width of the credibility

interval for the locally linear fit increases in the gap as would be expected.

FIGURE 6 HERE

In Figure 7 we illustrate the curve of estimates of DS(t ) for varying

values of t over the 1977. The four peaks indicate the times of steepest

ascent of the pH smooth and the troughs. the times of steepest descent.

Credibility intervals could well have been plotted here; but we declined to do

so as no new issues arise.

FIGURE 7 HERE

Finally in Figure 8 are displayed a number of locally linear fits with

varying rather than fitted values of c. This illustrates the great range of

possible smoothers which can be achieved under the locally linear assumption

alone. The choice c = 0 gives the least squares line. while for large c. the

fit tends to follow very closely the individual data points.

FIGURE 8 HERE
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4. RELATED WORK. There is a vast literature on the subject of this paper and

we will not attempt anything like a complete survey. Our review will cite

just the most relevant, recent work to help put our results into perspective.

OUr results intersect with those of Cleveland (1979) who presents a

generalized least squares, locally polynomial, two dimensional scatterplot

For each t = t. , '}:, 'l:.' , ••• ,~ are chosen to minimize
n+1 1 0 1 P

(r. - A - A t. - ••• -A t~)2 as a function of the .A'S. Thus
J 0 1 J P J

2p+2 -1 "'.= [1 + c (t.- t.) ], the smoothed value of r., r. say, obta1ned
J 1 1 1

smoother.

l w
i
(tj)

if w. (t.)
1 J

by Cleveland will equal the estimate proposed in this paper for S(t.).
1

Cleveland does not, however, suggest this weight function because his

analyses, unlike ours, is not driven by an underlying model and its Taylor

expansion. His weight functions, w.(t.) = [(I - It. - t. 12) ]2, for example,
1 J J 1 +

derive instead fcom explocatory data analytic and cobustness considerations.

In fact, Clevelalld's smooth is obtained iteratively by a succession of

minimizatiolls where at each step, the weight function changes according to the

character of the residuals fcom the pcevious step. His final smoothec is

found by connecting the r. by line segments whereas we fit an estimate of
1

set 1) at each point, t l' Our work differs from Cleveland's in other
n+ n+

ways. OUr theory is Bayesian and, in this paper, empirical Bayesian; in

general our smoother would not be a generalized Bayes procedure. We, unlike,

Cleveland, are concerned with extrapolation outside the data set and with

reliability bOUllds on our extcapolated and interpolated values. And most

importantly, our theory has an conceptually easy extension to the space-time

context.
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We share with Fea1~ (1975) a multivariate normal based Bayesian approach

to the analysis of individual sample paths, in his case, growth curves. But

our paths diverge when he adopts a global linear model for the carrier. For

distribution, R. I p.,
1 1

2
(1 ,

vector R. has a
1

2

N(X.p., (1 1), i
1 1

conditional a prioriindividual i, the observable

1, ••• , m. And p. Ill,
1

C ~ N(ll,C) for all i. An ad-hoc procedure is used to estimate the (12 and C.

Because we do not postulate a global, parametric model, our approach to

modeling offers far greater flexibility than Fearn's while retaining all the

advantages of the Bayesian approach. Similar gains in flexibility are

achieved over Hui and Berger (1983) who also assume underlying normality in

their approach which assumes R(t, w.) = a. + b. t, for t in the (short)
111

follow-up interval for individual i=l, •••, n. Their analysis is not as

local as ours and their results are quite different in character from those

presented here. They do consider the problem of estimating the unspecified

covariance matrix.

O'Hagan (1978) concerns himself with local regression curve fitting and

design. His most general model has R = R(x) ~ N(n(x), ~(x». The

* *correlation of R(x) and R(x ) is through the correlation of n(x) and n(x )

which are assumed to have jointly, a normal distribution, as are any finite

set of n's. The posterior mean of n(x) is readily found and is the

posterior mean of R(x), which is thus readily interpolated or predicted as

appropriate. O'Hagan (ibid) regards ~(.) as specified but the case where it

is not is briefly discussed. His work is similar in spirit to that presented

here. It differs in as much as he does not exploit as we do, the natural,

local structural model wllichregularity entails and which forces set) and

set 1) into a linear relationship (with error). We view our methodology as
n+

an ineluctable consequence of our regularity assumption and
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therefore necessarily favor it over O'Hagans'. We favor our approach too

because our stt~ctural model guides the quantification of prior opinion by

prescribing the framework on which it must be attached. It would therefore be

simpler to apply in practice.

