An Introduction to Graphical Lasso

Bo Chang

Graphical Models Reading Group

May 15, 2015

Bo Chang (UBC)

Graphical Lasso

May 15, 2015 1 / 16

- An undirected graph, each vertex represents a random variable.
- The absence of an edge between two vertices means the corresponding random variables are conditionally independent, given other variables.
- The Gaussian distribution is widely used for such graphical models, because of its convenient analytical properties.
- Penalized regression methods for inducing sparsity in the precision matrix are central to the construction of Gaussian graphical models.

Denote the covariance matrix by Σ , then the inverse covariance matrix $\Theta = \Sigma^{-1}$ is called precision matrix. Let θ_{ij} be the (i, j)th element of Θ .

$$heta_{ij} = -\sigma_{ij; ext{rest}} \det(\mathbf{\Sigma}^{(ij)}) \det(\mathbf{\Sigma})^{-1}.$$

- σ_{ij;rest}: conditional/partial covariance of variables *i* and *j*, given the other variables.
- $\Sigma^{(ij)}$: matrix Σ with *i*th row and *j*th column removed.
- If $\theta_{ij} = 0$, then variables *i* and *j* are conditionally independent, given other variables.

- Suppose we partition X^T = (X₁^T, X₂), where X₁ consists of the first d − 1 variables and X₂ is the last.
- We have the partition of $\pmb{\Sigma}$ and $\pmb{\Theta}$:

$$\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \sigma_{12} \\ \sigma_{12}^T & \sigma_{22} \end{pmatrix}, \qquad \boldsymbol{\Theta} = \begin{pmatrix} \boldsymbol{\Theta}_{11} & \theta_{12} \\ \theta_{12}^T & \theta_{22} \end{pmatrix}.$$

- Let $\beta = \Sigma_{11}^{-1} \sigma_{12}$ be the multiple linear regression coefficient of X_2 on X_1 .
- Since $\Sigma \Theta = I$,

$$\Sigma_{11}\theta_{12} + \sigma_{12}\theta_{22} = 0,$$

$$\beta = \Sigma_{11}^{-1}\sigma_{12} = -\theta_{12}/\theta_{22}.$$

• Regression coefficient:

$$\beta = -\theta_{12}/\theta_{22}.$$

- We can learn about the dependence structure through multiple linear regression.
- Meinshausen and Bhlmann (2006) try to estimate which components θ_{ij} are zero, rather than fully estimate Θ. They fit a lasso regression using each variable as the response and the others as predictors.

Minimize

$$Q(\beta) = \frac{1}{2} \|Y - X\beta\|^2 + \lambda \sum_j |\beta_j|.$$

• When n = p = 1 and X = 1,

$$Q(\beta) = \frac{1}{2}(y - \beta)^2 + \lambda|\beta|.$$
$$Q'(\beta) = -y + \beta + \lambda \cdot \operatorname{sign}(\beta) = 0.$$

Lasso solution

$$\hat{eta}(\lambda) = \operatorname{sign}(y)(|y| - \lambda)_+ = \mathcal{S}(y, \lambda),$$

where $S(y, \lambda)$ is called the soft-thresholding operator.

A more systematic approach by Friedman, Hastie and Tibshirani (2008).

• Consider maximizing the penalized log-likelihood

$$\log(\det[\boldsymbol{\Theta}]) - \operatorname{trace}(\mathbf{S}\boldsymbol{\Theta}) - \lambda \|\boldsymbol{\Theta}\|_1.$$

S: sample covariance matrix.

 $\|\mathbf{\Theta}\|_1$: element L_1 norm, the sum of the absolute values of the elements of $\mathbf{\Theta}$.

• The gradient equation

$$\boldsymbol{\Theta}^{-1} - \mathbf{S} - \lambda \cdot \operatorname{Sign}(\boldsymbol{\Theta}) = \mathbf{0}.$$

Graphical Lasso

• The gradient equation

$$\boldsymbol{\Theta}^{-1} - \mathbf{S} - \lambda \cdot \operatorname{Sign}(\boldsymbol{\Theta}) = \mathbf{0}.$$

• Let $\mathbf{W} = \mathbf{\Theta}^{-1}$ and

$$\begin{pmatrix} \mathbf{W}_{11} & w_{12} \\ w_{12}^T & w_{22} \end{pmatrix} \begin{pmatrix} \mathbf{\Theta}_{11} & \theta_{12} \\ \theta_{12}^T & \theta_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ 0^T & 1 \end{pmatrix}$$
$$w_{12} = -\mathbf{W}_{11}\theta_{12}/\theta_{22} = \mathbf{W}_{11}\beta,$$
where $\beta = -\theta_{12}/\theta_{22}.$

• The upper right block of the gradient equation:

$$\mathbf{W}_{11}\beta - s_{12} + \lambda \cdot \operatorname{Sign}(\beta) = 0$$

which is recognized as the estimation equation for the Lasso regression.

