An Introduction to Graphical Lasso

Bo Chang
Graphical Models Reading Group

May 15, 2015

Undirected Graphical Models

- An undirected graph, each vertex represents a random variable.
- The absence of an edge between two vertices means the corresponding random variables are conditionally independent, given other variables.
- The Gaussian distribution is widely used for such graphical models, because of its convenient analytical properties.
- Penalized regression methods for inducing sparsity in the precision matrix are central to the construction of Gaussian graphical models.

Precision Matrix

Denote the covariance matrix by $\boldsymbol{\Sigma}$, then the inverse covariance matrix $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$ is called precision matrix. Let $\theta_{i j}$ be the (i, j) th element of $\boldsymbol{\Theta}$.

$$
\theta_{i j}=-\sigma_{i j ; \text { rest }} \operatorname{det}\left(\boldsymbol{\Sigma}^{(i j)}\right) \operatorname{det}(\boldsymbol{\Sigma})^{-1} .
$$

- $\sigma_{i j ; \text { rest }}$: conditional/partial covariance of variables i and j, given the other variables.
- $\boldsymbol{\Sigma}^{(i j)}$: matrix $\boldsymbol{\Sigma}$ with ith row and jth column removed.
- If $\theta_{i j}=0$, then variables i and j are conditionally independent, given other variables.

Precision Matrix

- Suppose we partition $X^{T}=\left(X_{1}^{T}, X_{2}\right)$, where X_{1} consists of the first $d-1$ variables and X_{2} is the last.
- We have the partition of $\boldsymbol{\Sigma}$ and $\boldsymbol{\Theta}$:

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \sigma_{12} \\
\sigma_{12}^{T} & \sigma_{22}
\end{array}\right), \quad \boldsymbol{\Theta}=\left(\begin{array}{cc}
\boldsymbol{\Theta}_{11} & \theta_{12} \\
\theta_{12}^{T} & \theta_{22}
\end{array}\right)
$$

- Let $\beta=\boldsymbol{\Sigma}_{11}^{-1} \sigma_{12}$ be the multiple linear regression coefficient of X_{2} on X_{1}.
- Since $\boldsymbol{\Sigma} \boldsymbol{\Theta}=\mathbf{I}$,

$$
\begin{gathered}
\boldsymbol{\Sigma}_{11} \theta_{12}+\sigma_{12} \theta_{22}=0 \\
\beta=\boldsymbol{\Sigma}_{11}^{-1} \sigma_{12}=-\theta_{12} / \theta_{22}
\end{gathered}
$$

Precision Matrix

- Regression coefficient:

$$
\beta=-\theta_{12} / \theta_{22} .
$$

- We can learn about the dependence structure through multiple linear regression.
- Meinshausen and Bhlmann (2006) try to estimate which components $\theta_{i j}$ are zero, rather than fully estimate $\boldsymbol{\Theta}$. They fit a lasso regression using each variable as the response and the others as predictors.

Lasso

- Minimize

$$
Q(\beta)=\frac{1}{2}\|Y-X \beta\|^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
$$

- When $n=p=1$ and $X=1$,

$$
\begin{gathered}
Q(\beta)=\frac{1}{2}(y-\beta)^{2}+\lambda|\beta| \\
Q^{\prime}(\beta)=-y+\beta+\lambda \cdot \operatorname{sign}(\beta)=0
\end{gathered}
$$

- Lasso solution

$$
\hat{\beta}(\lambda)=\operatorname{sign}(y)(|y|-\lambda)_{+}=S(y, \lambda)
$$

where $S(y, \lambda)$ is called the soft-thresholding operator.

Graphical Lasso

A more systematic approach by Friedman, Hastie and Tibshirani (2008).

- Consider maximizing the penalized log-likelihood

$$
\log (\operatorname{det}[\boldsymbol{\Theta}])-\operatorname{trace}(\mathbf{S} \boldsymbol{\Theta})-\lambda\|\boldsymbol{\Theta}\|_{1} .
$$

S: sample covariance matrix.
$\|\boldsymbol{\Theta}\|_{1}$: element L_{1} norm, the sum of the absolute values of the elements of $\boldsymbol{\Theta}$.

- The gradient equation

$$
\boldsymbol{\Theta}^{-1}-\mathbf{S}-\lambda \cdot \operatorname{Sign}(\boldsymbol{\Theta})=\mathbf{0}
$$

Graphical Lasso

- The gradient equation

$$
\boldsymbol{\Theta}^{-1}-\mathbf{S}-\lambda \cdot \operatorname{Sign}(\boldsymbol{\Theta})=\mathbf{0}
$$

- Let $\mathbf{W}=\boldsymbol{\Theta}^{-1}$ and

$$
\begin{gathered}
\left(\begin{array}{cc}
\mathbf{W}_{11} & w_{12} \\
w_{12}^{T} & w_{22}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{\Theta}_{11} & \theta_{12} \\
\theta_{12}^{T} & \theta_{22}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0^{T} & 1
\end{array}\right) . \\
w_{12}=-\mathbf{W}_{11} \theta_{12} / \theta_{22}=\mathbf{W}_{11} \beta,
\end{gathered}
$$

where $\beta=-\theta_{12} / \theta_{22}$.