The considerable literature on spline smoothing techniques is well

surveyed by Silverman (1985) who gives an extensive bibliography. The

polynomial smoothing spline of order 2M-1 is found by minimizing, with respect

to S, a positive multiple of I(r. - S(t.»2 + ~ J [OmS(t)]2d+ ; this
1 1

integral is over [0,1] in Wahba (1983) where it is assumed that R(t.) = S(t.)
1 1

+ £. and that E. are zero mean normal disturbances of constant variance for
1 1

all i. The result is a piecewise polynomial of order 2m-l in each interval

(t., t. 1) with smooth joins at the interval boundaries for all i. Wahba
1 1+

(1983) points out and exploits a Bayesian interpretation of the smoothing

spline, that is a Bayes estimate with respect to a certain zero mean Gaussian

prior. And she is able to develop intervals for the S(t.) which seem to have
1

the confidence property, accorditlg to a simulation study she describes in her

paper (with ~ estimated by cross validation). It should be emphasized that

these are not simultaneous confidence bands, i.e. the percentage of the S(t.)
1

which would lie in their intervals would average around 95%. It is not the

case that all of the S(t.) would simultaneously be covered around 95% of the
1

time. It is not clear if simultaneous confidence intervals would be

achievable with Wahba's theory. Presumably intervals (credibility or

confidence) for S(t ), an interpolant or predictand, could be obtained but,
n+1

even though this is a problem of considerable practical significance, it is

not addressed by Wahba.

The spirit of spline-smoothing lies in frequency theory so it is not
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altogether meaningful to try to compare and contrast such work with ours.

However, a few comments would seem in order. The Bayesianity of spline

smoothers is an artifact, a product, in particular, of the objective function

which is minimized in their construction. It would seem that the derived

prior is essentially unique so that the applicability of these smoothers as

genuinely Bayesian procedures would seem to be severely limited. Beyond this,

the prior, a distribution for the infinite dimensional "parameter", S(e), is

an overspecification in the sense that when inference is about S(t 1)' for
n+

example, only a distribution with a finite dimensional support set is

required. A major conceptual disadvantage of spline smoothers pointed out by

silvet~an is that they are defined only implicitly as the solution to a

minimization problem except for large samples when an approximate explicit

expression may be derived. In contrast, our method does yield an explicit

estimate of S(t 1) along with explicit credibility intervals for this
n+

estimate. And although our extensions of our present work are incomplete, it

does seem to promise easy analogues of the present work in the case of

vector-valued reSpOtlSefunctions of a vector argument. In contrast the theory

of spline-smoothers seems to present considerable technical difficulty and

while the work of Wahba (1983) l1asbeen extended, these extensions are

hard-won and quite limited to date.

There has been a considerable interest in nonparametric regression and

the celebrated paper of stone (1977), among others, discusses the consistency

of the members of classes of such procedures. There is little intersection

with our work which is more concerned with generating non-parametric

regression function estimators than on repeated sampling properties of the
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results. stone (1977) does consider in passing a locally linear estimator and

the same estimator appears more informally in Chambers, Cleveland, Kleiner and

Tukey (1983, p.96). The locally linear estimators in both of the just cited

works differs from that which emerges here in the locally linear special case;

our estimator is not, in fact, linear in the regressor, t.

A notable, recent contribution to the literature of smoothing is the

paper of Breiman and Friedman (1985). Their very general approach yields an

implicit characterization of transformations of the regressand and regressor,

which maximizes the correlation between the tt:"ansformedvariables. Their

paper is in a nonparametric frequency setting and has little intersection with

ours. In particular they do not consider the problem of developing

reliability bands or the pt:"edictionproblem. Rather their work is concerned

with finding a suitable algorithm for determining the requit:"edoptimal

transformations.
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5. DISCUSSION. This report presents a very general approach to the analysis

of stochastic processes, R = C + N where C = M + S, M is a parametric model

(possibly zero), S is a smooth function which is at least continuous and

possibly differentiable to some order and N is uncorrelated noise. The method

is flexible and easy to implement. In its generality it subsumes space-time

series and the regression problem. It allows for the analysis of time series

with only a single observation per sample path and in general gives explicit

answers which are much different in form to those derived by classical methods.

The response R, would in general be a matroid whose rows (as few as one,

possibly) would correspond to independent replicates and columns to possibly

correlated, per subject responses. On each row would be stacked the response

vectors, one for each combination of quantitative levels at which the

responses were measured. These levels could include such things as space-time

co-ordinates and indepelldent (continuous) variables like, say temperature.