Bo Chang (UBC)

Algorithm 17.2 Graphical Lasso.

- 1. Initialize $\mathbf{W} = \mathbf{S} + \lambda \mathbf{I}$. The diagonal of \mathbf{W} remains unchanged in what follows.
- 2. Repeat for $j = 1, 2, \dots, p, 1, 2, \dots, p, \dots$ until convergence:
 - (a) Partition the matrix **W** into part 1: all but the *j*th row and column, and part 2: the *j*th row and column.
 - (b) Solve the estimating equations $\mathbf{W}_{11}\beta s_{12} + \lambda \cdot \text{Sign}(\beta) = 0$ using the cyclical coordinate-descent algorithm (17.26) for the modified lasso.
 - (c) Update $w_{12} = \mathbf{W}_{11}\hat{\beta}$
- 3. In the final cycle (for each j) solve for $\hat{\theta}_{12} = -\hat{\beta} \cdot \hat{\theta}_{22}$, with $1/\hat{\theta}_{22} = w_{22} w_{12}^T \hat{\beta}$.

< ロ > < 同 > < 三 > < 三

• Coordinate descent: Let $\mathbf{V} = \mathbf{W}_{11}$,

$$\hat{\beta}_i \leftarrow S(s_{12i} - \sum_{k \neq j} V_{ki} \hat{\beta}_k, \lambda) / V_{ii},$$

where $S(y, \lambda)$ is the soft-thresholding operator.

We analyze a flow cytometry dataset on d = 11 proteins and n = 7466 cells. Several methods are compared:

- Graphical Lasso
- Bayesian Network
- Truncated Vine (Sequential MST)
- Factor Analysis

• A common discrepancy measure in the psychometrics and structural equation modeling literatures is:

 $D = \log(\det[\mathbf{R}_{ ext{model}}(\hat{\delta})]) - \log(\det[\mathbf{R}_{ ext{data}}]) + \operatorname{tr}[\mathbf{R}_{ ext{model}}^{-1}(\hat{\delta})\mathbf{R}_{ ext{data}}] - d.$

d: number of variables.

 $\mathbf{R}_{\mathrm{data}}$: sample correlation matrix.

 $\mathbf{R}_{\mathrm{model}}(\hat{\boldsymbol{\delta}})$: model-based correlation matrix based on the estimate of the parameter $\boldsymbol{\delta}$. If either model has some conditional independence relations, then the dimension of $\boldsymbol{\delta}$ is less than d(d-1)/2.

- Other comparisons are the AIC/BIC based on a Gaussian log-likelihood.
- Also useful are the average and max absolute deviations of the model-based correlation matrix from the empirical correlation matrix:

$$\max_{j < k} |\mathbf{R}_{\text{data}, jk} - \mathbf{R}_{\text{model}, jk}(\hat{\boldsymbol{\delta}})|.$$

Model	Dfit	MaxAbsDiff	$AIC(\times 10^5)$	$BIC(\times 10^5)$	#Par
BN	0.013	0.019	1.969	1.972	36
$glasso(\lambda=0.13)$	1.232	0.200	2.060	2.062	33
$glasso(\lambda=0.10)$	0.930	0.159	2.038	2.040	37
$glasso(\lambda=0.08)$	0.700	0.126	2.020	2.023	41
1-truncated seq. MST	1.030	0.306	2.044	2.045	10
2-truncated seq. MST	0.568	0.242	2.010	2.012	19
3-truncated seq. MST	0.328	0.197	1.992	1.994	27
4-truncated seq. MST	0.224	0.229	1.985	1.987	34
5-truncated seq. MST	0.142	0.150	1.979	1.982	40
1-factor	2.682	0.571	2.168	2.169	11
2-factor	1.689	0.529	2.094	2.095	21
3-factor	0.832	0.456	2.030	2.032	30
4-factor	0.245	0.119	1.986	1.989	38

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

References

Hastie, T., Tibshirani, R., Friedman, J. (2009).

The elements of statistical learning.

New York: springer.

Pourahmadi, M. (2013).

High-Dimensional Covariance Estimation: With High-Dimensional Data. John Wiley & Sons.

Meinshausen, N., & Bhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 1436-1462.

Friedman, J., Hastie, T., & Tibshirani, R. (2008).

Sparse inverse covariance estimation with the graphical lasso.

Biostatistics, 9(3), 432-441.Chicago

The End

∃ >

▲ □ ▶ < □ ▶ < □</p>