- The upper right block of the gradient equation:

$$
\mathbf{W}_{11} \beta-s_{12}+\lambda \cdot \operatorname{Sign}(\beta)=0
$$

which is recognized as the estimation equation for the Lasso regression.

Graphical Lasso

Algorithm 17.2 Graphical Lasso.

1. Initialize $\mathbf{W}=\mathbf{S}+\lambda \mathbf{I}$. The diagonal of \mathbf{W} remains unchanged in what follows.
2. Repeat for $j=1,2, \ldots p, 1,2, \ldots p, \ldots$ until convergence:
(a) Partition the matrix \mathbf{W} into part 1: all but the j th row and column, and part 2: the j th row and column.
(b) Solve the estimating equations $\mathbf{W}_{11} \beta-s_{12}+\lambda \cdot \operatorname{Sign}(\beta)=0$ using the cyclical coordinate-descent algorithm (17.26) for the modified lasso.
(c) Update $w_{12}=\mathbf{W}_{11} \hat{\beta}$
3. In the final cycle (for each j) solve for $\hat{\theta}_{12}=-\hat{\beta} \cdot \hat{\theta}_{22}$, with $1 / \hat{\theta}_{22}=$ $w_{22}-w_{12}^{T} \hat{\beta}$.

Graphical Lasso

- Coordinate descent: Let $\mathbf{V}=\mathbf{W}_{11}$,

$$
\hat{\beta}_{i} \leftarrow S\left(s_{12 i}-\sum_{k \neq j} V_{k i} \hat{\beta}_{k}, \lambda\right) / V_{i i}
$$

where $S(y, \lambda)$ is the soft-thresholding operator.

Analysis of Protein-signalling Data

We analyze a flow cytometry dataset on $d=11$ proteins and $n=7466$ cells. Several methods are compared:

- Graphical Lasso
- Bayesian Network
- Truncated Vine (Sequential MST)
- Factor Analysis

Discrepancy Measure

- A common discrepancy measure in the psychometrics and structural equation modeling literatures is:

$$
D=\log \left(\operatorname{det}\left[\mathbf{R}_{\text {model }}(\hat{\delta})\right]\right)-\log \left(\operatorname{det}\left[\mathbf{R}_{\text {data }}\right]\right)+\operatorname{tr}\left[\mathbf{R}_{\text {model }}^{-1}(\hat{\delta}) \mathbf{R}_{\text {data }}\right]-d
$$

d: number of variables.
$\mathbf{R}_{\text {data }}$: sample correlation matrix.
$\mathbf{R}_{\text {model }}(\hat{\boldsymbol{\delta}})$: model-based correlation matrix based on the estimate of the parameter $\boldsymbol{\delta}$. If either model has some conditional independence relations, then the dimension of δ is less than $d(d-1) / 2$.

Discrepancy Measure

- Other comparisons are the AIC/BIC based on a Gaussian log-likelihood.
- Also useful are the average and max absolute deviations of the model-based correlation matrix from the empirical correlation matrix:

$$
\max _{j<k}\left|\mathbf{R}_{\mathrm{data}, j k}-\mathbf{R}_{\mathrm{model}, j k}(\hat{\boldsymbol{\delta}})\right|
$$

Results

Model	Dfit	MaxAbsDiff	AIC $\left(\times 10^{5}\right)$	BIC $\left(\times 10^{5}\right)$	\#Par
BN	0.013	0.019	1.969	1.972	36
glasso $(\lambda=0.13)$	1.232	0.200	2.060	2.062	33
glasso $(\lambda=0.10)$	0.930	0.159	2.038	2.040	37
glasso $(\lambda=0.08)$	0.700	0.126	2.020	2.023	41
1-truncated seq. MST	1.030	0.306	2.044	2.045	10
2-truncated seq. MST	0.568	0.242	2.010	2.012	19
3-truncated seq. MST	0.328	0.197	1.992	1.994	27
4-truncated seq. MST	0.224	0.229	1.985	1.987	34
5-truncated seq. MST	0.142	0.150	1.979	1.982	40
1-factor	2.682	0.571	2.168	2.169	11
2-factor	1.689	0.529	2.094	2.095	21
3-factor	0.832	0.456	2.030	2.032	30
4-factor	0.245	0.119	1.986	1.989	38

References

(ivi Hastie, T., Tibshirani, R., Friedman, J. (2009).
The elements of statistical learning.
New York: springer.
目 Pourahmadi, M. (2013).
High-Dimensional Covariance Estimation: With High-Dimensional Data.
John Wiley \& Sons.
Meinshausen, N., \& Bhlmann, P. (2006).
High-dimensional graphs and variable selection with the lasso.
The Annals of Statistics, 1436-1462.
Friedman, J., Hastie, T., \& Tibshirani, R. (2008).
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3), 432-441. Chicago

The End