The model M incorporates all available prior knowledge about C's

functional form. So M could well contain terms for trend and seasonality.

And M should incorporate all of C's discontinuous components. For example,

c(t) = 0 or e according as t ~ t , or t > t , with e to be fitted, would
o 0

incorporate the effect of an intervention at time t. Such an intervention
o

might be the closure of a smelter or alternatively the start-up of a new power

generating facility; in either of these cases, R might well be the pH of wet

acidic deposition. In any case, M would be analyzed in a conventional fashion

and in this paper we suppose M = O.
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s is the focus of this paper. The responses. R. are assumed to have been

measured at distinct levels t = t , •••• t • of a single, continuous
1 n

explanatory factor. And inference is taken to be about S(t 1)' at a point, t
n+

= t l' where. possibly. no observations have been taken. The relationship
n+

between S(t.), i=l •... , nand S(t 1) is dictated by Taylor's theorem; S(t.)
1 n+ 1

= S(t 1)+ ••• + remainder. This relationship is an inevitable consequence
n+

of the assumed regularity, it is exact, and it provides the vital link for

inference between the R(t.), i=l, •••• n. and S(t 1). A priori uncertainty
1 n+

about the remaitlder and about all other such unspecified items is quantified

in terms of probabilities. The remainder is not independent of the other

terms in the expansion. However, we show in Section 2, that this assumption

is approximately valid for t. near t l' and this is all that matters because
1 n+

the more remote observed R-values are wind owed out. The Taylor based

structural model reduces enormously the need for introspection in a priori

distribution elicitation.

The use of Bayesian methods has the advantage that prior knowledge about

a priori unspecified parameters can be accomodated in the analysis to a far

greater degree than merely through the choice of M. On the other hand by

adopting appropriate diffuse prior probability distribution. essentially

empirically Bayes procedures like those which form the core of results in this

paper, are obtained. Empirical Bayes methods are enjoying a good deal of

current popularity because of their capability to transfer information between

subjects ("borrowing from strength") and often. thereby, improving the overall

quality of the analysis.
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OUr approach has the advantage that estimates of S(t 1) are obtained in
n+

an explicit form. They are linear functions of the R(t.) and a combination of
1.

rational functions of t l' For extreme values of l l' S(t 1) is, in the
n+ n+ n+

case considered here where the priors are,vague, predicted by the least

squares polynomial fitted to the data; its order is that of the highest term

of the Taylor expansion. However, in a proper Bayesian analysis of this

problem more controlled predictions would be obtained.

In any case, credibility intervals for S(t 1) are easily computed in
n+

explicit fot~ from its a posteriori distribution. And in the case considered

here, this interval should have, approximately, the confidence property.

Simultaneous bands are desirable in principle for (S(t 1)' ..., S(t k)' k
n+ n+

OUr approach readily yields quantiles for S(t 1) along with its mean
n+

value. And it can be applied to make inferences for differences like S(t
n
+
1
)

It should be emphasized that although S-curves and credibility bands are

pictured in the Figures these are intended to be applied on a point-by-point

based and not simultaneously. Simultaneous credibility bands would be a lot

wider.

It should also be empllasized that the distributions in this paper have a

finite dimensional support generated by the quantities emerging at the times t

t , •••, t 1 and these dislributions are thought of as just approximate
1 n+
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expressions of uncertainty. We have not considered the technically

challenging problem of studying the class of stochastic processes, (S(t): 0

~ t ~ ~}, for which our local structural or stochastic linear models hold.

An understanding of these processes would be helpful in insuring coherence in

elicitated prior probabilities.
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FIGURE 1. Locally Constant (broken line) and Linear (solid

line) Fits to Artificial (parabolic) Data.
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FIGURE 2. A Comparison of the Locally Constant (dotted line), Linear

(broken line) and Quadratic (solid line) Fits to 1977 pH Data.
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FIGURE 3. A Comparison of the Credibility intervals for
Locally Linear (broken line) and Quadratic (solid
line) Fits for the 1977 (top) and Monthly Average

(bottom) pH Data.
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FIGURE 4. Locally Constant, Linear, and Quadratic Fits

for 1977 and the Monthly Average pH Data.
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FIGURE 5. Residual Plots from the Locally Linear Fits to
the 1977 (top) and the Monthly Average (bottom)

pH Data.
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Various Values of the Smoothing Constant c = 0.00001, the
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